summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitattributes3
-rw-r--r--36670-pdf.pdfbin0 -> 788109 bytes
-rw-r--r--36670-pdf.zipbin0 -> 567034 bytes
-rw-r--r--36670-t.zipbin0 -> 119145 bytes
-rw-r--r--36670-t/36670-t.tex14166
-rw-r--r--36670-t/images/fig1.pdfbin0 -> 4629 bytes
-rw-r--r--36670-t/images/fig2.pdfbin0 -> 5034 bytes
-rw-r--r--36670-t/images/fig3.pdfbin0 -> 5375 bytes
-rw-r--r--36670-t/images/src/fig1.eepic40
-rw-r--r--36670-t/images/src/fig1.xp21
-rw-r--r--36670-t/images/src/fig2.eepic37
-rw-r--r--36670-t/images/src/fig2.xp36
-rw-r--r--36670-t/images/src/fig3.eepic43
-rw-r--r--36670-t/images/src/fig3.xp36
-rw-r--r--36670-t/old/36670-t.tex14160
-rw-r--r--36670-t/old/36670-t.zipbin0 -> 123150 bytes
-rw-r--r--LICENSE.txt11
-rw-r--r--README.md2
18 files changed, 28555 insertions, 0 deletions
diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000..6833f05
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,3 @@
+* text=auto
+*.txt text
+*.md text
diff --git a/36670-pdf.pdf b/36670-pdf.pdf
new file mode 100644
index 0000000..1c85c2a
--- /dev/null
+++ b/36670-pdf.pdf
Binary files differ
diff --git a/36670-pdf.zip b/36670-pdf.zip
new file mode 100644
index 0000000..9c22cb1
--- /dev/null
+++ b/36670-pdf.zip
Binary files differ
diff --git a/36670-t.zip b/36670-t.zip
new file mode 100644
index 0000000..f974ea9
--- /dev/null
+++ b/36670-t.zip
Binary files differ
diff --git a/36670-t/36670-t.tex b/36670-t/36670-t.tex
new file mode 100644
index 0000000..2b26f09
--- /dev/null
+++ b/36670-t/36670-t.tex
@@ -0,0 +1,14166 @@
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+% %
+% The Project Gutenberg EBook of The First Steps in Algebra, by %
+% G. A. (George Albert) Wentworth %
+% %
+% This eBook is for the use of anyone anywhere at no cost and with %
+% almost no restrictions whatsoever. You may copy it, give it away or %
+% re-use it under the terms of the Project Gutenberg License included %
+% with this eBook or online at www.gutenberg.net %
+% %
+% %
+% Title: The First Steps in Algebra %
+% %
+% Author: G. A. (George Albert) Wentworth %
+% %
+% Release Date: July 9, 2011 [EBook #36670] %
+% Most recently updated: June 11, 2021 %
+% %
+% Language: English %
+% %
+% Character set encoding: UTF-8 %
+% %
+% *** START OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA ***%
+% %
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+
+\def\ebook{36670}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %%
+%% Packages and substitutions: %%
+%% %%
+%% book: Required. %%
+%% inputenc: Standard DP encoding. Required. %%
+%% %%
+%% fix-cm: For larger title page fonts. Optional. %%
+%% ifthen: Logical conditionals. Required. %%
+%% %%
+%% amsmath: AMS mathematics enhancements. Required. %%
+%% amssymb: Additional mathematical symbols. Required. %%
+%% %%
+%% alltt: Fixed-width font environment. Required. %%
+%% array: Enhanced tabular features. Required. %%
+%% %%
+%% indentfirst: Indent first word of each sectional unit. Optional. %%
+%% textcase: Apply \MakeUppercase (et al.) only to text, not math. %%
+%% Required. %%
+%% %%
+%% calc: Length calculations. Required. %%
+%% soul: Spaced text. Optional. %%
+%% %%
+%% fancyhdr: Enhanced running headers and footers. Required. %%
+%% %%
+%% graphicx: Standard interface for graphics inclusion. Required. %%
+%% wrapfig: Illustrations surrounded by text. Required. %%
+%% %%
+%% geometry: Enhanced page layout package. Required. %%
+%% hyperref: Hypertext embellishments for pdf output. Required. %%
+%% %%
+%% %%
+%% Producer's Comments: %%
+%% %%
+%% Changes are noted in this file in two ways. %%
+%% 1. \DPtypo{}{} for typographical corrections, showing original %%
+%% and replacement text side-by-side. %%
+%% 2. [** TN: Note]s for lengthier or stylistic comments. %%
+%% %%
+%% Compilation Flags: %%
+%% %%
+%% The following behavior may be controlled by boolean flags. %%
+%% %%
+%% ForPrinting (false by default): %%
+%% Compile a screen-optimized PDF file. Set to true for print- %%
+%% optimized file (large text block, two-sided layout, black %%
+%% hyperlinks). %%
+%% %%
+%% Both print and screen layout are relatively loose, and contain %%
+%% hard-coded page breaks (\PrintBreak, \ScreenBreak, \newpage). %%
+%% %%
+%% %%
+%% PDF pages: 269 (if ForPrinting set to false) %%
+%% PDF page size: 4.75 x 7" (non-standard) %%
+%% PDF bookmarks: created, point to ToC entries %%
+%% PDF document info: filled in %%
+%% Images: 3 pdf diagrams %%
+%% %%
+%% Summary of log file: %%
+%% * Large numbers of visually-harmless over-full hboxes and vboxes %%
+%% from DPalign* and DPgather* environments. %%
+%% %%
+%% %%
+%% Compile History: %%
+%% %%
+%% July, 2011: adhere (Andrew D. Hwang) %%
+%% texlive2007, GNU/Linux %%
+%% %%
+%% Command block: %%
+%% %%
+%% pdflatex x2 %%
+%% %%
+%% %%
+%% July 2011: pglatex. %%
+%% Compile this project with: %%
+%% pdflatex 36670-t.tex ..... TWO times %%
+%% %%
+%% pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) %%
+%% %%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\listfiles
+\documentclass[12pt]{book}[2005/09/16]
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PACKAGES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\usepackage[utf8]{inputenc}[2006/05/05]
+
+\usepackage{ifthen}[2001/05/26] %% Logical conditionals
+
+\usepackage{amsmath}[2000/07/18] %% Displayed equations
+\usepackage{amssymb}[2002/01/22] %% and additional symbols
+
+\usepackage{alltt}[1997/06/16] %% boilerplate, credits, license
+
+\usepackage{array}[2005/08/23] %% extended array/tabular features
+
+\usepackage{multicol}
+
+\usepackage{graphicx}[1999/02/16]%% For diagrams
+
+\usepackage{indentfirst}[1995/11/23]
+\usepackage{textcase}[2004/10/07]
+
+\usepackage{calc}[2005/08/06]
+
+% for running heads
+\usepackage{fancyhdr}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%% Interlude: Set up PRINTING (default) or SCREEN VIEWING %%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% ForPrinting=true (default) false
+% Asymmetric margins Symmetric margins
+% Black hyperlinks Blue hyperlinks
+% Start Preface, ToC, etc. recto No blank verso pages
+%
+% Chapter-like ``Sections'' start both recto and verso in the scanned
+% book. This behavior has been retained.
+\newboolean{ForPrinting}
+
+%% UNCOMMENT the next line for a PRINT-OPTIMIZED VERSION of the text %%
+%\setboolean{ForPrinting}{true}
+
+%% Initialize values to ForPrinting=false
+\newcommand{\Margins}{hmarginratio=1:1} % Symmetric margins
+\newcommand{\HLinkColor}{blue} % Hyperlink color
+\newcommand{\PDFPageLayout}{SinglePage}
+\newcommand{\TransNote}{Transcriber's Note}
+\newcommand{\TransNoteCommon}{%
+ Minor typographical corrections and presentational changes have
+ been made without comment.
+ \bigskip
+}
+
+\newcommand{\TransNoteText}{%
+ \TransNoteCommon
+
+ This PDF file is optimized for screen viewing, but may easily be
+ recompiled for printing. Please see the preamble of the \LaTeX\
+ source file for instructions.
+}
+%% Re-set if ForPrinting=true
+\ifthenelse{\boolean{ForPrinting}}{%
+ \renewcommand{\Margins}{hmarginratio=2:3} % Asymmetric margins
+ \renewcommand{\HLinkColor}{black} % Hyperlink color
+ \renewcommand{\PDFPageLayout}{TwoPageRight}
+ \renewcommand{\TransNote}{Transcriber's Note}
+ \renewcommand{\TransNoteText}{%
+ \TransNoteCommon
+
+ This PDF file is optimized for printing, but may easily be
+ recompiled for screen viewing. Please see the preamble of the
+ \LaTeX\ source file for instructions.
+ }
+}{% If ForPrinting=false, don't skip to recto
+ \renewcommand{\cleardoublepage}{\clearpage}
+}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%% End of PRINTING/SCREEN VIEWING code; back to packages %%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\ifthenelse{\boolean{ForPrinting}}{%
+ \setlength{\paperwidth}{8.5in}%
+ \setlength{\paperheight}{11in}%
+ \usepackage[body={5in,8in},\Margins]{geometry}[2002/07/08]
+}{%
+ \setlength{\paperwidth}{4.75in}%
+ \setlength{\paperheight}{7in}%
+ \raggedbottom
+ \usepackage[body={4.5in,6in},\Margins,includeheadfoot]{geometry}[2002/07/08]
+}
+
+\providecommand{\ebook}{00000} % Overridden during white-washing
+\usepackage[pdftex,
+ hyperref,
+ hyperfootnotes=false,
+ pdftitle={The Project Gutenberg eBook \#\ebook: The First Steps in Algebra},
+ pdfauthor={George Albert Wentworth},
+ pdfkeywords={Peter Vachuska, Chuck Greif, Andrew D. Hwang
+ Project Gutenberg Online Distributed Proofreading Team},
+ pdfstartview=Fit, % default value
+ pdfstartpage=1, % default value
+ pdfpagemode=UseNone, % default value
+ bookmarks=true, % default value
+ linktocpage=false, % default value
+ pdfpagelayout=\PDFPageLayout,
+ pdfdisplaydoctitle,
+ pdfpagelabels=true,
+ bookmarksopen=true,
+ bookmarksopenlevel=1,
+ colorlinks=true,
+ linkcolor=\HLinkColor]{hyperref}[2007/02/07]
+
+%%%% Fixed-width environment to format PG boilerplate %%%%
+\newenvironment{PGtext}{%
+\begin{alltt}
+\fontsize{8.1}{9}\ttfamily\selectfont}%
+{\end{alltt}}
+
+%% No hrule in page header
+\renewcommand{\headrulewidth}{0pt}
+\setlength{\extrarowheight}{2pt}
+\setlength{\arraycolsep}{2pt}
+
+% Tighten up spacing surrounding multicols environments
+\setlength{\multicolsep}{8pt plus 4pt minus 8pt}
+\setlength{\parskip}{6pt plus 6pt minus 4pt}
+
+% Check for specified remaining height on current page
+\newcommand{\Require}[1][2\baselineskip]{%
+ \setlength{\TmpLen}{\pagegoal-\pagetotal}%
+ \ifthenelse{\lengthtest{0pt < \TmpLen}\and\lengthtest{\TmpLen < #1}}{%
+ \vfil\newpage%
+ }{}%
+}
+
+% Hard-coded page breaks for print- and screen-formatted versions
+\newcommand{\PrintBreak}{\ifthenelse{\boolean{ForPrinting}}{\newpage}{}}
+\newcommand{\ScreenBreak}{\ifthenelse{\not\boolean{ForPrinting}}{\newpage}{}}
+
+\newcommand{\PrintStretch}[1]{%
+ \ifthenelse{\boolean{ForPrinting}}{\enlargethispage{#1}}{}%
+}
+
+% Running heads
+\newcommand{\FlushRunningHeads}{\clearpage\fancyhf{}\cleardoublepage}
+
+\newcommand{\RHead}[1]{\footnotesize\MakeUppercase{#1}}
+\newcommand{\SetRunningHeads}[2][First Steps in Algebra.]{%
+ \pagestyle{fancy}
+ \fancyhf{}
+ \setlength{\headheight}{15pt}
+ \thispagestyle{plain}
+ \fancyhead[CE]{\RHead{#1}}
+ \fancyhead[CO]{\RHead{#2}}
+
+ \ifthenelse{\boolean{ForPrinting}}
+ {\fancyhead[RO,LE]{\thepage}}
+ {\fancyhead[R]{\thepage}}
+}
+
+\newcommand{\BookMark}[2]{\phantomsection\pdfbookmark[#1]{#2}{#2}}
+
+%\Chapter[ToC entry]{Number.}{Heading title}
+\newcommand{\Chapter}[3][]{%
+ \cleardoublepage
+ \phantomsection
+ \label{chap:#2}
+
+ \ifthenelse{\equal{#2}{I.}}{%
+ \begin{center}
+ \textbf{\Large FIRST STEPS IN ALGEBRA.}
+
+ \tb
+ \end{center}
+ }{}%
+ \section*{\normalfont\centering\large CHAPTER #2}
+ \subsection*{\normalfont\centering\small \MakeUppercase{#3}}
+ \SetRunningHeads{#3}%
+ \ifthenelse{\equal{#1}{}}{%
+ \addtocontents{toc}{\protect\ToCLine{#2}{#3}}%
+ \BookMark{0}{Chapter #2 #3}
+ }{%
+ \addtocontents{toc}{\protect\ToCLine{#2}{#1}}%
+ \BookMark{0}{Chapter #2 #1}
+ }
+}
+
+\newcommand{\Section}[1]{\subsection*{\centering\normalfont\small\scshape #1}}
+
+% Numbered units
+\newcommand{\Paragraph}[1]{\medskip\par\textbf{#1}}
+
+\newcommand{\Exercise}[2][]{%
+ \Require[3\baselineskip]
+ \subsection*{\centering\small Exercise #2}
+ \ifthenelse{\not\equal{#1}{}}{%
+ \subsubsection*{\centering\normalfont\small\scshape #1}
+ }{}
+ \phantomsection\label{exer:#2}%
+}
+
+\newcommand{\Preface}{%
+ \FlushRunningHeads
+ \pagestyle{fancy}
+ \section*{\centering\Large PREFACE.}
+ \SetRunningHeads[Preface.]{Preface.}
+ \BookMark{0}{Preface.}
+}
+
+\newcommand{\Signature}[2]{%
+ \medskip%
+ \null\hfill#1 \\
+ \hspace*{\parindent}#2%
+}
+
+% N.B. Re-defines the \Item command
+\newcommand{\Answers}{
+ \FlushRunningHeads
+ \pagestyle{fancy}
+ \phantomsection
+ \label{answers}
+ \section*{\centering\Large ANSWERS.}
+ \SetRunningHeads[Answers.]{Answers.}
+ \addtocontents{toc}{\protect\ToCLine{}{Answers.}}%
+ \BookMark{0}{Answers.}
+ \ifthenelse{\not\boolean{ForPrinting}}{\footnotesize}{\small}%
+
+ \renewcommand{\Item}[1]{
+ \vspace{4pt plus 16pt}\makebox[1em][r]{\textbf{##1}\ }\hangindent 2.5em%
+ }
+}
+
+% For internal use to keep track of current number of columns
+\newcommand{\CurrCols}{1}
+
+\newcommand{\ResetCols}[1][1]{%
+ \ifthenelse{\not\equal{\CurrCols}{1}}{%
+ \end{multicols}
+ }{}
+ \renewcommand{\CurrCols}{#1}
+ \ifthenelse{\not\equal{#1}{1}}{%
+ \begin{multicols}{#1}%
+ }{}
+}
+
+% For internal use
+\newcommand{\AnsSectHead}[2]{
+ \subsection*{%
+ \centering\small #1 #2 \hyperref[exer:#2]{Page \pageref{exer:#2}}
+ }
+}
+
+% \AnsTo[cols]{Exercise}{42.}
+\newcommand{\AnsTo}[3][3]{%
+ \ifthenelse{\not\equal{#3}{1.}}{% Not first group
+ \ifthenelse{\not\equal{\CurrCols}{1}}{%
+ \end{multicols}
+ }
+ }{}
+
+ \renewcommand{\CurrCols}{#1}%
+ \ifthenelse{\not\equal{#1}{1}}{%
+ \begin{multicols}{#1}[\AnsSectHead{#2}{#3}]
+ }{%
+ \AnsSectHead{#2}{#3}
+ }
+ }
+
+% Semantic boldface
+\newcommand{\Defn}[1]{\textbf{#1}}
+\newcommand{\Dictum}[1]{\Require\textbf{#1}}
+
+% Semantic small type
+\newenvironment{Remark}[1][]{\par\small\textsc{#1}}{\par}
+\newenvironment{Soln}[1][]{\par\small\textsc{#1}}{\par}
+
+% Semantic italics
+\newenvironment{Theorem}[1][]{%
+ \ifthenelse{\not\equal{#1}{nopar}}{\smallskip\par#1}{}%
+ \itshape}{\medskip\upshape\par}
+
+
+\newcommand{\Graphic}[1]{%
+\begin{center}
+ \includegraphics[width=\textwidth]{./images/fig#1.pdf}%
+\end{center}
+}
+
+\newcommand{\Item}[1]{\vspace{4pt plus 16pt}\makebox[1em][r]{\textbf{#1}\ }}
+\newcommand{\Ax}[1]{\vspace{4pt plus 16pt}\makebox[3.5em][l]{Ax.\ #1}\ignorespaces}
+\newcommand{\Ans}[1]{%
+ \hfil\allowbreak\null\nobreak\hfill\nobreak\mbox{#1 \textit{Ans.}}%
+}
+% Trailing words in displays
+\newcommand{\EqText}[1]{\rlap{\quad\text{#1}}}
+
+\newcommand{\First}[1]{\textsc{#1}}
+
+% For corrections.
+\newcommand{\DPtypo}[2]{#2}
+\newcommand{\Add}[1]{\DPtypo{}{#1}}
+
+% \PadTo[#1]{#2}{#3} sets #3 in a box of width #2, aligned at #1 (default [r])
+% e.g., \PadTo{3x^{2} - 5x}{x}
+\newlength{\TmpLen}
+\newcommand{\PadTo}[3][r]{%
+ \settowidth{\TmpLen}{$#2$}%
+ \makebox[\TmpLen][#1]{$#3$}%
+}
+
+% Decorative rule
+\newcommand{\tb}[1][0.75in]{%
+ \rule{#1}{0.5pt}\\
+ \medskip
+}
+
+% Common abbreviations
+\newcommand{\HCF}{H.\,C.\,F.}
+\newcommand{\LCM}{L.\,C.\,M.}
+\newcommand{\LCD}{L.\,C.\,D.}
+
+% For rectangular arrays illustrating multiplication
+\newcommand{\DOT}{\bullet}
+\newcommand{\NOT}{\bullet\llap{$/$}}
+
+% Miscellaneous alignment conveniences
+\newcommand{\Z}{\phantom{0}}
+\newcommand{\Neg}{\phantom{-}}
+
+% In-line "vertical sum" and vinculum
+\newcommand{\VSum}[2]{\begin{array}{r}#1\\[-4pt]+#2\end{array}\Big|}
+\newcommand{\Vinc}[1]{\overline{#1\strut}}
+
+% Table entries providing their own vertical bar (or not)
+\newcommand{\NoBar}[1]{\multicolumn{1}{@{}r}{#1}}
+\newcommand{\TbBar}[1]{\multicolumn{1}{@{}r|}{#1}}
+
+% Big brace, for table on 168.png
+\newcommand{\threelines}{\rule[-18pt]{0pt}{36pt}}
+\newcommand{\BB}{\makebox[2pt][r]{\smash{$\left.\threelines\right\}$}}}
+
+\DeclareUnicodeCharacter{00A3}{\pounds}
+\DeclareUnicodeCharacter{00B0}{{}^\circ}
+\DeclareUnicodeCharacter{00B1}{\pm}
+\DeclareUnicodeCharacter{00B7}{\cdot}
+\DeclareUnicodeCharacter{00D7}{\times}
+\DeclareUnicodeCharacter{00F7}{\div}
+
+% ToC formatting
+\AtBeginDocument{\renewcommand{\contentsname}%
+ {\protect\centering\protect\Large CONTENTS.}}
+
+\newcommand{\TableofContents}{%
+ \tableofcontents
+ \SetRunningHeads{Contents.}
+ \BookMark{0}{Contents.}
+}
+
+% Project-dependent logic
+\newcommand{\ToCLine}[2]{%
+ \settowidth{\TmpLen}{\textsc{\footnotesize Chapter99}}%
+ \ifthenelse{\equal{#1}{I.}}{%
+ \noindent\textsc{\footnotesize Chapter\hfill Page}\\
+ }{}%
+ \ifthenelse{\not\equal{#1}{}}{%
+ \noindent\parbox[b]{\textwidth}{\strut\raggedright\hangindent\TmpLen%
+ \makebox[\TmpLen][r]{#1\quad}\textsc{#2}\dotfill\pageref{chap:#1}%
+ }%
+ }{%
+ \noindent\parbox[b]{\textwidth}{\strut\raggedright\hangindent\TmpLen%
+ \makebox[\TmpLen][r]{#1\quad}\textsc{#2}\dotfill\pageref{answers}%
+ }%
+ }
+}
+
+%% Major document divisions %%
+\newcommand{\PGBoilerPlate}{%
+ \pagenumbering{Alph}
+ \pagestyle{empty}
+ \BookMark{0}{PG Boilerplate.}
+}
+\newcommand{\FrontMatter}{%
+ \cleardoublepage % pagestyle still empty; \Preface calls \pagestyle{fancy}
+ \frontmatter
+ \BookMark{-1}{Front Matter.}
+}
+
+\newcommand{\MainMatter}{%
+ \FlushRunningHeads
+ \mainmatter
+ \BookMark{-1}{Main Matter.}
+}
+
+\newcommand{\BackMatter}{%
+ \FlushRunningHeads
+ \pagenumbering{Roman}
+ \backmatter
+ \BookMark{-1}{Back Matter.}
+ \BookMark{0}{PG License.}
+ \SetRunningHeads[License.]{License.}
+}
+
+\newcommand{\Tag}[1]{\tag*{#1}}
+
+% DPalign, DPgather
+\makeatletter
+\providecommand\shortintertext\intertext
+\newcount\DP@lign@no
+\newtoks\DP@lignb@dy
+\newif\ifDP@cr
+\newif\ifbr@ce
+\def\f@@zl@bar{\null}
+\def\addto@DPbody#1{\global\DP@lignb@dy\@xp{\the\DP@lignb@dy#1}}
+\def\parseb@dy#1{\ifx\f@@zl@bar#1\f@@zl@bar
+ \addto@DPbody{{}}\let\@next\parseb@dy
+ \else\ifx\end#1
+ \let\@next\process@DPb@dy
+ \ifDP@cr\else\addto@DPbody{\DPh@@kr&\DP@rint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&}\fi
+ \addto@DPbody{\end}
+ \else\ifx\intertext#1
+ \def\@next{\eat@command0}%
+ \else\ifx\shortintertext#1
+ \def\@next{\eat@command1}%
+ \else\ifDP@cr\addto@DPbody{&\DP@lint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&\DPh@@kl}
+ \DP@crfalse\fi
+ \ifx\begin#1\def\begin@stack{b}
+ \let\@next\eat@environment
+ \else\ifx\lintertext#1
+ \let\@next\linter@text
+ \else\ifx\rintertext#1
+ \let\@next\rinter@text
+ \else\ifx\\#1
+ \addto@DPbody{\DPh@@kr&\DP@rint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&\\}\DP@crtrue
+ \global\advance\DP@lign@no\@ne
+ \let\@next\parse@cr
+ \else\check@braces#1!Q!Q!Q!\ifbr@ce\addto@DPbody{{#1}}\else
+ \addto@DPbody{#1}\fi
+ \let\@next\parseb@dy
+ \fi\fi\fi\fi\fi\fi\fi\fi\@next}
+\def\process@DPb@dy{\let\lintertext\@gobble\let\rintertext\@gobble
+ \@xp\start@align\@xp\tw@\@xp\st@rredtrue\@xp\m@ne\the\DP@lignb@dy}
+\def\linter@text#1{\@xp\DPlint\@xp{\the\DP@lign@no}{#1}\parseb@dy}
+\def\rinter@text#1{\@xp\DPrint\@xp{\the\DP@lign@no}{#1}\parseb@dy}
+\def\DPlint#1#2{\@xp\def\csname DP@lint:#1\endcsname{\text{#2}}}
+\def\DPrint#1#2{\@xp\def\csname DP@rint:#1\endcsname{\text{#2}}}
+\def\DP@lint#1{\ifbalancedlrint\@xp\ifx\csname
+DP@lint:#1\endcsname\relax\phantom
+ {\csname DP@rint:#1\endcsname}\else\csname DP@lint:#1\endcsname\fi
+ \else\csname DP@lint:#1\endcsname\fi}
+\def\DP@rint#1{\ifbalancedlrint\@xp\ifx\csname
+DP@rint:#1\endcsname\relax\phantom
+ {\csname DP@lint:#1\endcsname}\else\csname DP@rint:#1\endcsname\fi
+ \else\csname DP@rint:#1\endcsname\fi}
+\def\eat@command#1#2{\ifcase#1\addto@DPbody{\intertext{#2}}\or
+ \addto@DPbody{\shortintertext{#2}}\fi\DP@crtrue
+ \global\advance\DP@lign@no\@ne\parseb@dy}
+\def\parse@cr{\new@ifnextchar*{\parse@crst}{\parse@crst{}}}
+\def\parse@crst#1{\addto@DPbody{#1}\new@ifnextchar[{\parse@crb}{\parseb@dy}}
+\def\parse@crb[#1]{\addto@DPbody{[#1]}\parseb@dy}
+\def\check@braces#1#2!Q!Q!Q!{\def\dp@lignt@stm@cro{#2}\ifx
+ \empty\dp@lignt@stm@cro\br@cefalse\else\br@cetrue\fi}
+\def\eat@environment#1{\addto@DPbody{\begin{#1}}\begingroup
+ \def\@currenvir{#1}\let\@next\digest@env\@next}
+\def\digest@env#1\end#2{%
+ \edef\begin@stack{\push@begins#1\begin\end \@xp\@gobble\begin@stack}%
+ \ifx\@empty\begin@stack
+ \@checkend{#2}
+ \endgroup\let\@next\parseb@dy\fi
+ \addto@DPbody{#1\end{#2}}
+ \@next}
+\def\lintertext{lint}\def\rintertext{rint}
+\newif\ifbalancedlrint
+\let\DPh@@kl\empty\let\DPh@@kr\empty
+\def\DPg@therl{&\omit\hfil$\displaystyle}
+\def\DPg@therr{$\hfil}
+
+\newenvironment{DPalign*}[1][a]{%
+ \setlength{\abovedisplayskip}{8pt plus 4pt minus 6pt}
+ \setlength{\belowdisplayskip}{8pt plus 4pt minus 6pt}
+ \if m#1\balancedlrintfalse\else\balancedlrinttrue\fi
+ \global\DP@lign@no\z@\DP@crfalse
+ \DP@lignb@dy{&\DP@lint0&}\parseb@dy
+}{%
+ \endalign
+}
+\newenvironment{DPgather*}[1][a]{%
+ \setlength{\abovedisplayskip}{8pt plus 4pt minus 6pt}
+ \setlength{\belowdisplayskip}{8pt plus 4pt minus 6pt}
+ \if m#1\balancedlrintfalse\else\balancedlrinttrue\fi
+ \global\DP@lign@no\z@\DP@crfalse
+ \let\DPh@@kl\DPg@therl
+ \let\DPh@@kr\DPg@therr
+ \DP@lignb@dy{&\DP@lint0&\DPh@@kl}\parseb@dy
+}{%
+ \endalign
+}
+\makeatother
+%%%%%%%%%%%%%%%%%%%%%%%% START OF DOCUMENT %%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{document}
+%%%% PG BOILERPLATE %%%%
+\PGBoilerPlate
+
+\begin{center}
+\begin{minipage}{\textwidth}
+\small
+\begin{PGtext}
+The Project Gutenberg EBook of The First Steps in Algebra, by
+G. A. (George Albert) Wentworth
+
+This eBook is for the use of anyone anywhere at no cost and with
+almost no restrictions whatsoever. You may copy it, give it away or
+re-use it under the terms of the Project Gutenberg License included
+with this eBook or online at www.gutenberg.net
+
+
+Title: The First Steps in Algebra
+
+Author: G. A. (George Albert) Wentworth
+
+Release Date: July 9, 2011 [EBook #36670]
+Most recently updated: June 11, 2021
+
+Language: English
+
+Character set encoding: UTF-8
+
+*** START OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA ***
+\end{PGtext}
+\end{minipage}
+\end{center}
+\clearpage
+%%%% Credits and transcriber's note %%%%
+\begin{center}
+\begin{minipage}{\textwidth}
+\begin{PGtext}
+Produced by Andrew D. Hwang, Peter Vachuska, Chuck Greif
+and the Online Distributed Proofreading Team at
+http://www.pgdp.net.
+\end{PGtext}
+\end{minipage}
+\end{center}
+\vfill
+
+\begin{minipage}{0.85\textwidth}
+\small
+\BookMark{0}{Transcriber's Note}
+\subsection*{\centering\normalfont\scshape
+\normalsize\MakeLowercase{\TransNote}}
+
+\raggedright
+\TransNoteText
+\end{minipage}
+%%%%%%%%%%%%%%%%%%%%%%%%%%% FRONT MATTER %%%%%%%%%%%%%%%%%%%%%%%%%%
+\FrontMatter
+%% -----File: 001.png---Folio i-------
+\begin{center}
+\Large THE
+\vfill
+
+\textbf{\LARGE FIRST STEPS IN ALGEBRA.}
+\vfill
+
+\normalsize BY \\[12pt]
+\Large G. A. WENTWORTH, A.M. \\[12pt]
+\footnotesize AUTHOR OF A SERIES OF TEXT-BOOKS IN MATHEMATICS.
+\vfill\vfill
+
+\large BOSTON, U.S.A.: \\
+PUBLISHED BY GINN \& COMPANY. \\
+1904.
+\end{center}
+%% -----File: 002.png---Folio ii-------
+\newpage
+\null\vfill
+\begin{center}
+\footnotesize
+Entered according to Act of Congress, in the year 1894, by \\[4pt]
+G. A. WENTWORTH, \\[4pt]
+in the Office of the Librarian of Congress, at Washington. \\[4pt]
+\tb
+\textsc{All Rights Reserved.}
+\vfill
+
+\textsc{Typography by J. S. Cushing \& Co., Boston, U.S.A.} \\
+\tb[2.5in]
+\textsc{Presswork by Ginn \& Co., Boston, U.S.A.}
+\end{center}
+%% -----File: 003.png---Folio iii-------
+
+
+\Preface
+
+\First{This} book is written for pupils in the upper grades of
+grammar schools and the lower grades of high schools.
+The introduction of the simple elements of Algebra into
+these grades will, it is thought, so stimulate the mental
+activity of the pupils, that they will make considerable
+progress in Algebra without detriment to their progress
+in Arithmetic, even if no more time is allowed for the
+two studies than is usually given to Arithmetic alone.
+
+The great danger in preparing an Algebra for very
+young pupils is that the author, in endeavoring to smooth
+the path of the learner, will sacrifice much of the educational
+value of the study. To avoid this real and serious
+danger, and at the same time to gain the required simplicity,
+great care has been given to the explanations of
+the fundamental operations and rules, the arrangement
+of topics, the model solutions of examples, and the making
+of easy examples for the pupils to solve.
+
+Nearly all the examples throughout the book are new,
+and made expressly for beginners.
+
+The first chapter clears the way for quite a full treatment
+of simple integral equations with one unknown number.
+In the first two chapters only \emph{positive} numbers are
+%% -----File: 004.png---Folio iv-------
+involved, and the learner is led to see the practical advantages
+of Algebra in its most interesting applications before
+he faces the difficulties of negative numbers.
+
+The third chapter contains a simple explanation of negative
+numbers. The recognition of the facts that the real
+nature of subtraction is counting backwards, and that the
+real nature of multiplication is forming the product from
+the multiplicand precisely as the multiplier is formed from
+unity, makes an easy road to the laws of addition and subtraction
+of algebraic numbers, and to the law of signs in
+multiplication and division. All the principles and rules
+of this chapter are illustrated and enforced by numerous
+examples involving \emph{simple} algebraic expressions only.
+
+The ordinary processes with \emph{compound} expressions, including
+simple cases of resolution into factors, and the
+treatment of fractions, naturally follow the third chapter.
+The immediate succession of topics that require similar
+work is of the highest importance to the beginner, and it
+is hoped that the half-dozen chapters on algebraic expressions
+will prove interesting, and give sufficient readiness
+in the use of symbols.
+
+A chapter on fractional equations with one unknown
+number, a chapter on simultaneous equations with two
+unknown numbers, and a chapter on quadratics follow in
+order. Only one method of elimination is given in simultaneous
+equations and one method of completing the
+square in quadratics. Moreover, the solution of the examples
+in quadratics requires the square roots of only small
+numbers such as every pupil knows who has learned the
+%% -----File: 005.png---Folio v-------
+multiplication table. In each of these three chapters a
+considerable number of problems is given to \emph{state} and solve.
+By this means the learner is led to exercise his reasoning
+faculty, and to realize that the methods of Algebra require
+a strictly logical process. These problems, however, are
+divided into classes, and a model solution of an example
+of each class is given as a guide to the solution of other
+examples of that class.
+
+The course may end with the chapter on quadratics, but
+the simple questions of arithmetical progression and of
+geometrical progression are so interesting in themselves,
+and show so clearly the power of Algebra, that it will
+be a great loss not to take the short chapters on these
+series.
+
+The last chapter is on square and cube roots. It is
+expected that pupils who use this book will learn how to
+extract the square and cube roots by the simple formulas
+of Algebra, and be spared the necessity of committing to
+memory the long and tedious rules given in Arithmetic,
+rules that are generally forgotten in less time than they
+are learned.
+
+Any corrections or suggestions will be thankfully received
+by the author.
+
+A teachers' edition is in press, containing solutions of
+examples, and such suggestions as experience with beginners
+has shown to be valuable.
+
+\Signature{G\Add{.} A. WENTWORTH.}
+{\textsc{Exeter}, NH, April, 1894}
+%% -----File: 006.png---Folio vi-------
+\TableofContents
+\iffalse
+CONTENTS.
+
+Chapter Page
+
+I. Introduction.............. 1
+
+II. Simple Equations............. 19
+
+III. Positive and Negative Numbers....... 33
+
+IV. Addition and Subtraction......... 46
+
+V. Multiplication and Division........ 53
+
+VI. Special Rules in Multiplication and Division . 64
+
+VII. Factors............... 71
+
+VIII. Common Factors and Multiples....... 84
+
+IX. Fractions................ 89
+
+X. Fractional Equations........... 103
+
+XI. Simultaneous Equations of the First Degree . 122
+
+XII. Quadratic Equations........... 132
+
+XIII. Arithmetical Progression......... 142
+
+XIV. Geometrical Progression.......... 148
+
+XV. Square and Cube Roots.......... 152
+
+ Answers................ 165
+\fi
+%% -----File: 007.png---Folio 1-------
+\MainMatter
+% FIRST STEPS IN ALGEBRA.
+% [** TN: Chapter macro prints preceding line]
+
+\Chapter{I.}{Introduction.}
+
+\begin{Remark}[\First{Note}\Add{.}]
+The principal definitions are put at the beginning of the
+book for convenient reference. They are not to be committed to
+memory. It is a good plan to have definitions and explanations
+read aloud in the class, and to encourage pupils to make comments
+upon them, and ask questions about them.
+\end{Remark}
+
+\Paragraph{1. Algebra.} Algebra, like Arithmetic, treats of numbers.
+
+\Paragraph{2. Units.} In counting separate objects or in measuring
+magnitudes, the \emph{standards} by which we count or measure
+are called \Defn{units}.
+
+\begin{Remark}
+Thus, in counting the boys in a school, the unit is a boy; in selling
+eggs by the dozen, the unit is a dozen eggs; in selling bricks by
+the thousand, the unit is a thousand bricks; in measuring short distances,
+the unit is an inch, a foot, or a yard; in measuring long
+distances, the unit is a rod or a mile.
+\end{Remark}
+
+\Paragraph{3. Numbers.} \emph{Repetitions of the unit} are expressed by
+numbers.
+
+\Paragraph{4. Quantities.} A number of specified units of any kind
+is called a quantity; as, $4$~pounds, $5$~oranges.
+
+\Paragraph{5. Number-Symbols in Arithmetic.} Arithmetic employs
+the arbitrary symbols, $1$,~$2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$,~$0$, called
+\Defn{figures}, to represent numbers.
+%% -----File: 008.png---Folio 2-------
+
+\Paragraph{6. Number-Symbols in Algebra.} Algebra employs \emph{the
+letters of the alphabet} in addition to the figures of Arithmetic
+to represent numbers. Letters are used as \emph{general}
+symbols of numbers to which \emph{any particular values} may be
+assigned.
+
+
+\Section{PRINCIPAL SIGNS OF OPERATIONS.}
+
+\Paragraph{7.} The signs of the fundamental operations are the same
+in Algebra as in Arithmetic.
+
+\Paragraph{8. The Sign of Addition,~$+$.} The sign~$+$ is read \emph{plus}.
+
+\begin{Remark}
+Thus, $4 + 3$, read $4$~plus~$3$, indicates that the number~$3$ is to be
+added to the number~$4$, $a + b$, read $a$~plus~$b$, indicates that the number~$b$
+is to be added to the number~$a$.
+\end{Remark}
+
+\Paragraph{9. The Sign of Subtraction,~$-$\Add{.}} The sign~$-$ is read \emph{minus}.
+
+\begin{Remark}
+Thus, $4 - 3$, read $4$~minus~$3$, indicates that the number~$3$ is to be
+subtracted from the number~$4$, $a - b$, read $a$~minus~$b$, indicates that
+the number~$b$ is to be subtracted from the number~$a$.
+\end{Remark}
+
+\Paragraph{10. The Sign of Multiplication,~$×$\Add{.}} The sign~$×$ is read
+\emph{times}.
+
+\begin{Remark}
+Thus, $4 × 3$, read $4$~times~$3$, indicates that the number~$3$ is to be
+multiplied by~$4$, $a × b$, read $a$~times~$b$, indicates that the number~$b$
+is to be multiplied by the number~$a$.
+\end{Remark}
+
+A dot is sometimes used for the sign of multiplication.
+Thus $2 · 3 · 4 · 5$ means the same as $2 × 3 × 4 × 5$. Either
+sign is read \emph{multiplied by} when followed by the multiplier.
+\$$a × b$, or \$$a · b$, is read $a$~dollars multiplied by~$b$.
+
+\Paragraph{11. The Sign of Division,~$÷$.} The sign~$÷$ is read \emph{divided by}.
+
+\begin{Remark}
+Thus, $4 ÷ 2$, read $4$~divided by~$2$, indicates that the number~$4$ is
+to be divided by~$2$, $a ÷ b$, read $a$~divided by~$b$, indicates that the
+number~$a$ is to be divided by the number~$b$.
+\end{Remark}
+%% -----File: 009.png---Folio 3-------
+
+Division is also indicated by writing the dividend above
+the divisor with a horizontal line between them.
+
+\begin{Remark}
+Thus, $\dfrac{4}{2}$ means the same as~$4 ÷ 2$; $\dfrac{a}{b}$~means the same as~$a ÷ b$.
+\end{Remark}
+
+
+\Section{OTHER SIGNS USED IN ALGEBRA.}
+
+\Paragraph{12. The Sign of Equality,~$=$.} The sign~$=$ is read \emph{is equal
+to}, when placed between two numbers and indicates that
+these two numbers are equal.
+
+\begin{Remark}
+Thus, $8 + 4 = 12$ means that $8 + 4$ and~$12$ stand for \emph{equal} numbers;
+$x + y = 20$ means that $x + y$ and~$20$ stand for equal numbers.
+\end{Remark}
+
+\Paragraph{13. The Sign of Inequality, $>$~or~$<$.} The sign $>$~or~$<$ is
+read \emph{is greater than} and \emph{is less than} respectively, and when
+placed between two numbers indicates that these two numbers
+are unequal, and that the number toward which the
+sign opens is the greater.
+
+\begin{Remark}
+Thus, $9 + 6 > 12$ means that $9 + 6$ is greater than~$12$; and
+$9 + 6 < 16$ means that $9 + 6$ is less than~$16$.
+\end{Remark}
+
+%[** TN: [sic] no punctuation after \therefore]
+\Paragraph{14. The Sign of Deduction,~$\therefore$}\quad The sign~$\therefore$ is read \emph{hence}
+or \emph{therefore}.
+
+\Paragraph{15. The Sign of Continuation,~$\dots$.} The sign~$\dots$ is read
+\emph{and so on}.
+
+\Paragraph{16. The Signs of Aggregation.} The signs of aggregation
+are the bar~$|$, the vinculum~$\overline{\phantom{a+x}}$, the parenthesis~$(\ )$, the
+bracket~$[\ ]$, and the brace~$\{\ \}$.
+
+\begin{Remark}
+Thus, each of the expressions $\VSum{a}{b}$, $\Vinc{a + b}$, $(a + b)$, $[a + b]$, $\{a + b\}$,
+signifies that $a + b$ is to be treated as a single number.
+\end{Remark}
+%% -----File: 010.png---Folio 4-------
+
+
+\Section{FACTORS. COEFFICIENTS. POWERS.}
+
+\Paragraph{17. Factors.} When a number consists of the product of
+two or more numbers, each of these numbers is called a
+\Defn{factor} of the product.
+
+The sign~$×$ is generally omitted between a figure and a
+letter, or between letters; thus, instead of $63 × a × b$, we
+write~$63ab$; instead of $a × b × c$, we write~$abc$.
+
+The expression~$abc$ must not be confounded with $a + b + c$.
+$abc$~is a product; $a + b + c$ is a sum.
+\begin{DPalign*}
+\lintertext{\indent If}
+a = 2,\quad b &= 3,\quad c = 4, \\
+\lintertext{then}
+abc &= 2 × 3 × 4 = 24; \\
+\lintertext{but}
+a + b + c &= 2 + 3 + 4 = 9.
+\end{DPalign*}
+
+\begin{Remark}[Note.]
+When a sign of operation is omitted in the notation of
+Arithmetic, it is always the \emph{sign of addition}; but when a sign of
+operation is omitted in the notation of Algebra, it is always the
+\emph{sign of multiplication}. Thus, $456$~means $400 + 50 + 6$, but $4ab$
+means $4 × a × b$.
+\end{Remark}
+
+\Paragraph{18.} Factors expressed by letters are called \Defn{literal} factors;
+factors expressed by figures are called \Defn{numerical} factors.
+
+\Paragraph{19.} If one factor of a product is equal to~$0$, the product
+is equal to~$0$, whatever the values of the other factors.
+Such a factor is called a \Defn{zero factor}.
+
+\Paragraph{20. Coefficients.} A known factor of a product which is
+prefixed to another factor, to show the number of times that
+factor is taken, is called a \Defn{coefficient}.
+
+\begin{Remark}
+Thus, in~$7c$, $7$~is the coefficient of~$c$; in~$7ax$, $7$~is the
+coefficient of~$ax$,
+or, if $a$~is known, $7a$~is the coefficient of~$x$.
+\end{Remark}
+%% -----File: 011.png---Folio 5-------
+
+By coefficient, we generally mean the \textbf{numerical coefficient
+with its sign}. If no numerical coefficient is written, $1$~is
+understood. Thus, $ax$~means the same as~$1ax$.
+
+\Paragraph{21. Powers and Roots.} A product consisting of two or
+more \textbf{equal factors} is called a \Defn{power} of that factor, and one
+of the equal factors is called a \Defn{root} of the number.
+
+\begin{Remark}
+Thus, $9 = 3 × 3$; that is, $9$~is a power of~$3$, and $3$~is a root of~$9$.
+\end{Remark}
+
+\Paragraph{22. Indices or Exponents.} An index or exponent is a
+number-symbol written at the right of, and a little above,
+a number.
+
+If the index is a \emph{whole number}, it shows the number
+of times the given number is taken as a factor.
+
+\begin{Remark}
+Thus, $a^{1}$, or simply~$a$, denotes that $a$~is taken \emph{once} as a
+factor; $a^{2}$~denotes
+that $a$~is taken \emph{twice} as a factor; $a^{3}$~denotes that $a$~is taken
+\emph{three times} as a factor; and $a^{4}$~denotes that $a$~is taken \emph{four times} as a
+factor; and so on. These are read: the first power of~$a$; the second
+power of~$a$; the third power of~$a$; the fourth power of~$a$; and so on.
+
+$a^{3}$~is written instead of~$aaa$.
+
+$a^{4}$~is written instead of~$aaaa$.
+\end{Remark}
+
+\Paragraph{23.} The meaning of coefficient and exponent must be
+carefully distinguished. Thus,
+\begin{DPalign*}
+4a &= a + a + a + a; \\
+a^{4} &= a× a× a× a. \displaybreak[1] \\
+\lintertext{\indent If $a = 3$,}
+4a &= 3 + 3 + 3 + 3 = 12. \\
+a^{4} &= 3 × 3 × 3 × 3 = 81.
+\end{DPalign*}
+
+\begin{Remark}
+The second power of a number is generally called the \emph{square} of
+that number; thus, $a^{2}$~is called the \emph{square} of~$a$, because if $a$~denotes
+the number of units of length in the side of a square, $a^{2}$~denotes the
+number of units of surface in the square. The third power of a number
+is generally called the \emph{cube} of that number; thus, $a^{3}$~is called the
+\emph{cube} of~$a$, because if $a$~denotes the number of units of length in the
+edge of a cube, $a^{3}$~denotes the number of units of volume in the
+cube.
+\end{Remark}
+%% -----File: 012.png---Folio 6-------
+
+
+\Section{ALGEBRAIC EXPRESSIONS.}
+
+\Paragraph{24. An Algebraic Expression.} An algebraic expression is
+a number written with algebraic symbols. An algebraic
+expression may consist of one symbol, or of several symbols
+connected by signs.
+
+\begin{Remark}
+Thus, $a$, $3abc$, $5a + 2b - 3c$, are algebraic expressions.
+\end{Remark}
+
+\Paragraph{25. Terms.} A \Defn{term} is an algebraic expression, the parts
+of which are not separated by the sign $+$~or~$-$.
+
+\begin{Remark}
+Thus, $a$, $5xy$, $2ab × 4cd$, $\dfrac{3ab}{4cd}$ are algebraic expressions of one
+term each. A term may be separated into parts by the sign $×$~or~$÷$.
+\end{Remark}
+
+\Paragraph{26. Simple Expressions.} An algebraic expression of \emph{one
+term} is called a \Defn{simple expression} or \Defn{monomial}.
+
+\begin{Remark}
+Thus, $5xy$, $7a × 2b$, $7a ÷ 2b$, are simple expressions.
+\end{Remark}
+
+\Paragraph{27. Compound Expressions.} An algebraic expression of
+\emph{two or more terms} is called a \Defn{compound expression} or \Defn{polynomial}.
+
+\begin{Remark}
+Thus, $5xy + 7a$, $2x - y - 3z$, $4a - 3b + 2c - 3d$ are compound
+expressions.
+\end{Remark}
+
+\Paragraph{28.} A polynomial of two terms is called a \Defn{binomial}; of
+three terms, a \Defn{trinomial}.
+
+\begin{Remark}
+Thus, $3a - b$ is a binomial; and $3a - b + c$ is a trinomial.
+\end{Remark}
+
+\Paragraph{29. Positive and Negative Terms.} The terms of a compound
+expression preceded by the sign~$+$ are called \Defn{positive
+terms}, and the terms preceded by the sign~$-$ are called
+\Defn{negative terms}. The sign~$+$ before the first term is omitted.
+
+\Paragraph{30.} A positive and a negative term of the same numerical
+value cancel each other when combined.
+%% -----File: 013.png---Folio 7-------
+
+\Paragraph{31. Like Terms.} Terms which have the same combination
+of \emph{letters} are called \Defn{like} or \Defn{similar} terms; terms which
+do not have the same combination of letters are called
+\Defn{unlike} or \Defn{dissimilar} terms.
+
+\begin{Remark}
+Thus, $5a^{2}bc$, $-7a^{2}bc$, $a^{2}bc$, are like terms; but $5a^{2}bc$, $5ab^{2}c$,
+$5abc^{2}$, are unlike terms.
+\end{Remark}
+
+\Paragraph{32. Degree of a Term.} A term that is the product of
+three letters is said to be of the \emph{third degree}; a term of
+four letters is of the \emph{fourth degree}; and so on.
+
+\begin{Remark}
+Thus, $5abc$~is of the third degree; $2a^{2}b^{2}c^{2}$, that is, $2aabbcc$, is of
+the sixth degree.
+\end{Remark}
+
+\Paragraph{33. Degree of a Compound Expression.} The degree of a
+compound expression is the degree of that term of the
+expression which is of the \emph{highest degree}.
+
+\begin{Remark}
+Thus, $a^{2}x^{2} + bx + c$ is of the fourth degree, since $a^{2}x^{2}$~is of the
+fourth degree.
+\end{Remark}
+
+\Paragraph{34. Dominant Letter.} It often happens that there is one
+letter in an expression of more importance than the rest,
+and this is, therefore, called the \Defn{dominant letter}. In such
+cases the degree of the expression is generally called by
+the degree of the \emph{dominant letter}.
+
+\begin{Remark}
+Thus, $a^{2}x^{2} + bx + c$ is of the \emph{second degree in~$x$}.
+\end{Remark}
+
+\Paragraph{35. Arrangement of a Compound Expression.} A compound
+expression is said to be \emph{arranged} according to the powers
+of some letter when the exponents of that letter, reckoning
+from left to right, either descend or ascend in \emph{the order of
+magnitude}.
+
+\begin{Remark}
+Thus, $3ax^{3} - 4bx^{2} - 6ax + 8b$ is arranged according to the descending
+powers of~$x$, and $8b - 6ax - 4bx^{2} + 3ax^{3}$ is arranged
+according to the ascending powers of~$x$.
+\end{Remark}
+%% -----File: 014.png---Folio 8-------
+
+
+\Section{PARENTHESES.}
+
+\Paragraph{36.} If a compound expression is to be treated as a whole,
+it is enclosed in a parenthesis.
+
+\begin{Remark}
+Thus, $2 × (10 + 5)$ means that we are to add $5$~to~$10$ and multiply
+the result by~$2$; if we were to omit the parenthesis and write
+$2 × 10 + 5$, the meaning would be that we were to multiply $10$~by~$2$
+and add~$5$ to the result.
+\end{Remark}
+
+Like the parenthesis, we use with the same meaning any
+other sign of aggregation.
+
+\begin{Remark}
+Thus, $(5 + 2)$, $[5 + 2]$, $\{5 + 2\}$, $\Vinc{5 + 2}$, $\VSum{5}{2}$, all mean that the
+expression $5 + 2$ is to be treated as the single symbol~$7$.
+\end{Remark}
+
+\Paragraph{37. Parentheses preceded by~$+$.} If a man has $10$~dollars
+and afterwards collects $3$~dollars and then $2$~dollars, it
+makes no difference whether he adds the $3$~dollars to his
+$10$~dollars, and then the $2$~dollars, or puts the $3$~and~$2$
+dollars together and adds their sum to his $10$~dollars.
+
+The first process is represented by $10 + 3 + 2$.
+
+The second process is represented by $10 + (3 + 2)$.
+
+\begin{DPgather*}
+\lintertext{\indent Hence,}
+10 + (3 + 2) = 10 + 3 + 2.
+\Tag{(1)}
+\end{DPgather*}
+
+If a man has $10$~dollars and afterwards collects $3$~dollars
+and then pays a bill of $2$~dollars, it makes no difference
+whether he adds the $3$~dollars collected to his $10$~dollars
+and pays out of this sum his bill of $2$~dollars, or pays the
+$2$~dollars from the $3$~dollars collected and adds the remainder
+to his $10$~dollars.
+
+The first process is represented by $10 + 3 - 2$.
+
+The second process is represented by $10 + (3 - 2)$.
+
+\begin{DPgather*}
+\lintertext{\indent Hence,}
+10 + (3 - 2) = 10 + 3 - 2.
+\Tag{(2)}
+\end{DPgather*}
+%% -----File: 015.png---Folio 9-------
+
+From (1)~and~(2) it follows that
+
+\begin{Theorem}
+If an expression within a parenthesis is preceded by the
+sign~$+$, the parenthesis can be removed without making any
+change in the signs of the expression.
+\end{Theorem}
+
+\begin{Theorem}[\textsc{Conversely.}] Any part of an expression can lie enclosed
+within a parenthesis and the sign~$+$ prefixed, without making
+any change in the signs of the terms thus enclosed.
+\end{Theorem}
+
+\Paragraph{38. Parentheses preceded by~$-$.} If a man has $10$~dollars
+and has to pay two bills, one of $3$~dollars and one of $2$~dollars,
+it makes no difference whether he takes $3$~dollars
+and $2$~dollars in succession, or takes the $3$~and~$2$ dollars at
+one time, from his $10$~dollars.
+
+The first process is represented by $10 - 3 - 2$.
+
+The second process is represented by $10 - (3 + 2)$.
+
+\begin{DPgather*}
+\lintertext{\indent Hence,}
+10 - (3 + 2) = 10 - 3 - 2.
+\Tag{(3)}
+\end{DPgather*}
+
+If a man has $10$~dollars consisting of $2$~five-dollar bills,
+and has a debt of $3$~dollars to pay, he can pay his debt by
+giving a five-dollar bill and receiving $2$~dollars.
+
+This process is represented by $10 - 5 + 2$.
+
+Since the debt paid is $3$~dollars, that is, $(5 - 2)$~dollars,
+the number of dollars he has left can evidently be
+expressed by
+\begin{DPalign*}
+10 &- (5 - 2). \\
+\lintertext{\indent Hence,}
+10 &- (5 - 2) = 10 - 5 + 2.
+\Tag{(4)}
+\end{DPalign*}
+
+From (3)~and~(4) it follows that
+
+\begin{Theorem}
+If an expression within a parenthesis is preceded by the
+sign~$-$, the parenthesis can be removed, provided the sign
+before each term within the parenthesis is changed, the
+sign~$+$ to~$-$, and the sign~$-$ to~$+$.
+\end{Theorem}
+%% -----File: 016.png---Folio 10-------
+
+\begin{Theorem}[\textsc{Conversely.}] Any part of an expression can be enclosed
+within a parenthesis and the sign~$-$ prefixed, provided the
+sign of each term enclosed is changed, the sign~$+$ to~$-$, and
+the sign~$-$ to~$+$.
+\end{Theorem}
+
+
+\Exercise{1.}
+
+Remove the parentheses, and combine:
+\begin{multicols}{2}
+\Item{1.} $9 + (3 + 2)$.
+
+\Item{2.} $9 + (3 - 2)$.
+
+\Item{3.} $7 + (5 + 1)$.
+
+\Item{4.} $7 + (5 - 1)$.
+
+\Item{5.} $6 + (4 + 3)$.
+
+\Item{6.} $6 + (4 - 3)$.
+
+\Item{7.} $3 + (8 - 2)$.
+
+\Item{8.} $9 - (8 - 6)$.
+
+\Item{9.} $10 - (9 - 5)$.
+
+\Item{10.} $9 - (6 + 1)$.
+
+\Item{11.} $8 - (3 + 2)$.
+
+\Item{12.} $7 - (3 - 2)$.
+
+\Item{13.} $9 - (4 + 3)$.
+
+\Item{14.} $9 - (4 - 3)$.
+
+\Item{15.} $7 - (5 - 2)$.
+
+\Item{16.} $7 - (7 - 3)$.
+
+\Item{17.} $(8 - 6) - 1$.
+
+\Item{18.} $(3 - 2) - (1 - 1)$.
+
+\Item{19.} $(7 - 3) - (3 - 2)$.
+
+\Item{20.} $(8 - 2) - (5 - 3)$.
+
+\Item{21.} $15 - (10 - 3 - 2)$.
+\end{multicols}
+
+\Paragraph{39. Multiplying a Compound Expression.} The expression
+$4(5 + 3)$ means that we are to take the sum of the numbers
+$5$~and~$3$ four times. The process can be represented by
+placing five dots in a line, and a little to the right three
+more dots in the same line, and then placing a second,
+third, and fourth line of dots underneath the first line and
+exactly similar to it.
+\[
+\begin{array}{*{9}{>{\ }r}}
+\DOT & \DOT & \DOT & \DOT & \DOT & \quad & \DOT & \DOT & \DOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \DOT & \DOT & \DOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \DOT & \DOT & \DOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \DOT & \DOT & \DOT \\[-4pt]
+\end{array}
+\]
+
+There are $(5 + 3)$ dots in each line, and $4$~lines. The
+total number of dots, therefore, is $4 × (5 + 3)$.
+
+We see that in the left-hand group there are $4 × 5$ dots,
+and in the right-hand group $4 × 3$ dots. The sum of these
+%% -----File: 017.png---Folio 11-------
+two numbers $(4 × 5) + (4 × 3)$ must be equal to the total
+number; that is,
+\begin{align*}
+4(5 + 3) &= (4 × 5) + (4 × 3) \\
+ &= 20 + 12.
+\end{align*}
+
+Again, the expression $4(8 - 3)$ means that we are to
+take the difference of the numbers $8$~and~$3$ four times.
+The process can be represented by placing eight dots in a
+line and crossing the last three, and then placing a second,
+third, and fourth line of dots underneath the first line and
+exactly similar to it.
+\[
+%[** TN: Added gap between dot groups.]
+\begin{array}{*{9}{>{\ }r}}
+\DOT & \DOT & \DOT & \DOT & \DOT & \quad & \NOT & \NOT & \NOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \NOT & \NOT & \NOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \NOT & \NOT & \NOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \NOT & \NOT & \NOT \\[-4pt]
+\end{array}
+\]
+
+The whole number of dots not crossed in each line is
+evidently $(8 - 3)$, and the whole number of lines is~$4$.
+Therefore the total number of dots not crossed is
+\[
+4 × (8 - 3).
+\]
+
+The total number of dots (crossed and not crossed) is
+$(4 × 8)$, and the total number of dots crossed is~$(4 × 3)$.
+Therefore the total number of dots not crossed is
+\begin{DPalign*}
+(4 × 8) &- (4 × 3); \\
+\lintertext{that is,}
+4(8 - 3) &= (4 × 8) - (4 × 3) \\
+ &= 32 - 12. \displaybreak[1] \\
+\intertext{\indent If $a$, $b$, and~$c$ stand for any three numbers, we have}
+a (b + c) &= ab + ac, \\
+\lintertext{and}
+a(b - c) &= ab - ac.
+\EqText{Therefore,}
+\end{DPalign*}
+
+\Dictum{To multiply a compound expression by a simple one},
+\begin{Theorem}
+Multiply each term by the multiplier, and write the successive
+products with the same signs as those of the original
+terms.
+\end{Theorem}
+%% -----File: 018.png---Folio 12-------
+
+\Exercise{2.}
+
+Multiply and remove parentheses:
+\begin{multicols}{3}
+\Item{1.} $7(8 + 5)$.
+
+\Item{2.} $7(8 - 5)$.
+
+\Item{3.} $6(7 + 3)$.
+
+\Item{4.} $6(7 - 3)$.
+
+\Item{5.} $8(7 + 5)$.
+
+\Item{6.} $8(7 - 5)$.
+
+\Item{7.} $9(6 - 2)$.
+
+\Item{8.} $4(a + b)$.
+
+\Item{9.} $4(a - b)$.
+
+\Item{10.} $2(a^{2} + b^{2})$.
+
+\Item{11.} $2(a^{2} - b^{2})$.
+
+\Item{12.} $3(ab + c)$.
+
+\Item{13.} $3(ab - c)$.
+
+\Item{14.} $3(c - ab)$.
+
+\Item{15.} $a(b + c)$.
+
+\Item{16.} $a(b - c)$.
+
+\Item{17.} $3a(b + c)$.
+
+\Item{18.} $3a(b - c)$.
+
+\Item{19.} $5a(b^{2} + c)$.
+
+\Item{20.} $5a(b^{2} - c^{2})$.
+
+\Item{21.} $5a^{2}(b^{2} - c)$.
+\end{multicols}
+
+\Paragraph{40.} The numerical value of an algebraic expression is the
+number obtained by putting for the letters involved the
+numbers for which these letters stand, and then performing
+the operations required by the signs.
+
+\Item{1.} If $b = 4$, find the value of~$3b^{2}$.
+\begin{Soln}
+\begin{DPgather*}
+\lintertext{\indent Here}
+3b^{2} = 3 × 4^{2} = 3 × 16 = 48.
+\end{DPgather*}
+\end{Soln}
+
+\Item{2.} If $a = 7$, $b = 2$, $c = 3$, find the value of~$5ab^{2}c^{3}$.
+\begin{Soln}
+\begin{DPgather*}
+\lintertext{\indent Here}
+5ab^{2}c^{3} = 5 × 7 × 2^{2} × 3^{3} = 3780.
+\end{DPgather*}
+\end{Soln}
+
+\Exercise{3.}
+
+If $a = 7$, $b = 5$, $c = 3$, find the value of
+\begin{multicols}{3}
+\Item{1.} $9a$.
+
+\Item{2.} $8ab$.
+
+\Item{3.} $4b^{2}c$.
+
+\Item{4.} $2a^{2}$.
+
+\Item{5.} $3c^{3}$.
+
+\Item{6.} $2b^{4}$.
+
+\Item{7.} $5ac$.
+
+\Item{8.} $abc$.
+
+\Item{9.} $abc^{2}$.
+
+\Item{10.} $\frac{1}{3}abc$.
+
+\Item{11.} $\frac{1}{5}ab^{2}c$.
+
+\Item{12.} $\frac{1}{7}a^{2}bc$.
+\end{multicols}
+
+If $a = 5$, $b = 2$, $c = 0$, $x = 1$, $y = 3$, find the value of
+\begin{multicols}{3}
+\Item{13.} $4acy^{2}$.
+
+\Item{14.} $3ax^{5}y^{2}$.
+
+\Item{15.} $2ab^{2}y$.
+
+\Item{16.} $2a^{2}b^{2}c^{2}y^{2}$.
+
+\Item{17.} $2a^{2}b^{2}x^{2}y^{2}$.
+
+\Item{18.} $2abx^{3}y^{3}$.
+
+\Item{19.} $3abcxy$.
+
+\Item{20.} $3abx^{3}y^{2}$.
+
+\Item{21.} $3ab^{2}xy^{2}$.
+\end{multicols}
+%% -----File: 019.png---Folio 13-------
+
+\Paragraph{41. The Numerical Value of a Compound Expression.}
+
+If $a$~stands for~$10$, $b$~for~$4$, and $c$~for~$3$, find the value of
+the expression $5ab - 10c^{2} - 5b^{2}$.
+
+Find the value of each term, and combine the results.
+\begin{Soln}
+\begin{gather*}
+\begin{alignedat}{3}
+ 5ab &\text{ stands for } &5 × 10 &× 4 &&= 200; \\
+10c^{2} &\text{ stands for } & 10 &× 3^{2} &&= \Z90; \\
+5b^{2} &\text{ stands for } & 5 &× 4^{2} &&= \Z80.
+\end{alignedat} \\
+\begin{aligned}
+&\therefore 5ab - 10c^{2} - 5b^{2} \\
+&= 200 - 90 - 80 \\
+&= 30.
+\end{aligned}
+\end{gather*}
+\end{Soln}
+
+\Paragraph{42.} In finding the value of a compound expression the
+operations indicated \emph{for each term} must be performed \emph{before}
+the operation indicated by the sign prefixed to the term.
+
+When there is no sign expressed between single symbols
+or between \emph{simple} and \emph{compound expressions}, it must be
+remembered that the sign understood is the \emph{sign of multiplication}.
+Thus $2(a - b)$ has the same meaning as $2 × (a - b)$.
+
+\Exercise{4.}
+
+If $a = 5$, $b = 4$, $c = 3$, find the value of
+\begin{multicols}{2}
+\Item{1.} $9a - 2bc$.
+
+\Item{2.} $ab + 2c$.
+
+\Item{3.} $abc + bc$.
+
+\Item{4.} $5ac + 2a$.
+
+\Item{5.} $2abc - 2ac^{2}$.
+
+\Item{6.} $ab + bc - ac$.
+
+\Item{7.} $ac - (b + c)$.
+
+\Item{8.} $a^{2} + (b^{2} + c^{2})$\Add{.}
+
+\Item{9.} $2a + (2b + 2c)$.
+
+\Item{10.} $a^{2} - b^{2} - c^{2}$.
+
+\Item{11.} $3(a - b + c)$.
+
+\Item{12.} $6ab - (bc + 8)$.
+
+\Item{13.} $7bc - c^{2} + a$.
+
+\Item{14.} $5ac - b^{2} + 3b$.
+
+\Item{15.} $4b^{2}c - 5c^{2} - 2b$.
+
+\Item{16.} $2a + (b + c)$.
+
+\Item{17.} $b + 2(a - c)$.
+
+\Item{18.} $c + 2(a - b)$.
+
+\Item{19.} $2a - (b + c)$.
+
+\Item{20.} $2b - (a - c)$.
+
+\Item{21.} $2c - (a - b)$.
+
+\Item{22.} $2c - 5(a - b)$.
+
+\Item{23.} $2b - 3(a - c)$.
+
+\Item{24.} $2c - b(a - b)$.
+\end{multicols}
+%% -----File: 020.png---Folio 14-------
+
+
+\Section{ALGEBRAIC NOTATION.}
+
+\Exercise{5.}
+
+\Item{1.} Read $a + b$; $a - b$; $ab$; $a÷b$.
+
+\Item{2.} Write six increased by four. \Ans{$6 + 4$.}
+
+\Item{3.} Write $a$ increased by~$b$.
+
+\Item{4.} Write six diminished by four. \Ans{$6 - 4$.}
+
+\Item{5.} Write $a$ diminished by~$b$.
+
+\Item{6.} By how much does twenty-five exceed sixteen?
+\Ans{$25 - 16$.}
+
+\Item{7.} By how much does $x$ exceed~$y$?
+
+\Item{8.} Write four times three; the fourth power of three.
+\Ans{$4 × 3$; $3^{4}$.}
+
+\Item{9.} Write four times~$x$; the fourth power of~$x$.
+
+\Item{10.} If one part of twenty-five is fifteen, what is the
+other part?
+\Ans{$25 - 15$.}
+
+\Item{11.} If one part of~$35$ is~$x$, what is the other part?
+
+\Item{12.} If one part of~$x$ is~$a$, what is the other part?
+
+\Item{13.} How much does ten lack of being twelve?
+\Ans{$12 - 10$.}
+
+\Item{14.} How much does $x$ lack of being fourteen?
+
+\Item{15.} How much does $x$ lack of being~$a$?
+
+\Item{16.} If a man walks four miles an hour, how many miles
+will he walk in three hours?
+\Ans{$3 × 4$.}
+
+\Item{17.} If a man walks $y$~miles an hour, how many miles
+will he walk in $x$~hours?
+
+\Item{18.} If a man walks $y$~miles an hour, how many hours
+will it take him to walk $x$~miles?
+%% -----File: 021.png---Folio 15-------
+
+\Exercise{6.}
+
+\Item{1.} If the dividend is twenty and the quotient five,
+what is the divisor?
+\Ans{$\frac{20}{5}$.}
+
+\Item{2.} If the dividend is~$a$ and the quotient~$b$, what is the
+divisor?
+
+\Item{3.} If John is twenty years old to-day, how old was he
+four years ago? How old will he be five years hence?
+\Ans{$20 - 4$; $20 + 5$.}
+
+\Item{4.} If James is $x$~years old to-day, how old was he three
+years ago? How old will he be seven years hence?
+
+\Item{5.} Write four times the expression seven minus five.
+\Ans{$4(7 - 5)$.}
+
+\Item{6.} Write seven times the expression $2x$~minus~$y$.
+
+\Item{7.} Write the next integral number above four.
+\Ans{$4 + 1$.}
+
+\Item{8.} If $x$~is an integral number, write the next integral
+number above it; the next integral number below it.
+
+\Item{9.} What number is less than $20$ by~$d$?
+
+\Item{10.} If the difference of two numbers is five, and the
+smaller number is fifteen, what is the greater number?
+\Ans{$15 + 5$.}
+
+\Item{11.} If the difference of two numbers is eight, and the
+smaller number is~$x$, what is the greater number?
+
+\Item{12.} If the sum of two numbers is~$30$, and one of them
+is~$20$, what is the other?
+\Ans{$30 - 20$.}
+
+\Item{13.} If the sum of two numbers is~$x$, and one of them is~$10$,
+what is the other?
+
+\Item{14.} If $100$ contains~$x$ ten times, what is the value of~$x$?
+%% -----File: 022.png---Folio 16-------
+
+\Exercise{7.}
+
+\Item{1.} In $x$~years a man will be $40$~years old; what is his
+present age?
+
+\Item{2.} How old will a man be in $y$~years, if his present age
+is $a$~years?
+
+\Item{3.} What is the value of~$x$ if $7x$~equals~$28$?
+
+\Item{4.} If it takes $3$~men $4$~days to reap a field, how many
+days will it take one man to reap it?
+\Ans{$3 × 4$.}
+
+\Item{5.} If it takes $a$~men $b$~days to reap a field, how many
+days will it take one man to reap it?
+
+\Item{6.} What is the excess of~$5x$ over~$3x$?
+
+\Item{7.} By how much does $20 - 3$ exceed $(10 + 1)$?
+\Ans{$20 - 3 - (10 + 1)$.}
+
+\Item{8.} By how much does $2x - 3$ exceed $(x + 1)$?
+
+\Item{9.} If $x$~stands for~$10$, find the value of~$4(3x - 20)$.
+
+\Item{10.} If $a$~stands for~$10$, and $b$~for~$2$, find the value of
+$2(a - 2b)$.
+
+\Item{11.} How many cents in $a$~dollars, $b$~quarters, and $c$~dimes?
+
+\Item{12.} A book-shelf contains French, Latin, and Greek
+books. There are $100$~books in all, and there are $x$~Latin
+and $y$~Greek books. How many French books are there?
+
+\Item{13.} A regiment of men is drawn up in $10$~ranks of $80$~men
+each, and there are $15$~men over. How many men
+are there in the regiment?
+\Ans{$10 × 80 + 15$.}
+
+\Item{14.} A regiment of men is drawn up in $x$~ranks of $y$~men
+each, and there are $c$~men over. How many men are there
+in the regiment?
+%% -----File: 023.png---Folio 17-------
+
+\Exercise{8.}
+
+\Item{1.} A room is $10$~yards long and $8$~yards wide. In the
+middle there is a carpet $6$~yards square. How many
+square yards of oilcloth will be required to cover the rest
+of the floor?
+\Ans{$10 × 8 - 6^{2}$.}
+
+\Item{2.} A room is $x$~yards long and $y$~yards wide. In the
+middle there is a carpet $a$~yards square. How many
+square yards of oilcloth will be required to cover the rest
+of the floor?
+
+\Item{3.} How many rolls of paper $g$~feet long and $k$~feet
+wide will be required to paper a room, the perimeter of
+which, after proper allowance is made for doors and windows,
+is $p$~feet and the height $h$~feet?
+
+\Item{4.} Write six times the square of~$m$, plus five~$c$ times
+the expression $d$~plus $b$~minus~$a$.
+
+\Item{5.} Write five times the expression two~$n$ plus one,
+diminished by six times the expression $c$~minus $a$~plus~$b$.
+
+\Item{6.} A lady bought a dress for $a$~dollars, a cloak for $b$~dollars,
+two pairs of gloves for $c$~dollars a pair. She gave
+a hundred-dollar bill in payment. How much money
+should be returned to her?
+
+\Item{7.} If a man can perform a piece of work in $4$~days, how
+much of it can he do in one day?
+\Ans{$\frac{1}{4}$.}
+
+\Item{8.} If a man can perform a piece of work in $x$~days,
+how much of it can he do in one day?
+
+\Item{9.} If A~can do a piece of work in $x$~days, B~in $y$~days,
+C~in $z$~days, how much of it can they all do in one day,
+working together?
+
+\Item{10.} Write an expression for the sum, and also for the
+product, of three consecutive numbers of which the least is~$n$.
+%% -----File: 024.png---Folio 18-------
+
+\Item{11.} The product of two factors is~$36$; if one of the
+factors is~$x$, what is the other factor?
+
+\Item{12.} If $d$~is the divisor and $q$~the quotient, what is the
+dividend?
+
+\Item{13.} If $d$~is the divisor, $q$~the quotient, and $r$~the remainder,
+what is the dividend?
+
+\Item{14.} If $x$~oranges can be bought for $50$~cents, how many
+oranges can be bought for $100$~cents?
+
+\Item{15.} What is the price in cents of $x$~apples, if they are
+ten cents a dozen?
+
+\Item{16.} If $b$~oranges cost $6$~cents, what will $a$~oranges cost?
+
+\Item{17.} How many miles between two places, if a train
+travelling $m$~miles an hour requires $4$~hours to make the
+journey?
+
+\Item{18.} If a man was $x$~years old $10$~years ago, how many
+years old will he be $7$~years hence?
+
+\Item{19.} If a man was $x$~years old $y$~years ago, how many
+years old will he be $c$~years hence?
+
+\Item{20.} If a floor is $3x$~yards long and $12$~yards wide, how
+many square yards does the floor contain?
+
+\Item{21.} How many hours will it take to walk $c$~miles, at
+the rate of one mile in $15$~minutes?
+
+\Item{22.} Write three consecutive numbers of which $x$~is the
+middle number.
+
+\Item{23.} If an odd number is represented by~$2n + 1$, what
+will represent the next odd number?
+%% -----File: 025.png---Folio 19-------
+
+
+\Chapter{II.}{Simple Equations.}
+
+\Paragraph{43. Equations.} An equation is a statement in symbols
+that two expressions stand for the same number.
+
+\begin{Remark}
+Thus, the equation $3x + 2 = 8$ states that $3x + 2$ and~$8$ stand for
+the same number.
+\end{Remark}
+
+\Paragraph{44.} That part of the equation which precedes the sign
+of equality is called the \Defn{first member}, or \Defn{left side}, and that
+which follows the sign of equality is called the \Defn{second member},
+or \Defn{right side}.
+
+\Paragraph{45.} The statement of equality between two algebraic
+expressions, if true for all values of the letters involved, is
+called an \Defn{identical equation}; but if true only for certain
+particular values of the letters involved, it is called an
+\Defn{equation of condition}.
+
+\begin{Remark}
+Thus, $a + b = b + a$, which is true for \emph{all values} of $a$~and~$b$, is an
+\emph{identical equation}, and $3x + 2 = 8$, which is true only when $x$~stands
+for~$2$, is an \emph{equation of condition}\Add{.}
+\end{Remark}
+
+For brevity, an identical equation is called an \Defn{identity},
+and an equation of condition is called simply an \Defn{equation}.
+
+\Paragraph{46.} We often employ an equation to discover an \emph{unknown
+number} from its relation to known numbers. We usually
+represent the unknown number by one of the \emph{last} letters
+of the alphabet, as $x$,~$y$,~$z$; and by way of distinction, we
+use the \emph{first} letters, $a$,~$b$, $c$,~etc., to represent numbers that
+%% -----File: 026.png---Folio 20-------
+are supposed to be known, though not expressed in the
+number-symbols of Arithmetic.
+
+\begin{Remark}
+Thus, in the equation $ax + b = c$, $x$~is supposed to represent an
+unknown number, and $a$,~$b$, and~$c$ are supposed to represent known
+numbers.
+\end{Remark}
+
+\Paragraph{47. Simple Equations.} An equation which contains the
+first power of~$x$, the symbol for the unknown number, and
+no higher power, is called a \Defn{simple equation}, or an \Defn{equation
+of the first degree}.
+
+\begin{Remark}
+Thus, $ax + b = c$ is a simple equation, or an equation of the first
+degree \emph{in~$x$}.
+\end{Remark}
+
+\Paragraph{48. Solution of an Equation.} To solve an equation is to
+find the unknown number; that is, the number which, when
+substituted for its symbol in the given equation, renders the
+equation an identity. This number is said to \emph{satisfy} the
+equation, and is called the \Defn{root} of the equation.
+
+\Paragraph{49. Axioms.} In solving an equation, we make use of the
+following axioms:
+
+\Ax{1.} If equal numbers be added to equal numbers,
+the sums will be equal.
+
+\Ax{2.} If equal numbers be subtracted from equal numbers,
+the remainders will be equal.
+
+\Ax{3.} If equal numbers be multiplied by equal numbers,
+the products will be equal.
+
+\Ax{4.} If equal numbers be divided by equal numbers,
+the quotients will be equal.
+
+\begin{Theorem}
+If, therefore, the two sides of an equation be increased by,
+diminished by, multiplied by, or divided by equal numbers,
+the results will be equal.
+\end{Theorem}
+
+%[** TN: Next paragraph set in normal-size type in the original]
+\begin{Remark}
+Thus, if $8x = 24$, then $8x + 4 = 24 + 4$, $8x - 4 = 24 - 4$,
+$4 × 8x = 4 × 24$, and $8x ÷ 4 = 24 ÷ 4$.
+\end{Remark}
+%% -----File: 027.png---Folio 21-------
+
+\Paragraph{50. Transposition of Terms.} It becomes necessary in solving
+an equation to bring all the terms that contain the
+symbol for the unknown number to one side of the equation,
+and all the other terms to the other side. This is
+called \Defn{transposing the terms}. We will illustrate by examples:
+
+\Item{1.} Find the number for which $x$~stands when
+\[
+14x - 11 = 5x + 70.
+\]
+
+The first object to be attained is to get all the terms
+which contain~$x$ on the left side of the equation, and all the
+other terms on the right side. This can be done by first
+subtracting~$5x$ from both sides (Ax.~2), which gives
+\[
+9x - 11 = 70,
+\]
+and then adding~$11$ to these equals (Ax.~1), which gives
+\begin{DPalign*}
+9x + 11 - 11 &= 70 + 11. \\
+\lintertext{\indent Combine,}
+9x &= 81. \\
+\lintertext{\indent Divide by~$9$,}
+x &= 9.
+\end{DPalign*}
+
+\Item{2.} Find the number for which $x$~stands when $x + b = a$.
+\begin{DPalign*}[m]
+\lintertext{\indent The equation is}
+x + b &= a. \\
+\lintertext{\indent Subtract~$b$ from each side,}
+x + b - b &= a - b.
+\rintertext{(Ax.~2)}
+\end{DPalign*}
+
+Since $+b$~and~$-b$ in the left side cancel each other
+(§~30), we have $x = a - b$.
+
+\Item{3.} Find the number for which $x$~stands when $x - b = a$.
+\begin{DPalign*}
+\lintertext{\indent The equation is}
+x - b &= a. \\
+\lintertext{Add $+b$ to each side,}
+x + b - b &= a + b.
+\rintertext{(Ax.~1)}
+\end{DPalign*}
+
+Since $+b$~and~$-b$ in the left side cancel each other
+(§~30), we have $x = a + b$.
+%% -----File: 028.png---Folio 22-------
+
+\Paragraph{51.} The effect of the operation in the preceding equations,
+when Axioms (1)~and~(2) are used, is to take a term
+from one side and put it on the other side with its sign
+changed. We can proceed in a like manner in any other
+case. Hence the general rule:
+
+\Paragraph{52.} \begin{Theorem}[nopar] Any term may be transposed from one side of an
+equation to the other, provided its sign is changed.
+\end{Theorem}
+
+\Paragraph{53.} Any term, therefore, which occurs on both sides
+with \emph{the same sign} may be removed from both without
+affecting the equality; and the sign of every term of an
+equation may be changed without affecting the equality.
+
+\Paragraph{54. Verification.} When the root is substituted for its
+symbol in the given equation, and the equation reduces to
+an \emph{identity}, the root is said to be \Defn{verified}. We will illustrate
+by examples:
+
+\Item{1.} What number added to twice itself gives~$24$?
+
+Let $x$~stand for the number; \\
+then $2x$~will stand for twice the number, \\
+and the number added to twice itself will be $x + 2x$.
+
+But the number added to twice itself is~$24$.
+\begin{DPalign*}
+\therefore x + 2x &= 24. \\
+\lintertext{\indent Combine $x$~and~$2x$,}
+3x &= 24. \\
+\intertext{\indent Divide by~$3$, the coefficient of~$x$,}
+x &= 8.
+\rintertext{(Ax.~4)}
+\end{DPalign*}
+
+Therefore the required number is~$8$.
+
+\begin{DPalign*}
+\lintertext{\indent\textsc{Verification.}}
+x + 2x &= 24, \\
+8 + 2 × 8 &= 24, \\
+8 + 16 &= 24, \\
+24 &= 24.
+\end{DPalign*}
+%% -----File: 029.png---Folio 23-------
+
+\ScreenBreak
+\Item{2.} If $4x - 5$ stands for~$19$, for what number does $x$~stand?
+
+We have the equation
+\begin{DPalign*}
+4x - 5 &= 19. \\
+\lintertext{\indent Transpose $-5$,}
+4x &= 19 + 5. \\
+\lintertext{\indent Combine,}
+4x &= 24. \\
+\lintertext{\indent Divide by~$4$,}
+x &= 6.
+\rintertext{(Ax.~4)} \displaybreak[1] \\
+\lintertext{\indent \textsc{Verification.}}
+4x - 5 &= 19, \\
+4 × 6 - 5 &= 19, \\
+24 - 5 &= 19, \\
+19 &= 19.
+\end{DPalign*}
+
+\Item{3.} If $3x - 7$ stands for the same number as $14 - 4x$,
+what number does $x$~stand for?
+
+We have the equation
+\[
+3x - 7 = 14 - 4x.
+\]
+
+Transpose $-4x$ to the left side, and $-7$ to the right side,
+\begin{DPalign*}
+3x + 4x &= 14 + 7. \\
+\lintertext{\indent Combine,}
+7x &= 21. \\
+\lintertext{\indent Divide by~$7$,}
+x &= 3. \displaybreak[1] \\
+\lintertext{\indent \textsc{Verification.}}
+3x - 7 &= 14 - 4x, \\
+3 × 3 - 7 &= 14 - 4 × 3, \\
+2 &= 2.
+\end{DPalign*}
+
+\Item{4.} Solve the equation
+\[
+7(x - 1) - 30 = 4(x - 4).
+\]
+We have the equation
+\[
+7(x - 1) - 30 = 4(x - 4).
+\]
+%% -----File: 030.png---Folio 24-------
+%[** TN: Equation repeated at page break in the original]
+% 7(x - 1) - 30 = 4(x - 4).
+
+Remove the parentheses,
+\begin{DPalign*}
+7x - 7 - 30 &= 4x - 16. \\
+\lintertext{\indent Then}
+7x - 4x &= 7 + 30 - 16. \\
+\lintertext{\indent Combine,}
+3x &= 21. \\
+\lintertext{\indent Divide by~$3$,}
+x &= 7. \displaybreak[1] \\
+\lintertext{\indent \textsc{Verification.}}
+7(7 - 1) - 30 &= 4(7 - 4), \\
+7 × 6 - 30 &= 4 x 3, \\
+42 - 30 &= 12, \\
+12 &= 12.
+\end{DPalign*}
+
+\Exercise{9.}
+
+Find the number that $x$~stands for, if:
+\begin{multicols}{2}
+\Item{1.} $3x = x + 8$.
+
+\Item{2.} $3x = 2x + 5$.
+
+\Item{3.} $3x + 4 = x + 10$.
+
+\Item{4.} $4x + 6 = x + 9$.
+
+\Item{5.} $7x - 19 = 5x + 7$.
+
+\Item{6.} $3(x - 2) = 2(x - 3)$.
+
+\Item{7.} $8x + 7 = 4x + 27$.
+
+\Item{8.} $3x + 10 = x + 20$.
+
+\Item{9.} $5(x - 2) = 3x + 4$.
+
+\Item{10.} $3(x - 2) = 2(x - 1)$.
+
+\Item{11.} $2x + 3 = 16 - (2x - 3)$.
+
+\Item{12.} $19x - 3 = 2(7 + x)$.
+
+\Item{13.} $7x - 70 = 5x - 20$.
+
+\Item{14.} $2x - 22 = 108 - 2x$.
+
+\Item{15.} $2(x + 5) + 5(x - 4) = 32$.
+
+\Item{16.} $2(3x - 25) = 10$.
+
+\Item{17.} $33x - 70 = 3x + 20$.
+
+\Item{18.} $4(1 + x) + 3(2 + x) = 17$.
+
+\Item{19.} $8x - (x + 2) = 47$.
+
+\Item{20.} $3(x - 2) = 50 - (2x - 9)$.
+\end{multicols}
+%% -----File: 031.png---Folio 25-------
+
+\Item{21.} $2x - (3 + 4x - 3x + 5) = 4$.
+
+\Item{22.} $5(2 - x) + 7x - 21 = x + 3$.
+
+\Item{23.} $3(x - 2) + 2(x - 3) + (x - 4) = 3x + 5$.
+
+\Item{24.} $x + 1 + x + 2 + x + 4 = 2x + 12$.
+
+\Item{25.} $(2x - 5) - (x - 4) + (x - 3) = x - 4$.
+
+\Item{26.} $4 - 5x - (1 - 8x) = 63 - x$.
+
+\Item{27.} $3x - (x + 10) - (x - 3) = 14 - x$.
+
+\Item{28.} $x^{2} - 2x - 3 = x^{2} - 3x + 1$.
+
+\Item{29.} $(x^{2} - 9) - (x^{2} - 16) + x = 10$.
+
+\Item{30.} $x^{2} + 8x - (x^{2} - x - 2) = 5(x + 3) + 3$.
+
+\Item{31.} $x^{2} + x - 2 + x^{2} + 2x - 3 = 2x^{2} - 7x - 1$.
+
+\Item{32.} $10x - (x - 5) = 2x + 47$.
+
+\Item{33.} $7x - 5 - (6 - 8x) + 2 = 3x - 7 + 106$.
+
+\Item{34.} $6x + 3 - (3x + 2) = (2x - 1) + 9$.
+
+\Item{35.} $3(x + 10) + 4(x + 20) + 5x - 170 = 15 - 3x$.
+
+\Item{36.} $20 - x + 4(x - 1) - (x - 2) = 30$.
+
+\Item{37.} $5x + 3 - (2x - 2) + (1 - x) = 6(9 - x)$.
+
+
+\Paragraph{55. Statement and Solution of Problems.} The difficulties
+which the beginner usually meets in stating problems will
+be quickly overcome if he will observe the following directions:
+
+Study the problem until you clearly understand its meaning
+and just what is required to be found.
+
+Remember that $x$~must not be put for money, length,
+time, weight,~etc., but for the \textbf{required number} of \emph{specified
+units} of money, length, time, weight,~etc.
+
+Express each statement carefully in algebraic language,
+and write out in full just what each expression stands for.
+%% -----File: 032.png---Folio 26-------
+
+Do not attempt to form the equation until all the statements
+are made in symbols.
+
+We will illustrate by examples:
+
+\Item{1.} John has three times as many oranges as James, and
+they together have~$32$. How many has each?
+\begin{Soln}
+\begin{DPgather*}
+\lintertext{\indent Let}
+\text{$x$~stand for the \emph{number} of oranges James has;} \\
+\lintertext{then}
+\text{$3x$~is the number of oranges John has;} \\
+\lintertext{and}
+\text{$x + 3x$ is the number of oranges they together have.}
+\end{DPgather*}
+
+But $32$~is the number of oranges they together have.
+\begin{DPalign*}
+\therefore x + 3x &= 32; \\
+\lintertext{or,}
+4x &= 32, \\
+\lintertext{and}
+x &= 8. \\
+\lintertext{\indent Since $x = 8$,}
+3x &= 24.
+\end{DPalign*}
+\end{Soln}
+
+Therefore James has $8$~oranges, and John has $24$~oranges.
+
+\begin{Remark}[Note.] Beginners in stating the preceding problem generally write:
+\[
+\text{Let $x = {}$\emph{what} James had.}
+\]
+
+Now, we know \emph{what} James had. He had oranges, and we are to
+discover simply the \emph{number} of oranges he had.
+\end{Remark}
+
+\Item{2.} James and John together have~\$$24$, and James has
+\$$8$~more than John. How many dollars has each?
+\begin{Soln}
+\begin{DPgather*}
+\lintertext{\indent Let}
+\text{$x$~stand for the number of dollars John has;} \\
+\lintertext{then}
+\text{$x + 8$ is the number of dollars James has;} \\
+\lintertext{and}
+\text{$x + (x + 8)$ is the number of dollars they both have.}
+\end{DPgather*}
+
+But $24$~is the number of dollars they both have.
+\[
+\therefore x + (x + 8) = 24.
+\]
+
+Removing the parenthesis,
+\[
+x + x + 8 = 24.
+\]
+\begin{DPalign*}
+\therefore 2x &= 16. \\
+\lintertext{\indent Dividing by~$2$,}
+x &= 8. \\
+\lintertext{\indent Since $x = 8$,}
+x + 8 &= 16.
+\end{DPalign*}
+\end{Soln}
+
+Therefore John has~\$$8$, and James has~\$$16$.
+%% -----File: 033.png---Folio 27-------
+
+\begin{Remark}[Note\Add{.}] The beginner must avoid the mistake of writing
+\[
+\text{Let $x = {}$John's money\Add{.}}
+\]
+
+We are required to find the \emph{number} of dollars John has, and therefore
+$x$~must represent this required number.
+\end{Remark}
+
+\Item{3.} The sum of two numbers is~$18$, and three times the
+greater number exceeds four times the less by~$5$. Find the
+numbers.
+
+\begin{Soln}
+Let $x = {}$the greater number.
+
+Then, since $18$~is the sum and $x$~is one of the numbers, the other
+number must be the sum minus~$x$. Hence
+\[
+18 - x = \text{the smaller number}\Add{.}
+\]
+
+Now, three times the greater number is~$3x$, and four times the less
+number is~$4(18 - x)$\Add{.}
+\begin{DPalign*}
+\lintertext{\indent Hence,}
+&3x - 4(18 - x) = \text{the excess}\Add{.} \\
+\lintertext{\indent But}
+&5 = \text{the excess}\Add{,} \\
+\therefore\ &3x - 4(18 - x) = 5 \\
+\therefore\ &3x - (72 - 4x) = 5, \\
+\lintertext{or}
+&3x - 72 + 4x = 5. \\
+\therefore\ &7x = 77, \\
+\lintertext{and}
+&\Z x = 11\Add{.}
+\end{DPalign*}
+\end{Soln}
+
+Therefore the numbers are $11$~and~$7$.
+
+\Exercise{10.}
+
+\Item{1.} If a number is multiplied by~$9$, the product is~$270$.
+Find the number.
+
+\Item{2.} If the sum of the ages of a father and son is $60$~years,
+and the father is $5$~times as old as the son, what is the
+age of each?
+
+\Item{3.} The sum of two numbers is~$91$, and the greater is $6$~times
+the less. Find the numbers.
+%% -----File: 034.png---Folio 28-------
+
+\Item{4.} A tree $90$~feet high was broken so that the part
+broken off was $8$~times the length of the part left standing.
+Find the length of each part.
+
+\Item{5.} The difference of two numbers is~$7$, and their sum is~$53$.
+Find the numbers.
+
+\Item{6.} The difference of two numbers is~$12$, and their sum is~$84$.
+Find the numbers.
+
+\Item{7.} Divide $35$ into two parts so that one part shall be
+greater by~$5$ than the other part.
+
+\Item{8.} Three times a given number is equal to the number
+increased by~$40$. Find the number.
+
+\Item{9.} Three times a given number diminished by~$24$ is
+equal to the given number. Find the number.
+
+\Item{10.} One number is $4$~times another, and their difference
+is~$30$. Find the numbers.
+
+\Item{11.} The sum of two numbers is~$36$, and one of them
+exceeds twice the other by~$6$. Find the numbers.
+
+\begin{Remark}[Hint.] Let $x$~equal the greater number: then $36 - x$ will equal the
+smaller.
+\end{Remark}
+
+\Item{12.} The sum of two numbers is~$40$, and $5$~times the
+smaller exceeds $2$~times the greater by~$25$. Find the
+numbers.
+
+\Item{13.} The number $30$ is divided into two parts such that
+$4$~times the greater part exceeds $5$~times the smaller part
+by~$30$. Find the parts.
+
+\Item{14.} The sum of two numbers is~$27$, and twice the greater
+number increased by $3$~times the less is~$61$. Find the
+numbers.
+
+\Item{15.} The sum of two numbers is~$32$, and five times the
+smaller is $3$~times the greater number. Find the numbers.
+%% -----File: 035.png---Folio 29-------
+
+\Exercise{11.}
+
+\Item{1.} A farmer sold a horse and a cow for~\$$210$. He
+sold the horse for four times as much as the cow. How
+much did he get for each?
+
+\Item{2.} Three times the excess of a certain number over~$6$
+is equal to the number plus~$144$. Find the number.
+
+\Item{3.} Thirty-one times a certain number is as much above~$40$
+as nine times the number is below~$40$. Find the number.
+
+\Item{4.} Two numbers differ by~$10$, and their sum is equal to
+seven times their difference. Find the numbers.
+
+\Item{5.} Find three consecutive numbers, $x$, $x + 1$, and~$x + 2$,
+whose sum is~$78$.
+
+\Item{6.} Find five consecutive numbers whose sum is~$35$.
+
+\Item{7.} The sum of the ages of A~and~B is $40$~years, and $10$~years
+hence A~will be twice as old as~B\@. Find their
+present ages.
+
+\Item{8.} A father is four times as old as his son, and in $5$~years
+he will be only three times as old. Find their present ages.
+
+\Item{9.} One man is $60$~years old, and another man is $50$~years.
+How many years ago was the first man twice as
+old as the second?
+
+\Item{10.} A man $50$~years old has a son $10$~years old. In
+how many years will the father be three times as old as
+the son?
+
+\Item{11.} A~has~\$$100$, and B~has~\$$20$. How much must A
+give B in order that they may each have the same sum?
+
+\Item{12.} A banker paid \$$63$ in $5$-dollar bills and $2$-dollar
+bills. He paid just as many $5$-dollar bills as $2$-dollar bills.
+How many bills of each kind did he pay?
+%% -----File: 036.png---Folio 30-------
+
+\Exercise{12.}
+
+\Item{1.} In a company of $90$~persons, composed of men,
+women, and children, there are three times as many children
+as men, and twice as many women as men. How many
+are there of each?
+
+\Item{2.} Find the number whose double exceeds~$70$ by as
+much as the number itself is less than~$80$.
+
+\Item{3.} A farmer employed two men to build $112$~rods of
+wall. One of them built on the average $4$~rods a day, and
+the other $3$~rods a day. How many days did they work?
+
+\Item{4.} Two men travel in \emph{opposite} directions, one $30$~miles
+a day, and the other $20$~miles a day. In how many days
+will they be $350$~miles apart?
+
+\Item{5.} Two men travel in the same direction, one $30$~miles
+a day, and the other $20$~miles a day. In how many days
+will they be $350$~miles apart?
+
+\Item{6.} A man bought $3$~equal lots of hay for~\$$408$. For
+the first lot he gave \$$17$~a ton, for the second~\$$16$, for the
+third~\$$18$. How many tons did he buy in all?
+
+\Item{7.} A farmer sold a quantity of wood for~\$$84$, one half
+of it at \$$3$~a cord, and the other half at \$$4$~a cord. How
+many cords did he sell?
+
+\begin{Remark}[Hint.]
+Let $2x$~equal the number of cords.
+\end{Remark}
+
+\Item{8.} If $2x - 3$ stands for~$29$, for what number will
+$4 + x$ stand?
+
+\Item{9.} At an election two opposing candidates received
+together $2044$~votes, and one received $104$~more votes than
+the other. How many votes did each candidate receive?
+%% -----File: 037.png---Folio 31-------
+
+\Exercise{13.}
+
+\Item{1.} A man walks $4$~miles an hour for $x$~hours, and
+another man walks $3$~miles an hour for $x + 2$~hours. If
+they each walk the same distance, how many miles does
+each walk?
+
+\Item{2.} A has twice as much money as~B; but if A gives~B
+\$$30$, it will take twice as much as A has left to equal~B's.
+How much money has each?
+
+\Item{3.} I have \$$12.75$ in two-dollar bills and twenty-five
+cent pieces, and I have twice as many bills as twenty-five
+cent pieces. How many have I of each?
+
+\Item{4.} I have in mind a certain number. If this number
+is diminished by~$8$ and the remainder multiplied by~$8$, the
+result is the same as if the number was diminished by~$6$
+and the remainder multiplied by~$6$. What is the number?
+
+\Item{5.} I have five times as many half-dollars as quarters, and
+the half-dollars and quarters amount to~\$$11$. How many
+of each have I?
+
+\Item{6.} A man pays a debt of~\$$91$ with ten-dollar bills and
+one-dollar bills, paying three times as many one-dollar bills
+as ten-dollar bills. How many bills of each kind does he
+pay?
+
+\Item{7.} A father is four times as old as his son, but $4$~years
+hence he will be only three times as old as his son. How
+old is each?
+
+\Item{8.} A workman was employed for $24$~days. For every
+day he worked he was to receive~\$$1.50$, and for every day
+he was idle he was to pay \$$0.50$ for his board. At the end
+of the time he received~\$$28$. How many days did he
+work?
+%% -----File: 038.png---Folio 32-------
+
+\Exercise{14.}
+
+\Item{1.} A boy has $4$~hours at his disposal. How far can he
+ride into the country at the rate of $9$~miles an hour and
+walk back at the rate of $3$~miles an hour, if he returns just
+on time?
+
+\begin{Remark}[Hint.] Let $x = {}$the number of hours he rides.
+
+Then $4 - x = {}$the number he walks.
+\end{Remark}
+
+\Item{2.} A has~\$$180$, and B has~\$$80$. How much must A
+give B in order that six times B's money shall be equal to
+$7$~times~A's?
+
+\Item{3.} A grocer has two kinds of tea, one kind worth $45$~cents
+a pound, and the other worth $65$~cents a pound.
+How many pounds of each kind must he take to make $80$~pounds,
+worth $50$~cents a pound?
+
+\Item{4.} A tank holding $1200$~gallons has three pipes. The
+first lets in $8$~gallons a minute, the second $10$~gallons, and
+the third $12$~gallons a minute. In how many minutes will
+the tank be filled?
+
+\Item{5.} The fore and hind wheels of a carriage are $10$~feet
+and $12$~feet respectively in circumference. How many
+feet will the carriage have passed over when the fore wheel
+has made $250$~revolutions more than the hind wheel?
+
+\Item{6.} Divide a yard of tape into two parts so that one part
+shall be $6$~inches longer than the other part.
+
+\Item{7.} A boy bought $7$~dozen oranges for~\$$1.50$. For a part
+he paid $20$~cents a dozen; and for the remainder, $25$~cents
+a dozen. How many dozen of each kind did he buy?
+
+\Item{8.} How can a bill of~\$$3.30$ be paid in quarters and ten-cent
+pieces so as to pay three times as many ten-cent
+pieces as quarters?
+%% -----File: 039.png---Folio 33-------
+
+
+\Chapter{III.}{Positive and Negative Numbers.}
+
+\Paragraph{56. Quantities Opposite in Kind.} If a person is engaged
+in trade, his capital will be \emph{increased} by his \emph{gains}, and
+\emph{diminished} by his \emph{losses}.
+
+\emph{Increase} in temperature is measured by the number of
+degrees the mercury rises in a thermometer, and \emph{decrease}
+in temperature by the number of degrees the mercury \emph{falls}.
+
+In considering any quantity whatever, a quantity that
+\emph{increases} the quantity considered is called a \emph{positive quantity};
+and a quantity that \emph{decreases} the quantity considered
+is called a \emph{negative quantity}.
+
+\Paragraph{57. Positive and Negative Numbers.} If from a given
+point, marked~$0$, we draw a straight line to the right, and
+beginning from the \emph{zero} point lay off units of length on this
+line, the successive repetitions of the unit will be expressed
+by the \emph{natural series of numbers}, $1$,~$2$, $3$, $4$,~etc. Thus:
+\Graphic{1}
+
+If we wish to \emph{add} $2$~to~$5$, we begin at~$5$, count $2$~units
+\emph{forwards}, and arrive at~$7$, the sum required. If we wish
+to \emph{subtract} $2$~from~$5$, we begin at~$5$, count $2$~units \emph{backwards},
+and arrive at~$3$, the difference required. If we wish
+to subtract $5$~from~$5$, we count $5$~units backwards, and arrive
+at~$0$. If we wish to subtract $5$~from~$2$, we cannot do it,
+because when we have counted backwards from~$2$ as far as~$0$,
+\emph{the natural series of numbers comes to an end}.
+%% -----File: 040.png---Folio 34-------
+
+In order to subtract a greater number from a smaller, it
+is necessary to \emph{assume} a new series of numbers, beginning
+at zero and extending to the left of zero. The series to the
+left of zero must proceed from zero by \emph{the repetitions of the
+unit}, precisely like the natural series to the right of zero;
+and the \emph{opposition} between the right-hand series and the
+left-hand series must be clearly marked. This opposition
+is indicated by calling every number in the right-hand
+series a \Defn{positive number}, and prefixing to it, when written,
+the sign~$+$; and by calling every number in the left-hand
+series a \Defn{negative number}, and prefixing to it the sign~$-$.
+The two series of numbers may be called the \Defn{algebraic series
+of numbers}, and written thus:
+\Graphic{2}
+
+If, now, we wish to subtract $7$~from~$4$, we begin at~$4$ in
+the positive series, count $7$~units in the \emph{negative direction}
+(to the left), and arrive at~$-3$ in the negative series; that
+is, $4 - 7 = -3$.
+
+The result obtained by subtracting a greater number from
+a less, when both are positive, is \emph{always a negative number}.
+
+In general, if $a$~and~$b$ represent any two numbers of the
+positive series, the expression $a - b$ will be a positive number
+when $a$~is greater than~$b$; will be zero when $a$~is equal
+to~$b$; will be a negative number when $a$~is less than~$b$.
+
+In counting from left to right in the algebraic series, numbers
+\emph{increase} in magnitude; in counting from right to left,
+numbers \emph{decrease} in magnitude. Thus $-3$,~$-1$, $0$, $+2$,~$+4$,
+are arranged in \emph{ascending} order of magnitude.
+
+\Paragraph{58.} Every algebraic number, as $+4$~or~$-4$, consists of a
+\emph{sign} $+$~or~$-$ and the \emph{absolute value} of the number. The
+sign shows whether the number belongs to the positive or
+%% -----File: 041.png---Folio 35-------
+negative series of numbers; the absolute value shows the
+place the number has in the positive or negative series.
+
+When no sign stands before a number, the sign~$+$ is
+always understood. Thus $4$~means the same as~$+4$, $a$~means
+the same as~$+a$. But \emph{the sign~$-$ is never omitted}.
+
+\Paragraph{59.} Two algebraic numbers which have, one the sign~$+$,
+and the other the sign~$-$, are said to have \emph{unlike signs}.
+
+Two algebraic numbers which have the same absolute
+values, but unlike signs, always cancel each other when
+combined. Thus $+4 - 4 = 0$; $+a - a = 0$.
+
+\Paragraph{60. Double Meanings of the Signs $+$~and~$-$.} The use of
+the signs $+$~and~$-$ to indicate addition and subtraction
+must be carefully distinguished from the use of the signs $+$~and~$-$
+to indicate in which series, the positive or the negative,
+a given number belongs. In the first sense they are
+signs of \emph{operations}, and are common to Arithmetic and
+Algebra; in the second sense they are signs of \emph{opposition},
+and are employed in Algebra alone.
+
+\begin{Remark}[Note.] In Arithmetic, if the things counted are \emph{whole units}, the
+numbers which count them are called \Defn{whole numbers}, \Defn{integral numbers},
+or \Defn{integers}, where the adjective is transferred from the things counted
+to the numbers which count them. But if the things counted are
+only \emph{parts of units}, the numbers which count them are called \Defn{fractional
+numbers}, or simply \Defn{fractions}, where again the adjective is transferred
+from the things counted to the numbers which count them.
+
+Likewise in Algebra, if the units counted are \emph{negative}, the numbers
+which count them are called \Defn{negative numbers}, where the adjective
+which defines the nature of the units counted is transferred to the
+numbers that count them.
+
+A whole number means a number of whole units, a fractional number
+means a number of parts of units, and a negative number means
+a number of negative units.
+\end{Remark}
+%% -----File: 042.png---Folio 36-------
+
+\Paragraph{61. Addition and Subtraction of Algebraic Numbers.} An
+algebraic number which is to be added or subtracted is
+often \DPtypo{inclosed}{enclosed} in a parenthesis, in order that the signs $+$~and~$-$,
+which are used to distinguish positive and negative
+numbers, may not be confounded with the $+$~and~$-$ signs
+that denote the operations of addition and subtraction.
+Thus $+4 + (-3)$ expresses the sum, and $+4 - (-3)$ expresses
+the difference, of the numbers $+4$~and~$-3$.
+
+\Paragraph{62. Addition.} In order to add two algebraic numbers, we
+begin at the place in the series which the first number occupies,
+and count, \emph{in the direction indicated by the sign of the
+second number}, as many units as there are in the absolute
+value of the second number.
+\Graphic{3}
+
+Thus the sum of $+4 + (+3)$ is found by counting from
+$+4$ three units in \emph{the positive direction}; that is, to the
+right, and is, therefore,~$+7$.
+
+The sum of $+4 + (-3)$ is found by counting from $+4$
+three units in \emph{the negative direction}; that is, to the left, and
+is, therefore,~$+1$.
+
+The sum of $-4 + (+3)$ is found by counting from $-4$
+three units in the positive direction, and is, therefore,~$-1$.
+
+The sum of $-4 + (-3)$ is found by counting from $-4$
+three units in the negative direction, and is, therefore,~$-7$.
+
+\Paragraph{63. Subtraction.} In order to subtract one algebraic number
+from another, we begin at the place in the series which
+the minuend occupies, and count, \emph{in the direction opposite to
+that indicated by the sign of the subtrahend}, as many units
+as there are in the absolute value of the subtrahend.
+
+Thus the result of subtracting $+3$~from~$+4$ is found by
+%% -----File: 043.png---Folio 37-------
+counting from $+4$ three units in the \emph{negative direction};
+that is, in the direction \emph{opposite to that indicated by the sign~$+$
+before~$3$}, and is, therefore,~$+1$.
+
+The result of subtracting $-3$~from~$+4$ is found by counting
+from $+4$ three units in the \emph{positive direction}, and is,
+therefore,~$+7$.
+
+The result of subtracting $+3$~from~$-4$ is found by counting
+from $-4$ three units in the \emph{negative direction}, and is,
+therefore,~$-7$.
+
+The result of subtracting $-3$~from~$-4$ is found by counting
+from $-4$ three units in the \emph{positive direction}, and is,
+therefore,~$-1$.
+
+\Paragraph{64.} Collecting the results obtained in addition and subtraction,
+we have:
+\[
+\begin{array}{c>{\quad}c}
+\textsc{Addition.} & \textsc{Subtraction.} \\
+ +4 + (-3) = +4 - 3 = +1. & +4 - (+3) = +4 - 3 = +1. \\
+ +4 + (+3) = +4 + 3 = +7. & +4 - (-3) = +4 + 3 = +7. \\
+- 4 + (-3) = -4 - 3 = -7. & -4 - (+3) = -4 - 3 = -7. \\
+- 4 + (+3) = -4 + 3 = -1. & -4 - (-3) = -4 + 3 = -1. \\
+\end{array}
+\]
+
+\Paragraph{65.} From these four cases of addition, therefore,
+
+% [**** TN: Book uses commas elsewhere]
+\Dictum{To Add Algebraic Numbers}\DPtypo{:}{,}
+\begin{Theorem}[I.] If the numbers have like signs, find the sum of their
+absolute values, and prefix the common sign to the result.
+\end{Theorem}
+
+\begin{Theorem}[II.] If the numbers have unlike signs, find the difference
+of their absolute values, and prefix the sign of the greater
+number to the result.
+\end{Theorem}
+
+\begin{Theorem}[III.] If there are more than two numbers, find the sum
+of the positive numbers and the sum of the negative numbers,
+%% -----File: 044.png---Folio 38-------
+take the difference between the absolute values of these two
+sums, and prefix the sign of the greater sum to the result.
+\end{Theorem}
+
+\begin{Remark}[Note.] Since the order in which numbers are added is immaterial,
+we may add any two of the numbers, and then this sum to
+any third number, and so on.
+\end{Remark}
+
+\Paragraph{66.} The result is generally called the \Defn{algebraic sum}, in
+distinction from the arithmetical sum; that is, the sum of
+the absolute values of the numbers.
+
+\Paragraph{67.} From the four cases of subtraction in §~64, we see
+that \textit{subtracting a positive number is equivalent to adding
+an equal negative number, and subtracting a negative number
+is equivalent to adding an equal positive number}.
+
+
+\Dictum{To Subtract One Algebraic Number from Another},
+\begin{Theorem}
+Change the sign of the subtrahend, and add the subtrahend
+to the minuend.
+\end{Theorem}
+
+\Paragraph{68. Examples.}
+
+\Item{1.} Find the sum of $3a$, $2a$, $a$, $5a$, $7a$.
+
+The sum of the coefficients is $3 + 2 + 1 + 5 + 7 = 18$.
+
+Hence the sum of the numbers is~$18a$.
+
+\Item{2.} Find the sum of $-5c$, $-c$, $-3c$, $-4c$, $-2c$.
+
+The sum of the coefficients is $-5 - 1 - 3 - 4 - 2 = -15$.
+
+Hence the sum of the numbers is~$-15c$.
+
+\Item{3.} Find the sum of $8x$, $-9x$, $-x$, $3x$, $4x$, $-12x$, $x$.
+
+The sum of the positive coefficients is $8 + 3 + 4 + 1 = 16$.
+
+The sum of the negative coefficients is $-9 - 1 - 12 = -22$.
+
+The difference between $16$~and~$22$ is~$6$, and the sign of
+the greater is negative.
+
+Hence the required sum is~$-6x$.
+%% -----File: 045.png---Folio 39-------
+
+\PrintBreak
+\Exercise{15.}
+
+Find the sum of:
+\begin{multicols}{2}
+\Item{1.} $5c$, $23c$, $c$, $11c$.
+
+\Item{2.} $4a$, $3a$, $7a$, $10a$.
+
+\Item{3.} $7x$, $12x$, $11x$, $9x$.
+
+\Item{4.} $6y$, $8y$, $2y$, $35y$.
+
+\Item{5.} $-3a$, $-5a$, $-18a$.
+
+\Item{6.} $-5x$, $-6x$, $-18x$, $-11x$.
+
+\Item{7.} $-3b$, $-b$, $-9b$, $-4b$.
+
+\Item{8.} $-z$, $-2z$, $-10z$, $-53z$.
+
+\Item{9.} $-11m$, $-3m$, $-5m$, $-m$.
+
+\Item{10.} $5d$, $-d$, $-4d$, $2d$.
+\end{multicols}
+
+\Item{11.} $13n$, $13n$, $-11n$, $-6n$, $-9n$, $n$, $2n$, $-3n$.
+
+\Item{12.} $5g$, $-3g$, $-6g$, $-4g$, $20g$, $-5g$, $-11g$, $-14g$.
+
+\Item{13.} $-9a^{2}$, $5a^{2}$, $6a^{2}$, $a^{2}$, $2a^{2}$, $-a^{2}$, $-3a^{2}$.
+
+\Item{14.} $3x^{3}$, $-2x^{3}$, $-5x^{3}$, $-7x^{3}$, $-x^{3}$, $2x^{3}$, $-10x^{3}$, $-x^{3}$.
+
+\Item{15.} $4a^{2}b^{2}$, $-a^{2}b^{2}$, $-6a^{2}b^{2}$, $4a^{2}b^{2}$, $-2a^{2}b^{2}$, $a^{2}b^{2}$.
+
+\Item{16.} $6mn$, $-5mn$, $mn$, $-3mn$, $4mn$.
+
+\Item{17.} $3xyz$, $-2xyz$, $5xyz$, $-7xyz$, $xyz$.
+
+\Item{18.} $5a^{3}b^{3}c^{3}$, $-7a^{3}b^{3}c^{3}$, $-3a^{3}b^{3}c^{3}$, $2a^{3}b^{3}c^{3}$.
+
+\Item{19.} $11abcd$, $-10abcd$, $-9abcd$, $-abcd$.
+
+\Item{20.} Subtract $-a$ from $-b$, and find the value of the
+result if $a = -4$, $b = -5$.
+
+When $a = 4$, $b = -2$, $c = -3$, find the difference in
+the values of:
+
+\Item{21.} $a - b + c$ and $-a + b + c$.
+
+\Item{22.} $a + (-b) + c$ and $a - (-b) + c$.
+
+\Item{23.} $-a - (-b) + c$ and $-(-a) + (-b) - c$.
+
+\Item{24.} $a - b + (-c)$ and $a - (-b) - (-c)$.
+%% -----File: 046.png---Folio 40-------
+
+
+\Section{MULTIPLICATION AND DIVISION OF ALGEBRAIC
+NUMBERS}
+
+\Paragraph{69. Multiplication.} Multiplication is generally defined
+in Arithmetic as the process of finding the result when one
+number (the multiplicand) is taken as many times as there
+are units in another number (the multiplier). This definition
+fails when the \emph{multiplier is a fraction}. In multiplying
+by a fraction, we divide the multiplicand into as many
+equal parts as there are units in the denominator, and take
+as many of these parts as there are units in the numerator.
+
+If, for example, we multiply $6$~by~$\frac{2}{3}$, we divide $6$ into
+\emph{three} equal parts and take \emph{two} of these parts, obtaining $4$
+for the product. The multiplier,~$\frac{2}{3}$, is~$\frac{2}{3}$ of~$1$, and the
+product,~$4$, is~$\frac{2}{3}$ of~$6$, in other words, \emph{the product is obtained
+from the multiplicand precisely as the multiplier is obtained
+from~$1$}.
+
+This statement is also true when the multiplier is a whole
+number. Thus in $5 × 7 = 35$, the multiplier,~$5$, is equal to
+\[
+1 + 1 + 1 + 1 + 1,
+\]
+and the product,~$35$, is equal to
+\[
+7 + 7 + 7 + 7 + 7.
+\]
+
+\Paragraph{70.} \Dictum{Multiplication may be defined}, therefore,
+
+As the operation of finding from two given numbers,
+called \emph{multiplicand} and \emph{multiplier}, a third number called
+\emph{product}, which is \emph{formed from the multiplicand as the multiplier
+is formed from unity}.
+
+\Paragraph{71.} According to this definition of multiplication,
+\begin{DPalign*}[m]
+\lintertext{since}
++3 &= + 1 + 1 + 1, \\
+3 × (+8) &= +8 + 8 + 8
+\Tag{(1)} \\
+&= +24, \displaybreak[1] \\
+%% -----File: 047.png---Folio 41-------
+\lintertext{and}
+3 × (-8) &= -8 - 8 - 8
+\Tag{(2)} \\
+&= -24. \displaybreak[1] \\
+\lintertext{\indent Again, since}
+-3 &= -1 - 1 - 1; \\
+(-3) × 8 &= -8 - 8 - 8
+\Tag{(3)} \\
+&= -24, \displaybreak[1] \\
+\lintertext{and}
+(-3) × (-8) &= -(-8) - (-8) - (-8)
+\Tag{(4)} \\
+&= +8 + 8 + 8 \\
+&= +24.
+\end{DPalign*}
+
+\Paragraph{72.} From these four cases it follows that in finding
+the product of two algebraic numbers, if the two numbers
+have \emph{like} signs, the product will have the \emph{plus} sign, and if
+\emph{unlike} signs, the product will have the \emph{minus} sign.
+
+Hence the \Defn{Law of Signs in Multiplication} is:
+\begin{Theorem}
+Like signs give~$+$, and unlike signs give~$-$.
+\end{Theorem}
+
+If $a$~and~$b$ stand for any two numbers, we have
+\begin{align*}
+(+a) × (+b) &= +ab, \\
+(+a) × (-b) &= -ab, \\
+(-a) × (+b) &= -ab, \\
+(-a) × (-b) &= +ab.
+\end{align*}
+
+\Paragraph{73. The Index Law in Multiplication.}
+\begin{DPalign*}
+\lintertext{\indent Since}
+a^{2} &= aa, \quad\text{and}\quad a^{3} = aaa, \\
+a^{2} × a^{3} &= aa × aaa = aaaaa = a^{5} = a^{2 + 3}; \\
+a^{4} × a &= aaaa × a = aaaaa = a^{5} = a^{4 + 1}.
+\end{DPalign*}
+
+If $a$~stands for any number, and $m$~and~$n$ for any integers,
+\[
+a^{m} × a^{n} = a^{m + n}. \EqText{Hence,}
+\]
+\begin{Theorem}
+The index of the product of two powers of the same number
+is equal to the sum of the indices of the factors.
+\end{Theorem}
+%% -----File: 048.png---Folio 42-------
+
+\Paragraph{74. Examples.}
+
+\Item{1.} Find the product of $6a^{2}b^{2}$ and $7ab^{2}c^{3}$.
+
+Since the order of the factors is immaterial,
+\begin{align*}
+6a^{2}b^{3} × 7ab^{2}c^{3}
+ &= 6 × 7 × a^{2} × a × b^{3} × b^{2} × c^{3} \\
+ &= 42a^{3}b^{5}c^{3}.
+\end{align*}
+
+\Item{2.} Find the product of $-3ab$ and $7ab^{3}$.
+\begin{align*}
+-3ab × 7ab^{3}
+ &= -3 × 7 × a × a × b × b^{3} \\
+ &= -21a^{2}b^{4}.
+\end{align*}
+
+\Paragraph{75. To Find the Product of Simple Expressions}, therefore,
+\begin{Theorem}
+Take the product of the coefficients and the sum of the
+indices of the like letters.
+\end{Theorem}
+
+\Exercise{16.}
+
+Find the product of:
+\begin{multicols}{2}
+\Item{1.} $5a^{2}$ and $6a^{3}$.
+
+\Item{2.} $8ab$ and $5a^{3}b^{2}$.
+
+\Item{3.} $9xy$ and $7xy$.
+
+\Item{4.} $2a^{2}b$ and $a^{3}b^{4}c^{2}$.
+
+\Item{5.} $3a^{3}b^{7}c^{8}$ and $3a^{4}b^{2}c$.
+
+\Item{6.} $2a$ and $-5a$.
+
+\Item{7.} $-3a$ and $-4b$.
+
+\Item{8.} $-ab$ and $a^{3}b^{2}$.
+
+\Item{9.} $-2ab^{4}$ and $-5a^{4}bc$.
+
+\Item{10.} $-2x^{6}y^{3}z$ and $-6xy^{2}z$.
+\end{multicols}
+
+\Item{11.} $3a^{2}b$, $-5ab^{2}$, and $-7a^{4}b^{2}$.
+
+\Item{12.} $2a^{2}bc^{3}$, $-3a^{3}b^{2}c$, and $-ab^{2}c^{3}$.
+
+\Item{13.} $2b^{2}c^{2}x^{2}$, $2a^{2}b^{2}c^{3}$, and $-3a^{3}bx^{3}$.
+
+\Item{14.} $2a^{3}b^{2}c$, $-3a^{2}b^{3}c$, and $-4a^{2}bc^{3}$.
+
+\Item{15.} $7am^{2}x^{3}$, $3a^{4}m^{2}x^{3}$, and $-2amx$.
+
+\Item{16.} $-3x^{2}y^{2}z^{2}$, $2x^{2}yz^{3}$, and $-5x^{4}yz$.
+%% -----File: 049.png---Folio 43-------
+
+If $a = -2$, $b = 3$, and $c = -1$, find the value of:
+\begin{multicols}{2}
+\Item{17.} $2ab^{2} - 3bc^{2} + c$.
+
+\Item{18.} $4a^{2} - 2b^{2} - c^{2}$.
+
+\Item{19.} $5a + 2b - 4c^{4}$.
+
+\Item{20.} $2a^{3} - 3b + 8c^{2}$.
+
+\Item{21.} $-a + 3b - 2c^{2}$.
+
+\Item{22.} $-a^{3} - 2b - 10c$.
+
+\Item{23.} $3a^{3} - 3b^{3} - 3c^{3}$.
+
+\Item{24.} $2ab^{2} - 3bc^{2} + 2ac$.
+
+\Item{25.} $3abc + 5a^{2}b^{2} - 2a^{2}b$.
+
+\Item{26.} $ab^{2}c^{2} + 2abc^{2} + a^{2}b^{2}c^{2}$.
+
+\Item{27.} $2a^{2}bc + 3abc + a^{2}b^{2}c^{2}$.
+
+\Item{28.} $6a^{2} + 8a^{2}b^{2} - 5a^{2}bc$.
+\end{multicols}
+
+\Paragraph{76. Division.} To divide $48$~by~$8$ is to find the number
+of times it is necessary to take $8$ to make~$48$. Here the
+\emph{product} and \emph{one factor} are given, and \emph{the other factor} is
+required. We may, therefore, take for the definition of
+division\Add{:}
+
+The operation by which when \emph{the product} and \emph{one factor}
+are given, \emph{the other factor is found}.
+
+With reference to this operation the product is called
+the \Defn{dividend}, the given factor the \Defn{divisor}, and the required
+factor the \Defn{quotient}.
+
+\Paragraph{77. Law of Signs in Division.}
+\begin{alignat*}{2}
+&\text{Since } (+a) × (+b) = +ab,\quad && \therefore +ab ÷ (+a) = +b. \\
+&\text{Since } (+a) × (-b) = -ab, && \therefore -ab ÷ (+a) = -b. \\
+&\text{Since } (-a) × (+b) = -ab, && \therefore -ab ÷ (-a) = +b. \\
+&\text{Since } (-a) × (-b) = +ab, && \therefore +ab ÷ (-a) = -b.
+\end{alignat*}
+
+That is, if the dividend and divisor have like signs, the
+quotient has the plus sign; and if they have unlike signs,
+the quotient has the minus sign. Hence, in division,
+\begin{Theorem}
+Like signs give~$+$, and unlike signs give~$-$.
+\end{Theorem}
+%% -----File: 050.png---Folio 44-------
+
+\Paragraph{78. Index Law in Division.}
+
+The dividend contains all the factors of the divisor and
+of the quotient, and therefore the quotient contains the
+factors of the dividend that are not found in the divisor.
+
+Thus, $\dfrac{abc}{bc} = a$, $\dfrac{aabx}{ab} = ax$, $\dfrac{124abc}{-4ab} = -31c$.
+
+Divide $a^{5}$~by~$a^{2}$, $a^{6}$~by~$a^{4}$, $a^{4}$~by~$a$\DPtypo{,}{.}
+\begin{alignat*}{4}
+\frac{a^{5}}{a^{2}}
+ &= \frac{aaaaa}{aa} &&= aaa &&= a^{3} &&= a^{5-2}; \\
+\frac{a^{6}}{a^{4}}
+ &= \frac{aaaaaa}{aaaa} &&= aa &&= a^{2} &&= a^{6-4}\DPtypo{,}{;} \\
+\frac{a^{4}}{a}
+ &= \frac{aaaa}{a} &&= aaa &&= a^{3} &&= a^{4-1}\DPtypo{,}{.}
+\end{alignat*}
+
+If $m$~and~$n$ stand for any integers, and $m$~is greater than~$n$\Add{,}
+\[
+a^{m} - a^{n} = a^{m - n}\Add{.}
+\]
+
+\begin{Theorem}
+The index of the quotient of two powers of the same letter
+is equal to the index of the letter in the dividend diminished
+by the index of the letter in the divisor.
+\end{Theorem}
+
+\Paragraph{79. Examples.}
+
+\Item{1.} Divide $15xy$~by~$5x$\Add{.}
+\[
+\frac{15xy}{5x} = \frac{3 × 5xy}{5x} = 3y.
+\]
+
+Here we cancel the factors $5$~and~$x$, which are common
+to the dividend and divisor\Add{.}
+
+\Item{2.} Divide $-21a^{2}b^{3}$~by~$3ab^{2}$\Add{.}
+\[
+\frac{-21a^{2}b^{3}}{3ab^{2}} = -7ab.
+\]
+%% -----File: 051.png---Folio 45-------
+
+\Item{3.} Divide $54a^{5}b^{3}c$~by~$-6ab^{2}c$.
+\[
+\frac{54a^{5}b^{3}c}{-6ab^{2}c} = -9a^{4}b.
+\]
+
+\Item{4.} Divide $-45x^{4}y^{5}z^{7}$~by~$-15x^{4}y^{5}z^{5}$.
+\[
+\frac{-45x^{4}y^{5}z^{7}}{-15x^{4}y^{5}z^{5}} = 3z^{2}.
+\]
+
+\Item{5.} Divide $-15a^{3}b^{2}c^{3}$~by~$-60a^{2}bc^{3}$.
+\[
+\frac{-15a^{3}b^{2}c^{3}}{-60a^{2}bc^{3}} = \frac{ab}{4}.
+\]
+
+\Exercise{17.}
+
+Divide:
+\begin{multicols}{2}
+\Item{1.} $x^{3}$~by~$x$.
+
+\Item{2.} $21x^{5}$~by~$7x^{3}$.
+
+\Item{3.} $35x^{2}$~by~$-5x^{2}$.
+
+\Item{4.} $-42x^{2}$~by~$6x^{2}$.
+
+\Item{5.} $-63x^{5}$~by~$-9x$.
+
+\Item{6.} $-72x^{3}$~by~$-8x^{2}$.
+
+\Item{7.} $-32a^{2}b^{2}$~by~$8ab^{2}$.
+
+\Item{8.} $-16x^{3}y^{3}$~by~$-4xy$.
+
+\Item{9.} $18x^{2}y$~by~$-2xy$.
+
+\Item{10.} $-25x^{4}y^{2}$~by~$-5x^{3}y^{2}$.
+
+\Item{11.} $-51x^{2}y^{3}$~by~$-17x^{2}y$.
+
+\Item{12.} $-28a^{4}b^{3}$~by~$7a^{3}b$.
+
+\Item{13.} $-36x^{2}y^{6}$~by~$-3xy^{2}$.
+
+\Item{14.} $-3x^{4}y^{6}$~by~$-5xy^{3}$.
+
+\Item{15.} $-12a^{2}b^{3}$~by~$8ab^{3}$.
+
+\Item{16.} $-abcd$~by~$ac$.
+
+\Item{17.} $-a^{2}b^{3}c^{4}d^{5}$~by~$-ab^{3}c^{3}d^{3}$.
+
+\Item{18.} $2x^{2}y^{2}z^{3}$~by~$-3xyz^{3}$.
+
+\Item{19.} $-5a^{5}b^{3}c^{7}$~by~$-a^{4}b^{2}c^{7}$.
+
+\Item{20.} $52a^{2}m^{3}n^{4}$~by~$13a^{2}m^{2}n^{3}$.
+
+\Item{21.} $13xy^{2}z^{4}$~by~$39xyz$.
+
+\Item{22.} $68xc^{2}d^{3}$~by~$-4xcd^{2}$.
+
+\Item{23.} $-8m^{5}n^{3}p^{2}$~by~$-4m^{5}np$.
+
+\Item{24.} $-6pqr^{3}$~by~$-2p^{2}qr$.
+
+\Item{25.} $26a^{2}g^{2}t^{5}$~by~$-2agt^{4}$.
+
+\Item{26.} $-a^{4}b^{2}c^{3}$~by~$-a^{5}b^{3}c^{4}$.
+
+\Item{27.} $-3x^{2}y^{2}z^{2}$~by~$-2x^{3}y^{4}z^{5}$.
+
+\Item{28.} $-6mnp$~by~$-3m^{2}n^{2}p^{2}$.
+
+\Item{29.} $-17a^{2}b^{3}c^{4}$~by~$51ab^{5}c^{4}$.
+
+\Item{30.} $-19mg^{2}t^{3}$~by~$57m2^gt^{4}$.
+\end{multicols}
+%% -----File: 052.png---Folio 46-------
+
+
+\Chapter{IV.}{Addition and Subtraction.}
+
+\Section{Integral Compound Expressions.}
+
+\Paragraph{80.} If an algebraic expression contains only \emph{integral
+forms}, that is, contains \emph{no letter in the denominator of
+any of its terms}, it is called an \Defn{integral expression}.
+
+Thus, $x^{3} + 7cx^{2} - c^{3} - 5c^{2}x$, is an integral expression.
+
+Integral and fractional expressions are so named on
+account of the \emph{form of the expressions}, and with no reference
+whatever to the \emph{numerical value} of the expressions
+when definite numbers are put in place of the letters.
+
+\Paragraph{81. Addition of Integral Compound Expressions.} The addition
+of two algebraic expressions can be represented by
+connecting the second expression with the first by the sign~$+$.
+If there are no like terms in the two expressions, the
+operation is \emph{algebraically complete} when the two expressions
+are thus connected.
+
+If, for example, it is required to add $m + n - p$ to
+$a + b + c$, the result will be $a + b + c + (m + n - p)$; or,
+removing the parenthesis (§~37), $a + b + c + m + n - p$.
+
+\Paragraph{82.} If there are like terms in the expressions, the like
+terms can be \emph{collected}; that is, every set of like terms can
+be replaced by a single term with a coefficient equal to
+the algebraic sum of the coefficients of the like terms.
+%% -----File: 053.png---Folio 47-------
+
+\Item{1.} Add $6x^{2} + 5x + 4$ to $x^{2} - 4x - 5$.
+\begin{DPalign*}
+\lintertext{\indent The sum}
+&= x^{2} - 4x - 5 + (6x^{2} + 5x + 4) \\
+&= x^{2} - 4x - 5 + 6x^{2} + 5x + 4
+\rintertext{§~37} \\
+&= x^{2} + 6x^{2} - 4x + 5x - 5 + 4 \\
+&= 7x^{2} + x - 1.
+\end{DPalign*}
+
+This process is more conveniently represented by arranging
+the terms in columns, so that like terms shall stand in
+the same column, as follows:
+\[
+\begin{array}{r*{2}{cr}}
+ x^{2} &-& 4x &-& 5 \\
+6x^{2} &+& 5x &+& 4 \\
+\hline
+7x^{2} &+& x &-& 1 \\
+\end{array}
+\]
+
+The coefficient of~$x^{2}$ in the result will be $6 + 1$, or~$7$; the
+coefficient of~$x$ will be $-4 + 5$, or~$1$; and the last term is
+$-5 + 4$, or~$-1$.
+
+\begin{Remark}[Note.] When the coefficient of a term is~$1$, it is not written, but
+understood.
+\end{Remark}
+
+\Item{2.} Add $2c^{3} - 5c^{2}d + 6cd^{2} + d^{3}$; $c^{3} + 6c^{2}d - 5cd^{2} - 2d^{3}$;
+and $3c^{3} - c^{2}d - 7cd^{2} - 3d^{3}$.
+\[
+\begin{array}{r*{3}{cr}}
+2c^{3} &-& 5c^{2}d &+& 6cd^{2} &+& d^{3} \\
+ c^{3} &+& 6c^{2}d &-& 5cd^{2} &-& 2d^{3} \\
+3c^{3} &-& c^{2}d &-& 7cd^{2} &-& 3d^{3} \\
+\hline
+6c^{3} & & &-& 6cd^{2} &-& 4d^{3} \\
+\end{array}
+\]
+
+The coefficient of~$c^{3}$ in the result will be $2 + 1 + 3$, or~$6$;
+the coefficient of~$c^{2}d$ will be $-5 + 6 - 1$, or~$0$; therefore
+$c^{2}d$ will not appear in the result; the coefficient of~$cd^{2}$ will
+be $6 - 5 - 7$, or~$-6$; and the coefficient of~$d^{3}$ will be
+$1 - 2 - 3$, or~$-4$.
+%% -----File: 054.png---Folio 48-------
+
+\Exercise{18.}
+
+Find the sum of:
+
+\Item{1.} $a^{2} - ab + b^{2}$; $a^{2} + ab + b^{2}$.
+
+\Item{2.} $3a^{2} + 5a-7$; $6a^{2} - 7a + 13$.
+
+\Item{3.} $x + 2y - 3z$; $-3x + y + 2z$; $2x - 3y + z$.
+
+\Item{4.} $3x + 2y - z$; $-x + 3y + 2z$; $2x - y + 3z$.
+
+\Item{5.} $-3a + 2b + c$; $a - 3b + 2c$; $2a + 3b - c$.
+
+\Item{6.} $-a + 3b + 4c$; $3a - b + 2c$; $2a + 2b - 2c$.
+
+\Item{7.} $4a^{2} + 3a + 5$; $-2a^{2} + 3a - 8$; $a^{2} - a + 1$.
+
+\Item{8.} $5ab + 6bc - 7ac$; $3ab - 9bc + 4ac$; $3bc + 6ac$.
+
+\Item{9.} $x^{3} + x^{2} + x$; $2x^{3} + 3x^{2} - 2x$; $3x^{3} - 4x^{2} + x$.
+
+\Item{10.} $3y^{2} - x^{2} - 3xy$; $5x^{2} + 6xy - 7y^{2}$; $x^{2} + 2y^{2}$.
+
+\Item{11.} $2a^{2} - 2ab + 3b^{2}$; $4b^{2} + 5ab - 2a^{2}$; $a^{2} - 3ab - 9b^{2}$.
+
+\Item{12.} $a^{3} - a^{2} + a - 1$; $a^{2} - 2a + 2$; $3a^{3} + 7a + 1$.
+
+\Item{13.} $2m^{3} - m^{2} - m$; $4m^{3} + 8m^{2} - 7$; $-3m^{3} + m + 9$.
+
+\Item{14.} $x^{3} - 3x + 6y$; $x^{2} + 2x - 5y$; $x^{3} - 3x^{2} + 5x$.
+
+\Item{15.} $6x^{3} - 5x + 1$; $x^{3} + 3x + 4$; $7x^{2} + 2x - 3$.
+
+\Item{16.} $a^{3} + 3a^{2}b - 3ab^{2}$; $-3a^{2}b - 6ab^{2} - b^{3}$; $3a^{2}b + 4ab^{2}$.
+
+\Item{17.} $a^{3} - 2a^{2}b - 2ab^{2}$; $a^{2}b - 3ab^{2} - b^{3}$; $3ab^{2} - 2a^{3} - b^{3}$.
+
+\Item{18.} $7x^{3} - 2x^{2}y + 9xy^{2} + 13y^{3}$; $5x^{2}y - 4xy^{2} - 2x^{3} - 3y^{3}$;
+$y^{3} - x^{3} - 3x^{2}y - 5xy^{2}$; $2x^{2}y - 5y^{3} - 2x^{3} - xy^{2}$.
+
+\Item{19.} Show that $x + y + z = 0$, if $x = a - b - c$,
+$y = 2b + 2c - 3a$, and $z = 2a - b - c$.
+
+\Item{20.} Show that $x + y = 3z$, if $x = 3a^{2} - 6a + 12$,
+$y = 9a^{2} + 12a - 21$, and $z = 4a^{2} + 2a - 3$.
+%% -----File: 055.png---Folio 49-------
+
+\Paragraph{83. Subtraction of Integral Compound Expressions.} The
+subtraction of one expression from another, if none of the
+terms are alike, can be represented only by connecting the
+subtrahend with the minuend by means of the sign~$-$.
+
+If, for example, it is required to subtract $a + b + c$ from
+$m + n - p$, the result will be represented by
+\[
+m + n - p - (a + b + c);
+\]
+or, removing the parenthesis (§~38),
+\[
+m + n - p - a - b - c.
+\]
+
+If, however, some of the terms in the two expressions are
+alike, we can replace two like terms by a single term.
+
+Thus, suppose it is required to subtract $a^{3} + 2a^{2} + 3a - 5$
+from $2a^{3} - 3a^{2} + 2a - 1$; the result may be expressed as
+follows:
+\[
+2a^{3} - 3a^{2} + 2a - 1 - (a^{3} + 2a^{2} + 3a - 5);
+\]
+or, removing the parenthesis (§~38),
+\begin{align*}
+&2a^{3} - 3a^{2} + 2a - 1 - a^{3} - 2a^{2} - 3a + 5 \\
+&\quad= 2a^{3} - a^{3} - 3a^{2} - 2a^{2} + 2a - 3a - 1 + 5 \\
+&\quad= a^{3} - 5a^{2} - a + 4.
+\end{align*}
+
+This process is more easily performed by writing the subtrahend
+below the minuend, \emph{mentally} changing the sign of
+each term in the subtrahend, and adding.
+\[
+\begin{array}{r*{3}{cr}}
+2a^{3} &-& 3a^{2} &+& 2a &-& 1 \\
+ a^{3} &+& 2a^{2} &+& 3a &-& 5 \\
+\hline
+ a^{3} &-& 5a^{2} &-& a &+& 4 \\
+\end{array}
+\]
+
+By changing the sign of each term in the subtrahend,
+the coefficient of~$a^{3}$ will be $2 - 1$, or~$1$; the coefficient of~$a^{2}$
+will be $-3 - 2$, or~$-5$; the coefficient of~$a$ will be~$2 - 3$,
+or~$-1$; the last term will be $-1 + 5$, or~$4$.
+%% -----File: 056.png---Folio 50-------
+
+Again, suppose it is required to subtract $x^{5} - 2ax^{4} -
+3a^{2} x^{3} + 4a^{3} x^{2}$ from $4a^{3} x^{2} - 2a^{2} x^{3} - 5ax^{4}$. Here terms
+which are alike can be written in columns, as before:
+\[
+\begin{array}{r*{3}{cr}}
+ &-& 5ax^{4} &-& 2a^{2} x^{3} &+& 4a^{3} x^{2} \\
+ x^{5} &-& 2ax^{4} &-& 3a^{2} x^{3} &+& 4a^{3} x^{2} \\
+\hline
+-x^{5} &-& 3ax^{4} &+& a^{2} x^{3} & &
+\end{array}
+\]
+
+There is no term of~$x^{5}$ in the minuend, hence the coefficient
+of~$x^{5}$ in the result will be~$0 - 1$, or~$-1$; the coefficient of~$ax^{4}$
+will be $-5 + 2$, or~$-3$; the coefficient\DPtypo{,}{} of~$a^{2}x^{3}$ will be
+$-2 + 3$, or~$+1$; the coefficient of~$a^{3}x^{2}$ will be $-4 + 4$, or~$0$,
+and therefore the term~$a^{3}x^{2}$ will not appear in the result.
+
+\Exercise{19.}
+
+Subtract:
+
+\Item{1.} $a - 2b + 3c$ from $2a - 3b + 4c$.
+
+\Item{2.} $a - 3b - 5c$ from $3a - 5b + c$.
+
+\Item{3.} $2x - 4y + 6z$ from $4x - y - 2z$.
+
+\Item{4.} $5x - 11y - 3z$ from $6x - 7y + 2z$.
+
+\Item{5.} $ab - ac - bc + bd$ from $ab + ac + bc + bd$.
+
+\Item{6.} $3ab + 2ac - 3bc + bd$ from $5ab - ac + bc + bd$.
+
+\Item{7.} $2x^{3} - x^{2} - 5x + 3$ from $3x^{3} + 2x^{2} - 3x - 5$.
+
+\Item{8.} $7x^{2} - 5x + 1 - a$ from $x^{3} - x + 1 - a$.
+
+\Item{9.} $7b^{3} + 8c^{3} - 15abc$ from $9b^{3} + 3abc - 7c^{3}$.
+
+\Item{10.} $x^{4} + x - 5x^{3} + 5$ from $7 - 2x^{2} - 3x^{3} + x^{4}$.
+
+\Item{11.} $a^{3} + b^{3} + c^{3} - 3abc$ from $3abc + a^{3} - 2b^{3} - 3c^{3}$.
+
+\Item{12.} $2x^{4} - 5x^{2} + 7x - 3$ from $x^{4} + 2 - 2x^{3} - x^{2}$.
+
+\Item{13.} $1 - x^{5} - x + x^{4} - x^{3}$ from $x^{4} + 1 + x + x^{2}$.
+
+\Item{14.} $a^{3} - b^{3} + 3a^{2}b - 3ab^{2}$ from $a^{3} + b^{3} - a^{2}b - ab^{2}$.
+
+\Item{15.} $a^{2} b - ab^{2} - 3a^{3} b^{3} - b^{4}$ from $b^{4} - 5a^{3} b^{3} - 2ab^{2} + a^{2} b$.
+
+\Item{16.} $-x^{3} + 7x^{2} y - 2y^{3} + 3xy^{2}$ from $3x^{3} + 5y^{3} - xy^{2} + 4x^{2}y$.
+%% -----File: 057.png---Folio 51-------
+
+\Paragraph{84. Parentheses or Brackets.} We have for positive numbers
+(§§~37,~38):
+\begin{alignat*}{2}
+a + (b + c) &= a + b + c,\qquad & \therefore a + b + c &= a + (b + c); \\
+a + (b - c) &= a + b - c, & \therefore a + b - c &= a + (b - c); \\
+a - (b + c) &= a - b - c, & \therefore a - b - c &= a - (b + c); \\
+a - (b - c) &= a - b + c, & \therefore a - b + c &= a - (b - c).
+\end{alignat*}
+
+That is, a parenthesis preceded by~$+$ may be removed
+\emph{without changing the sign of any term within the parenthesis};
+and any number of terms may be enclosed within a parenthesis
+preceded by the sign~$+$, \emph{without changing the sign
+of any term}.
+
+A parenthesis preceded by the sign~$-$ may be removed,
+\emph{provided the sign of every term within the parenthesis is
+changed}, namely, $+$~to~$-$, and $-$~to~$+$; and any number
+of terms may be enclosed within a parenthesis preceded
+by the sign~$-$, \emph{provided the sign of every term enclosed is
+changed}.
+
+The same laws hold for \emph{negative numbers}.
+
+\Paragraph{85.} Expressions may occur having a parenthesis within
+a parenthesis. In such cases parentheses of different shapes
+are used, and the beginner when he meets with a branch
+of a parenthesis~$($, or bracket~$[$, or brace~$\{$, must look carefully
+for the other part, whatever may intervene; and all
+that is included between the two parts of each parenthesis
+must be treated as the sign before it directs, without regard
+to other parentheses. It is best to remove each parenthesis
+in succession, \emph{beginning with the innermost}.
+\begin{align*}
+a - &\bigl\{b - [c - (d - e) + f]\bigr\} \\
+ &= a - \bigl\{b - [c - d + e + f]\bigr\} \\
+ &= a - \bigl\{b - c + d - e - f\bigr\} \\
+ &= a - b + c - d + e + f.
+\end{align*}
+%% -----File: 058.png---Folio 52-------
+
+\Exercise{20.}
+
+Remove the brackets and collect the like terms:
+
+\Item{1.} $a - b - (b - c) - a + 2b$.
+
+\Item{2.} $x - [x - (a - b) + a - y]$.
+
+\Item{3.} $3x - \bigl\{2y - [-7c - 2x] + y\bigr\}$.
+
+\Item{4.} $5a - [7 - (2b + 5) - 2a]$.
+
+\Item{5.} $x - [2x + (3a - 2x) - 5a]$.
+
+\Item{6.} $x - [15y - (13z + 12x)]$.
+
+\Item{7.} $2a - b + [4c - (b + 2c)]$.
+
+\Item{8.} $5a - \bigl\{b + [3c - (2b - c)]\bigr\}$.
+
+\Item{9.} $7x - \bigl\{5y - [3z - (3x + z)]\bigr\}$.
+
+\Item{10.} $(a - b + c) - (b - a - c) + (a + b - 2c)$.
+
+\Item{11.} $3x - [-2y - (2y - 3x) + z] + [x - (y - 2z - x)]$.
+
+\Item{12.} $x - [2x + (x - 2y) + 2y] - 3x - \bigl\{4x - [(x + 2y) - y]\bigr\}$.
+
+\Item{13.} $x - [y + z - x - (x + y) - z] + (3 x - \Vinc{2y + z})$.
+
+\begin{Remark}[Note.]
+The expression $-\Vinc{2y + z}$ is equivalent to~$-(2y + z)$.
+\end{Remark}
+
+Consider \emph{all the factors} that precede $x$,~$y$, and~$z$, respectively,
+as the \emph{coefficients} of these letters, and collect in
+brackets the coefficients of each of these letters:
+
+\Item{14.} $ax + by + cz - ay + az - bx
+= (a - b)x - (a - b)y + (a + c)z$.
+
+\Item{15.} $ax + az + by - cz - ay + cx$.
+
+\Item{16.} $2ax - 3ay - 4by + 5cx - 6bz - 7cz$.
+
+\Item{17.} $az - bmy + 3 cz - anx - cny + acx$.
+
+\Item{18.} $mnx - x - mny - y + mnz + z$.
+%% -----File: 059.png---Folio 53-------
+
+
+\Chapter{V.}{Multiplication and Division.}
+
+\Section{Compound Integral Expressions.}
+
+\Paragraph{86. Multiplication. Polynomials by Monomials.}
+
+We have for positive numbers (§~39),
+\begin{align*}
+a(b + c) &= ab + ac, \\
+a(b - c) &= ab - ac.
+\end{align*}
+
+The same law holds for negative numbers.
+
+\Dictum{To multiply a polynomial by a monomial}, therefore,
+\begin{Theorem}
+Multiply each term of the polynomial by the monomial,
+and add the partial products.
+\end{Theorem}
+
+\Item{1.} Find the product of $ab + ac - bc$ and~$abc$.
+\[
+\begin{array}{rcr}
+ab + ac - bc && \\
+ abc && \\
+\hline
+a^{2}b^{2}c + a^{2}bc^{2} &-& ab^{2}c^{2}
+\end{array}
+\]
+
+\begin{Remark}[Note.]
+We multiply~$ab$, the first term of the multiplicand, by~$abc$,
+and work to the right.
+\end{Remark}
+
+\Exercise{21.}
+
+Find the product of:
+\begin{multicols}{2}
+\Item{1.} $x + 7$ and $x$.
+
+\Item{2.} $2x - 3y$ and $4x$.
+
+\Item{3.} $2x - 3y$ and $7y$.
+
+\Item{4.} $x - 2a$ and $2a$.
+
+\Item{5.} $-x + 3b$ and $-b$.
+
+\Item{6.} $2a^{2} - 3ab$ and $-3a$.
+
+\Item{7.} $2x^{2} + 3xz$ and $5z$.
+
+\Item{8.} $a^{2} - 5ab$ and $5ab$.
+%% -----File: 060.png---Folio 54-------
+
+\Item{9.} $x^{2} - 3 xy$ and $-y^{2}$.
+
+\Item{10.} $2 x^{3} - 3x^{2}$ and $2x^{2}$.
+
+\Item{11.} $x^{2} - 3y^{2}$ and $4y$.
+
+\Item{12.} $x^{2} - 3 y^{2}$ and $-x^{2}$.
+
+\Item{13.} $b^{3} - a^{2}b^{2}$ and $-a^{3}$.
+
+\Item{14.} $-a^{2}b^{2} - a^{3}$ and $-a^{2}$.
+
+\Item{15.} $2x^{3} - 3x^{2} + x$ and $2x^{2}$.
+
+\Item{16.} $a^{2} - 5ab - b^{2}$ and $5ab$.
+\end{multicols}
+
+\Item{17.} $a^{3} + 2a^{2}b + 2ab^{2}$ and $a^{2}$.
+
+\Item{18.} $a^{3} + 2a^{2}b + 2ab^{2}$ and $b^{3}$.
+
+\Item{19.} $4x^{2} - 6xy - 9y^{2}$ and $2x$.
+
+\Item{20.} $-x^{2} - 2xy + y^{2}$ and $-y$.
+
+\Item{21.} $-a^{3} - a^{2}b^{2} - b^{3}$ and $-a^{2}$.
+
+\Item{22.} $-x^{2} + 2xy - y^{2}$ and $-y^{2}$.
+
+\Item{23.} $3 a^{2}b^{2} - 4 ab^{3} + a^{3}b$ and $5 a^{2}b^{2}$.
+
+\Item{24.} $-ax^{2} + 3axy^{2} - ay^{4}$ and $-3ay^{2}$.
+
+\Item{25.} $x^{12} - x^{10}y^{3} - x^{3}y^{10}$ and $x^{3}y^{2}$.
+
+\Item{26.} $-2x^{3} + 3x^{2}y^{2} - 2xy^{3}$ and $-2x^{2}y^{3}$.
+
+\Item{27.} $a^{3}x^{2}y^{5} - a^{2}xy^{4} - ay^{3}$ and $a^{7}x^{3}y^{5}$.
+
+\Item{28.} $3a^{2}b^{2} - 2ab^{3} + 5a^{3}b$ and $5a^{2}b^{3}$.
+
+\Paragraph{87. Multiplication. Polynomials by Polynomials.}
+
+If we have $m + n +p$ to be multiplied by $a + b + c$, we
+may substitute~$M$ for the multiplier $a + b + c$. Then
+\[
+M(m + n + p) = Mm + Mn + Mp.
+\]
+
+If now we substitute $a + b + c$ for~$M$, we shall have
+\begin{align*}
+&(a + b + c) m + (a + b + c) n + (a + b + c) p \\
+&= am + bm + cm + an + bn + cn + ap + bp + cp\DPtypo{.}{} \\
+&= am + an + ap + bm + bn + bp + cm + cn + cp.
+\end{align*}
+
+\Dictum{To find the product of two polynomials}, therefore,
+\begin{Theorem}
+Multiply every term of the multiplicand by each term of
+the multiplier, and add the partial products.
+\end{Theorem}
+%% -----File: 061.png---Folio 55-------
+
+\Paragraph{88.} In multiplying polynomials, it is a convenient
+arrangement to write the multiplier under the multiplicand,
+and place like terms of the partial products in
+columns.
+
+\Item{1.} Multiply $2x - 3y$ by $5x - 4y$.
+\[
+\begin{array}{ccrrcr}
+2x &-& 3&y && \\
+5x &-& 4&y && \\
+\cline{1-4}
+10x^{2} &-& 15&xy & & \\
+ &-& 8&xy &+& 12y^{2} \\
+\hline
+10x^{2} &-& 23&xy &+& 12y^{2} \\
+\end{array}
+\]
+
+We multiply~$2x$, the first term of the multiplicand, by~$5x$,
+the first term of the multiplier, and obtain~$10x^{2}$, then~$-3y$,
+the second term of the multiplicand, by~$5x$, and obtain~$-15xy$.
+The first line of partial products is $10x^{2} - 15xy$.
+In multiplying by~$-4y$, we obtain for a second line of partial
+products $-8xy + 12y^{2}$, which is put one place to the
+right, so that the like terms $-15xy$~and~$-8xy$ may stand
+in the same column. We then add the coefficients of the
+like terms, and obtain the complete product in its simplest
+form.
+
+\Item{2.} Multiply $2a + 3 - 4a^{2}$ by $3 - 2a^{2} - 3a$.
+
+Arrange both multiplicand and multiplier according to
+the \emph{ascending} powers of~$a$.
+\[
+\begin{array}{r*{4}{cr}}
+3 &+& 2a &-& 4a^{2} & & && \\
+3 &-& 3a &-& 2a^{2} & & && \\
+\cline{1-5}
+9 &+& 6a &-&12a^{2} & & && \\
+ &-& 9a &-& 6a^{2} &+&12a^{3} & & \\
+ & & &-& 6a^{2} &-& 4a^{3} &+& 8a^{4} \\
+\hline
+9 &-& 3a &-&24a^{2} &+& 8a^{3} &+& 8a^{4} \\
+\end{array}
+\]
+%% -----File: 062.png---Folio 56-------
+
+\Item{3.} Multiply $3x + x^{4} - 2x^{2}$ by $x^{3} - 2 - x$.
+
+Arrange according to the \emph{descending} powers of~$x$.
+\[
+\begin{array}{r*{5}{cr}}
+x^{4} &-& 2x^{2} &+& \PadTo[l]{3x^4}{3x} && && && \\
+x^{3} &-& \PadTo[c]{2x^2}{x} &-& \PadTo[l]{3x^4}{2}&& && && \\
+\cline{1-5}
+x^{7} &-& 2x^{5} &+& 3x^{4} && && && \\
+ &-& x^{5} & & &+& 2x^{3} &-& 3x^{2} && \\
+ & & &-& 2x^{4} & & &+& 4x^{2} &-& 6x \\
+\hline
+x^{7} &-& 3x^{5} &+& x^{4} &+& 2x^{3} &+& x^{2} &-& 6x \\
+\end{array}
+\]
+
+\Item{4.} Multiply $a^{2} + b^{2} + c^{2} - ab - bc - ac$ by $a + b + c$.
+
+Arrange according to descending powers of~$a$.
+\[
+\begin{array}{l*{8}{cr}}
+a^{2} &-& ab &-& ac &+& b^{2} &-& bc &+& c^{2} \\
+a &+& b &+& c \\
+\cline{1-11}
+a^{3} &-& a^{2}b &-& a^{2}c &+& ab^{2} &-& abc &+& ac^{2} \\
+ &+& a^{2}b & & &-& ab^{2} &-& abc & & &+& b^{3} &-& b^{2}c + bc^{2} \\
+ & & &+& a^{2}c & & &-& abc &-& ac^{2} & & &+& b^{2}c - bc^{2} &+& c^{3} \\
+\hline
+a^{3} & & & & & & &-&3abc & & &+& b^{3} & & &+& c^{3} \\
+\end{array}
+\]
+
+\begin{Remark}[Note.]
+The pupil should observe that, with a view to bringing
+like terms of the partial products in columns, the terms of the multiplicand
+and multiplier are arranged in the \emph{same order}.
+\end{Remark}
+
+\ScreenBreak
+\Exercise{22.}
+
+Find the product of:
+\begin{multicols}{2}
+\Item{1.} $x + 7$ and $x + 6$.
+
+\Item{2.} $x - 7$ and $x + 6$.
+
+\Item{3.} $x + 7$ and $x - 6$.
+
+\Item{4.} $x - 7$ and $x - 6$.
+
+\Item{5.} $x + 8$ and $x - 5$.
+
+\Item{6.} $2x + 3$ and $2x + 3$.
+
+\Item{7.} $2x - 3$ and $2x - 3$.
+
+\Item{8.} $2x + 3$ and $2x - 3$.
+
+\Item{9.} $3x - 2$ and $2 - 3x$.
+
+\Item{10.} $5x - 3$ and $4x - 7$.
+
+\Item{11.} $a - 2b$ and $a + 3b$.
+
+\Item{12.} $a - 7b$ and $a - 5b$.
+%% -----File: 063.png---Folio 57-------
+
+\Item{13.} $5x - 3y$ and $5x - 3y$.
+
+\Item{14.} $x - b$ and $x - c$.
+
+\Item{15.} $2m - p$ and $4m - 3p$.
+
+\Item{16.} $a + b + c$ and $a - c$.
+
+\Item{17.} $a^{2} - ab + b^{2}$ and $a^{2} + b^{2}$.
+
+\Item{18.} $x^{3} - 3x^{2} + 7$ and $x^{2} - 3$.
+
+\Item{19.} $a^{2} + ab + b^{2}$ and $a - b$.
+
+\Item{20.} $a^{2} - ab + b^{2}$ and $a + b$.
+\end{multicols}
+
+\Item{21.} $x^{2} + 5x - 10$ and $2x^{2} + 3x - 4$.
+
+\Item{22.} $3x^{3} - 2x^{2} + x$ and $3x^{2} + 2x - 2$.
+
+\Item{23.} $x^{3} + 2x^{2}y + 3xy^{2}$ and $x^{2} - 2xy + y^{2}$.
+
+\Item{24.} $a^{2} - 3ab - b^{2}$ and $-a^{2} + ab + 2b^{2}$.
+
+\Item{25.} $3a^{2}b^{2} + 2 ab^{3} - 5a^{3}b$ and $5a^{2}b^{2} - ab^{3} - b^{4}$.
+
+\Item{26.} $a^{2} - 2ab + b^{2}$ and $a^{2} + 2ab + b^{2}$.
+
+\Item{27.} $ab + ac + cd$ and $ab - ac + cd$.
+
+\Item{28.} $3x^{2}y^{2} + xy^{3} - 2x^{3}y$ and $x^{2}y^{2} + xy^{3} - 3y^{4}$.
+
+\Item{29.} $x^{2} + 2xy - y^{2}$ and $x^{2} - 2xy + y^{2}$.
+
+\Item{30.} $3x^{2} + xy - y^{2}$ and $x^{2} - 2xy - 3y^{2}$.
+
+\Item{31.} $a^{2} - 2ab - b^{2}$ and $b^{2} - 2ab - a^{2}$.
+
+\Item{32.} $a^{2} + b^{2} + c^{2} - ac$ and $a^{2} - b^{2} - c^{2}$.
+
+\Item{33.} $a^{2} + 4abx - 4a^{2}b^{2}x^{2}$ and $a^{2} - 4abx + 4a^{2}b^{2}x^{2}$.
+
+\Item{34.} $3 a^{2} - 2abx + b^{2}x^{2}$ and $2a^{2} + 3abx - 2b^{2}x^{2}$.
+
+\Item{35.} $2x^{3}y + 4x^{2}y^{2} - 8xy^{3}$ and $2xy^{3} - 3x^{2}y^{2} + 5x^{3}y$.
+
+\Paragraph{89. Division. Polynomials by Monomials.}
+\begin{DPalign*}
+\lintertext{\indent Since}
+a(b + c - d) &= ab + ac - ad, \\
+\therefore \frac{ab + ac - ad}{a}
+ &= \frac{ab}{a} + \frac{ac}{a} - \frac{ad}{a} \\
+ &= b + c - d.
+\end{DPalign*}
+%% -----File: 064.png---Folio 58-------
+
+\Dictum{To divide a polynomial by a monomial}, therefore,
+\begin{Theorem}
+Divide each term of the dividend by the divisor, and add
+the partial quotients.
+\end{Theorem}
+
+Divide $3a^{4}b^{2}c - 9a^{3}bc^{2} - 6a^{2}c^{3}$ by $3a^{2}c$.
+\begin{align*}
+\frac{3a^{4}b^{2}c - 9a^{3}bc^{2} - 6a^{2}c^{3}}{3a^{2}c}
+ &= \frac{3a^{4}b^{2}c}{3a^{2}c}
+ - \frac{9a^{3}bc^{2}}{3a^{2}c}
+ - \frac{6a^{2}c^{3}}{3a^{2}c} \\
+ &= a^{2}b^{2} - 3abc - 2c^{2}.
+\end{align*}
+
+\Exercise{23.}
+
+Divide:
+\begin{multicols}{2}
+\Item{1.} $2a^{3} - a^{2}$ by $a$.
+
+\Item{2.} $42a^{5} - 6a^{2}$ by $6a$.
+
+\Item{3.} $21x^{4} + 3x^{2}$ by $3x^{2}$.
+
+\Item{4.} $35m^{4} - 7p^{2}$ by $7$.
+
+\Item{5.} $27x^{5} - 45x^{4}$ by $9x^{2}$.
+
+\Item{6.} $24x^{6} - 8x^{3}$ by $-8x^{3}$.
+
+\Item{7.} $34x^{3} - 51x^{2}$ by $17x$.
+
+\Item{8.} $5x^{5} - 10x^{3}$ by $-5x^{3}$.
+
+\Item{9.} $-3a^{2} - 6ac$ by $-3a$.
+
+\Item{10.} $-5x^{3} + x^{2}y$ by $-x^{2}$.
+
+\Item{11.} $2a^{5}x^{3} - 2a^{4}x^{2}$ by $2a^{4}x^{2}$.
+
+\Item{12.} $-x^{2}y - x^{2}y^{2}$ by $-xy$.
+
+\Item{13.} $9a - 12b + 6c$ by $-3$.
+
+\Item{14.} $a^{3}b^{2} - a^{2}b^{5} - a^{4}b^{2}$ by $a^{2}b$.
+
+\Item{15.} $3x^{3} - 6x^{2}y - 9xy^{2}$ by $3x$.
+
+\Item{16.} $x^{2}y^{2} - x^{3}y - xy^{3}$ by $xy$.
+
+\Item{17.} $a^{3} - a^{2}b - ab^{2}$ by $-a$.
+
+\Item{18.} $a^{2}b - ab + ab^{2}$ by $-ab$.
+
+\Item{19.} $xy - x^{2}y^{2} + x^{3}y^{3}$ by $-xy$.
+
+\Item{20.} $-x^{6} - 2x^{5} - x^{4}$ by $-x^{4}$.
+\end{multicols}
+
+\Item{21.} $a^{2}x - abx - acx$ by $ax$.
+
+\Item{22.} $3x^{5}y^{2} - 3x^{4}y^{3} - 3x^{2}y^{4}$ by $3x^{2}y^{2}$.
+
+\Item{23.} $a^{2}b^{2} - 2ab - 3ab^{3}$ by $ab$.
+
+\Item{24.} $3a^{3}c^{3} + 3a^{2}c - 3ac^{2}$ by $3ac$.
+%% -----File: 065.png---Folio 59-------
+
+\Paragraph{90. Division. Polynomials by Polynomials.}
+\[
+\begin{array}{l*{4}{cr}}
+\text{If the divisor (one factor)}
+ &=& & & a &+& b &+& c, \\
+\text{and the quotient (other factor)}
+ &=& & & n &+& p &+& q, \\
+\cline{5-9}
+ & & & &an &+& bn&+& cn \\
+\text{then the dividend (product)}
+ &=& \smash{\left\{\threelines\right.}\kern-4pt
+ &+&ap &+& bp&+& cp \\
+ & & &+&aq &+& bq&+& cq\rlap{.} \\
+\end{array}
+\]
+
+The first term of the dividend is~$an$; that is, the product
+of~$a$, the first term of the divisor, by~$n$, the first term of the
+quotient. The first term~$n$ of the quotient is therefore
+found by dividing~$an$, the first term of the dividend, by~$a$,
+the first term of the divisor.
+
+If the partial product formed by multiplying the entire
+divisor by~$n$ be subtracted from the dividend, the first term
+of the remainder~$ap$ is the product of~$a$, the first term of
+the divisor, by~$p$, the second term of the quotient; that is,
+the second term of the quotient is obtained by dividing the
+first term of the remainder by the first term of the divisor.
+In like manner, the third term of the quotient is obtained
+by dividing the first term of the new remainder by the first
+term of the divisor; and so on.
+
+\Dictum{To divide one polynomial by another}, therefore,
+\begin{Theorem}
+Arrange both the dividend and divisor in ascending or
+descending powers of some common letter.
+
+Divide the first term of the dividend by the first term of
+the divisor.
+
+Write the result as the first term of the quotient.
+
+Multiply all the terms of the divisor by the first term of
+the quotient.
+
+Subtract the product from the dividend.
+
+If there is a remainder, consider it as a new dividend,
+and proceed as before.
+\end{Theorem}
+%% -----File: 066.png---Folio 60-------
+
+\Paragraph{91.} It is of fundamental importance to arrange the dividend
+and divisor \emph{in the same order} with respect to a common
+letter, and \emph{to keep this order throughout the operation}.
+
+The beginner should study carefully the processes in the
+following examples:
+
+\Item{1.} Divide $x^{2} + 18x + 77$ by $x + 7$.
+\[
+\begin{array}{r*{2}{cr}|l}
+x^{2} &+& 18x &+& 77 & x + 7 \\
+\cline{6-6}
+x^{2} &+& 7x & & & x + 11 \\
+\cline{1-5}
+ & & 11x &+& \NoBar{77} \\
+ & & 11x &+& \NoBar{77} \\
+\cline{3-5}
+\end{array}
+\]
+
+\begin{Remark}[Note.]
+The pupil will notice that by this process we have in
+effect separated the dividend into two parts, $x^{2} + 7x$ and $11x + 77$,
+and divided each part by $x + 7$, and that the complete quotient is the
+sum of the partial quotients $x$~and~$11$. Thus,
+\begin{align*}
+x^{2} + 18x + 77
+ &= x^{2} + 7x + 11x + 77 = (x^{2} + 7x) + (11x + 77). \\
+\therefore \frac{x^{2} + 18x + 77}{x + 7}
+ &= \frac{x^{2} + 7x}{x + 7} + \frac{11x + 77}{x + 7} = x + 11.
+\end{align*}
+\end{Remark}
+
+\Item{2.} Divide $a^{2} - 2ab + b^{2}$ by $a - b$.
+\[
+\begin{array}{r*{2}{cr}|l}
+a^{2} &-& 2ab &+& b^{2} & a - b \\
+\cline{6-6}
+a^{2} &-& ab & & & a - b \\
+\cline{1-5}
+ &-& ab &+& \NoBar{b^{2}} \\
+ &-& ab &+& \NoBar{b^{2}} \\
+\cline{2-5}
+\end{array}
+\]
+
+\Item{3.} Divide $a^{4} - ab^{3} + b^{4} + 2a^{2}b^{2} - a^{3}b$ by $a^{2} + b^{2}$.
+
+Arrange according to the descending powers of~$a$.
+\[
+\begin{array}{r*{4}{cr}|l}
+a^{4} &-& a^{3}b &+& 2a^{2}b^{2} &-& ab^{3} &+& b^{4} & a^{2} + b^{2} \\
+\cline{10-10}
+a^{4} & & &+& a^{2}b^{2} & & & & & a^{2} - ab + b^{2} \\
+\cline{1-9}
+ &-& a^{3}b &+& a^{2}b^{2} &-& ab^{3} &+& \NoBar{b^{4}} \\
+ &-& a^{3}b & & &-& ab^{3} \\
+\cline{2-9}
+ & & &+& a^{2}b^{2} & & &+& \NoBar{b^{4}} \\
+ & & &+& a^{2}b^{2} & & &+& \NoBar{b^{4}} \\
+\cline{4-9}
+\end{array}
+\]
+%% -----File: 067.png---Folio 61-------
+
+\Item{4.} Divide $10a^{2}b^{2} - 20b^{4} - 17a^{3}b + 6a^{4} + ab^{3}$
+by $2a^{2} - 4b^{2} - 3ab$.
+
+Arrange according to descending powers of~$a$.
+\[
+\begin{array}{r*{4}{cr}|l}
+6a^{4} &-&17a^{3}b &+& 10a^{2}b^{2} &+& ab^{3} &-& 20b^{4} & 2a^{2} - 3ab - 4b^{2} \\
+\cline{10-10}
+6a^{4} &-& 9a^{3}b &-& 12a^{2}b^{2} & & & & & 3a^{2} - 4ab + 5b^{2} \\
+\cline{1-9}
+ &-& 8a^{3}b &+& 22a^{2}b^{2} &+& ab^{3} &-& \NoBar{20b^{4}} \\
+ &-& 8a^{3}b &+& 12a^{2}b^{2} &+&16ab^{3} \\
+\cline{2-9}
+ & & & & 10a^{2}b^{2} &-&15ab^{3} &-& \NoBar{20b^{4}} \\
+ & & & & 10a^{2}b^{2} &-&15ab^{3} &-& \NoBar{20b^{4}} \\
+\cline{5-9}
+\end{array}
+\]
+
+\Item{5.} Divide $5x^{3} - 3x^{4} - 4x^{2} + 1 + x$ by $1 + 2x - 3x^{2}$.
+
+Arrange according to ascending powers of~$x$.
+\[
+\begin{array}{r*{4}{cr}|l*{2}{cr}}
+1 &+& x &-& 4x^{2} &+& 5x^{3} &-& 3x^{4} & 1 &+& 2x &-& 3x^{2} \\
+\cline{10-14}
+1 &+& 2x &-& 3x^{2} & & & & & 1 &-& x &+& x^{2} \\
+\cline{1-9}
+ &-& x &-& x^{2} &+& 5x^{3} &-& \NoBar{3x^{4}} \\
+ &-& x &-& 2x^{2} &+& 3x^{3} \\
+\cline{2-9}
+ & & & & x^{2} &+& 2x^{3} &-& \NoBar{3x^{4}} \\
+ & & & & x^{2} &+& 2x^{3} &-& \NoBar{3x^{4}} \\
+\end{array}
+\]
+
+\Item{6.} Divide $a^{3} + b^{3} + c^{3} - 3abc$ by $a + b + c$.
+
+Arrange according to descending powers of~$a$.
+\[
+%[** TN: Re-formatted slightly from the original]
+\begin{array}{r*{4}{cr}clcr|l}
+a^{3} & & & & &-& 3abc & & &+& b^{3} &+& c^{3} & a + b + c \\
+\cline{14-14}
+a^{3} &+& a^{2}b &+& a^{2}c & & & & & & & & &
+\smash[b]{\begin{aligned}[t]
+ a^{2} &- ab - ac \\
+ &+b^{2} - bc + c^{2}
+\end{aligned}} \\
+\cline{1-13}
+ &-& a^{2}b &-& a^{2}c &-& 3abc & & &+& b^{3} &+& \NoBar{c^{3}} \\
+ &-& a^{2}b &-& ab^{2} &-& abc \\
+\cline{2-13}
+ &-& a^{2}c &+& ab^{2} &-& 2abc & & &+& b^{3} &+& \NoBar{c^{3}} \\
+ &-& a^{2}c & & &-& abc &-& ac^{2} \\
+\cline{2-13}
+ & & & & ab^{2} &-& abc &+& ac^{2} &+& b^{3} &+& \NoBar{c^{3}} \\
+ & & & & ab^{2} & & & & &+& b^{3} &+& \NoBar{b^{2}c} \\
+\cline{4-13}
+ & & & & &-& abc &+& ac^{2} &-& b^{2}c&+& \NoBar{c^{3}} \\
+ & & & & &-& abc & & &-& b^{2}c&-& \NoBar{bc^{2}} \\
+\cline{6-13}
+ & & & & & & & & ac^{2} &+& bc^{2}&+& \NoBar{c^{3}} \\
+ & & & & & & & & ac^{2} &+& bc^{2}&+& \NoBar{c^{3}} \\
+\cline{9-13}
+\end{array}
+\]
+%% -----File: 068.png---Folio 62-------
+
+\Exercise{24.}
+
+Divide:
+\begin{multicols}{2}
+\Item{1.} $x^{2} + 15x + 56$ by $x + 7$.
+
+\Item{2.} $x^{2} - 15x + 56$ by $x - 7$.
+
+\Item{3.} $x^{2} + x-56$ by $x - 7$.
+
+\Item{4.} $x^{2} - x-56$ by $x + 7$.
+
+\Item{5.} $2a^{2} + 11a + 5$ by $2a + 1$.
+
+\Item{6.} $6a^{2} - 7a-3$ by $2a - 3$.
+
+\Item{7.} $4a^{2} + 23a + 15$ by $4a + 3$.
+
+\Item{8.} $3a^{2} - 4a-4$ by $2 - a$.
+
+\Item{9.} $x^{4} + x^{2} + 1$ by $x^{2} + x + 1$.
+
+\Item{10.} $x^{8} + x^{4} + 1$ by $x^{4} - x^{2} + 1$.
+
+\Item{11.} $1 - a^{3}b^{3}$ by $1 - ab$.
+
+\Item{12.} $x^{3} - 8x-3$ by $x - 3$.
+\end{multicols}
+
+\Item{13.} $a^{2} - 2ab + b^{2} - c^{2}$ by $a - b - c$.
+
+\Item{14.} $a^{2} + 2ab + b^{2} - c^{2}$ by $a + b + c$.
+
+\Item{15.} $x^{2} - y^{2} + 2yz - z^{2}$ by $x - y + z$.
+
+\Item{16.} $c^{4} + 2c^{2} - c + 2$ by $c^{2} - c + 1$.
+
+\Item{17.} $x^{2} - 4y^{2} - 4yz - z^{2}$ by $x + 2y + z$.
+
+Arrange and divide:
+
+\Item{18.} $x^{3} - 6a^{3} + 11a^{2}x - 6ax^{2}$ by $x^{2} + 6a^{2} - 5ax$.
+
+\Item{19.} $a^{2} - 4b^{2} - 9c^{2} + 12bc$ by $a - 3c + 2b$.
+
+\Item{20.} $2a^{3} - 8a + a^{4} + 12-7a^{2}$ by $2 + a^{2} - 3a$.
+
+\Item{21.} $q^{4} + 6q^{3} + 4 + 12q + 13q^{2}$ by $3q + 2 + q^{2}$.
+
+\Item{22.} $27a^{3} - 8b^{3}$ by $3a - 2b$.
+
+Find the remainder when:
+
+\Item{23.} $a^{4} + 9a^{2} + 15-11a - 7a^{3}$ is divided by $a - 5$.
+
+\Item{24.} $7 - 8c^{2} + 5c^{3} + 8c$ is divided by $5c - 3$.
+
+\Item{25.} $3 + 11a^{3} + 30a^{4} - 82a^{2} - 5a$ is divided by $3a^{2} - 4 + 2a$.
+
+\Item{26.} $2x^{3} - 16x + 10-39x^{2} + 17x^{4}$ is divided by $2 - 5x^{2} - 4x$.
+%% -----File: 069.png---Folio 63-------
+
+\Exercise[Miscellaneous Examples.]{25.}
+
+\Item{1.} Add $2a^{2} - 3ac - 3ab$; $2b^{2} + 3ac + a^{2}$; $-a^{2} - 2b^{2} + 3ab$.
+
+\Item{2.} Subtract $3a^{4} - 2 a^{3}b + 4 a^{2}b^{2}$ from $4b^{4} - 2 ab^{3} + 4 a^{2}b^{2}$.
+
+\Item{3.} Simplify $x - y - \{z - x - (y - x + z)\}$.
+
+\Item{4.} Multiply $a^{2} + b^{2} + c^{2} - d^{2}$ by $a^{2} + b^{2} - c^{2} + d^{2}$.
+
+\Item{5.} Divide $10y^{6} + 2 - 12y^{5}$ by $1 + y^{2} - 2y$.
+
+\Item{6.} If $a = 1$, $b = 2$, and $c = -3$, find the value of
+ $a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$.
+
+\Item{7.} Simplify $x - (y - z) - \bigl\{4y + [2y - (z - x)]\bigr\}$.
+
+\Item{8.} Multiply $a^{2} + b^{2} + c^{2} - ab - ac - bc$ by $a + b + c$.
+
+\Item{9.} Divide $16y^{4} - 21x^{2}y^{2} + 21x^{3}y - 10x^{4}$ by $4y^{2} - 5x^{2} + 3xy$.
+
+\Item{10.} Add $-2a^{4} + 3a^{3}b - 4a^{2}b^{2}$; $2a^{3}b - 3a^{2}b^{2}$; $7a^{2}b^{2} + 2a^{4} - b^{4}$.
+
+\Item{11.} From $3x^{3} + 5x - 1$ take the sum of $x - 5 + 5x^{2}$ and
+$3 + 4x -3x^{2}$.
+
+\Item{12.} The minuend is $9c^{2} + 11c - 5$, and the remainder is
+$6c^{2} - 13c + 7$. What is the subtrahend?
+
+\Item{13.} Find the remainder when $a^{4} + 6b^{4}$ is divided by
+$a^{2} + 2ab + 2b^{2}$.
+
+\Item{14.} Multiply $2 - 5x^{2} - 4x$ by $5 + 2x - 3x^{2}$.
+
+\Item{15.} Divide $a^{6} + a^{5}x + a^{4}x^{2} - a^{3}x^{3} + x^{6}$ by $a^{2} + ax + x^{2}$.
+
+Bracket the coefficients of the different powers of~$x$:
+
+\Item{16.} $ax^{3} - cx + bx^{2} - bx^{3} + cx^{2} - x$.
+
+\Item{17.} $ax^{4} - 2x + bx^{4} - cx - ax^{3} + bx^{3}$.
+
+\Item{18.} $x^{3} - bx^{2} - cx + bx - cx^{2} + ax^{3}$.
+%% -----File: 070.png---Folio 64-------
+
+
+\Chapter[Special Rules in Multiplication and Division.]
+{VI.}{Multiplication and Division.}
+
+\Section{Special Rules.}
+
+\Paragraph{92. Special Rules of Multiplication.} Some results of multiplication
+are of so great utility in shortening algebraic
+work that they should be carefully noticed and remembered.
+The following are important:
+
+\Paragraph{93. Square of the Sum of Two Numbers.}
+\begin{align*}
+(a + b)^{2}
+ &= (a + b)(a + b) \\
+ &= a(a + b) + b(a + b) \\
+ &= a^{2} + ab + ab + b^{2} \\
+ &= a^{2} + 2ab + b^{2}.
+\end{align*}
+
+Since $a$~and~$b$ stand for any two numbers, we have
+\begin{Theorem}[\textsc{Rule 1.}] The square of the sum of two numbers is the
+sum of their squares plus twice their product.
+\end{Theorem}
+
+\Paragraph{94. Square of the Difference of Two Numbers.}
+\begin{align*}
+(a - b)^{2}
+ &= (a - b) (a - b) \\
+ &= a(a - b) - b(a - b) \\
+ &= a^{2} - ab - ab + b^{2} \\
+ &= a^{2} - 2ab + b^{2}.
+\end{align*}
+
+Hence we have
+\begin{Theorem}[\textsc{Rule 2.}] The square of the difference of two numbers is
+the sum of their squares minus twice their product.
+\end{Theorem}
+%% -----File: 071.png---Folio 65-------
+
+\Paragraph{95. Product of the Sum and Difference of Two Numbers.}
+\begin{align*}
+(a + b)(a - b)
+ &= a(a - b) + b(a - b) \\
+ &= a^{2} - ab + ab - b^{2} \\
+ &= a^{2} - b^{2}.
+\end{align*}
+
+Hence, we have
+\begin{Theorem}[\textsc{Rule 3.}] The product of the sum and difference of two
+numbers is the difference of their squares.
+\end{Theorem}
+
+If we put $2x$~for~$a$, and $3$~for~$b$, we have
+\begin{DPalign*}
+\lintertext{\indent Rule 1,} &(2x + 3)^{2} = 4x^{2} + 12x + 9. \\
+\lintertext{\indent Rule 2,} &(2x - 3)^{2} = 4x^{2} - 12x + 9. \\
+\lintertext{\indent Rule 3,} &(2x + 3)(2x - 3) = 4x^{2} - 9.
+\end{DPalign*}
+
+\Exercise{26.}
+
+Write by inspection the value of:
+\begin{multicols}{2}
+\Item{1.} $(m + n)^{2}$.
+
+\Item{2.} $(c - a)^{2}$.
+
+\Item{3.} $(a + 2c)^{2}$.
+
+\Item{4.} $(3a - 2b)^{2}$.
+
+\Item{5.} $(2a + 3b)^{2}$.
+
+\Item{6.} $(a - 3b)^{2}$.
+
+\Item{7.} $(2x - y)^{2}$.
+
+\Item{8.} $(y - 2x)^{2}$.
+
+\Item{9.} $(a + 5b)^{2}$.
+
+\Item{10.} $(2a - 5c)^{2}$.
+
+\Item{11.} $(x + y)(x - y)$.
+
+\Item{12.} $(4a - b)(4a + b)$.
+
+\Item{13.} $(2b - 3c)(2b + 3c)$.
+
+\Item{14.} $(x + 5b)(x + 5b)$.
+
+\Item{15.} $(y - 2z)(y - 2z)$.
+
+\Item{16.} $(y + 3z)(y - 3z)$.
+
+\Item{17.} $(2a - 3b)(2a + 3b)$.
+
+\Item{18.} $(2a - 3b)(2a - 3b)$.
+
+\Item{19.} $(2a + 3b)(2a + 3b)$.
+
+\Item{20.} $(5x + 3a)(5x - 3a)$.
+\end{multicols}
+%% -----File: 072.png---Folio 66-------
+
+\Paragraph{96. Product of Two Binomials of the Form $x + a$, $x + b$.}
+The product of two binomials which have the form $x + a$,
+$x + b$, should be carefully noticed and remembered.
+\begin{DPalign*}
+\lintertext{\Item{1.}}
+(x + 5)(x + 3)
+ &= x(x + 3) + 5(x + 3) \\
+ &= x^{2} + 3x + 5x + 15 \\
+ &= x^{2} + 8x + 15. \displaybreak[1] \\
+%
+\lintertext{\Item{2.}}
+(x - 5)(x - 3)
+ &= x(x - 3) - 5(x - 3) \\
+ &= x^{2} - 3x - 5x + 15 \\
+ &= x^{2} - 8x + 15. \displaybreak[1] \\
+%
+\lintertext{\Item{3.}}
+(x + 5)(x - 3)
+ &= x(x - 3) + 5(x - 3) \\
+ &= x^{2} - 3x + 5x - 15 \\
+ &= x^{2} + 2x - 15. \displaybreak[1] \\
+%
+\lintertext{\Item{4.}}
+(x - 5)(x + 3)
+ &= x(x + 3) - 5(x + 3) \\
+ &= x^{2} + 3x - 5x - 15 \\
+ &= x^{2} - 2x - 15.
+\end{DPalign*}
+
+\Item{1.} Each of these results has three terms.
+
+\Item{2.} The first term of each result is the product of the first
+terms of the binomials.
+
+\Item{3.} The last term of each result is the product of the
+second terms of the binomials.
+
+\Item{4.} The middle term of each result has for a coefficient
+the \emph{algebraic sum} of the second terms of the binomials.
+
+\Paragraph{97.} The intermediate step given above may be omitted,
+and the products written at once by \emph{inspection}. Thus,
+
+\Item{1.} Multiply $x + 8$ by $x + 7$.
+\begin{align*}
+&8 + 7 = 15,\quad 8 × 7 = 56. \\
+\therefore\ &(x + 8)(x + 7) = x^{2} + 15x + 56.
+\end{align*}
+%% -----File: 073.png---Folio 67-------
+
+\Item{2.} Multiply $x - 8$ by $x - 7$.
+\begin{align*}
+&(-8) + (-7) = -15,\quad (-8)(-7) = +56. \\
+\therefore\ &(x - 8)(x - 7) = x^{2} - 15x + 56.
+\end{align*}
+
+\Item{3.} Multiply $x - 7y$ by $x + 6y$.
+\begin{align*}
+&-7 + 6 = -1,\quad (-7) × 6y = -42y^{2}. \\
+\therefore\ &(x - 7y)(x + 6y) = x^{2} - xy - 42y^{2}.
+\end{align*}
+
+\Item{4.} Multiply $x + 6y$ by $x - 5y$.
+\begin{align*}
+&+6 - 5 = 1,\quad 6y × (-5y) = -30y^{2}. \\
+\DPtypo{}{\therefore}\ &(x + 6y)(x - 5y) = x^{2} + xy - 30y^{2}.
+\end{align*}
+
+\Exercise{27.}
+
+Write by inspection the product of:
+\begin{multicols}{2}
+\Item{1.} $(x + 7)(x + 4)$.
+
+\Item{2.} $(x - 3)(x + 7)$.
+
+\Item{3.} $(x - 2)(x - 4)$.
+
+\Item{4.} $(x - 6)(x - 10)$.
+
+\Item{5.} $(x + 7)(x - 4)$.
+
+\Item{6.} $(x + a)(x - 2a)$.
+
+\Item{7.} $(x + 3a)(x - a)$.
+
+\Item{8.} $(a + 3c)(a + 3c)$.
+
+\Item{9.} $(a + 2x)(a - 4x)$.
+
+\Item{10.} $(a - 3b)(a - 4b)$.
+
+\Item{11.} $(a^{2} - c)(a^{2} + 2c)$.
+
+\Item{12.} $(x - 17)(x - 3)$.
+
+\Item{13.} $(x + 6y)(x - 5y)$.
+
+\Item{14.} $(3 + 2x)(3 - x)$.
+
+\Item{15.} $(5 + 2x)(1 - 2x)$.
+
+\Item{16.} $(a - 2b)(a + 3b)$.
+
+\Item{17.} $(a^{2}b^{2} - x^{2})(a^{2}b^{2} - 5x^{2})$.
+
+\Item{18.} $(a^{3}b - ab^{3})(a^{3}b + 5ab^{3})$.
+
+\Item{19.} $(x^{2}y - xy^{2})(x^{2}y - 3xy^{2})$.
+
+\Item{20.} $(x^{2}y + xy^{2})(x^{2}y + xy^{2})$.
+
+\Item{21.} $(x + a)(x + b)$.
+
+\Item{22.} $(x + a)(x - b)$.
+
+\Item{23.} $(x - a)(x + b)$.
+
+\Item{24.} $(x - a)(x - b)$.
+
+\Item{25.} $(x + 2a)(x + 2b)$.
+
+\Item{26.} $(x - 2a)(x + 2b)$.
+
+\Item{27.} $(x + 2a)(x - 2b)$.
+
+\Item{28.} $(x - 2a)(x - 2b)$.
+
+\Item{29.} $(x - a)(x + 3a)$.
+
+\Item{30.} $(x - 2a)(x + 3a)$.
+\end{multicols}
+%% -----File: 074.png---Folio 68-------
+
+\Paragraph{98. Special Rules of Division.} Some results in division
+are so important in abridging algebraic work that they
+should be carefully noticed and remembered.
+
+\Paragraph{99. Difference of Two Squares.}
+
+Since $(a + b)(a - b) = a^{2} - b^{2}$,
+\[
+\therefore
+\frac{a^{2} - b^{2}}{a + b} = a - b;\quad\text{and}\quad
+\frac{a^{2} - b^{2}}{a - b} = a + b. \EqText{Hence\Add{,}}
+\]
+\begin{Theorem}[\textsc{Rule 1.}] The difference of the squares of two numbers is
+divisible by the sum, and by the difference, of the numbers.
+\end{Theorem}
+
+\ScreenBreak
+\Exercise{28.}
+
+Write by inspection the quotient of:
+\begin{multicols}{3}
+\Item{1.} $\dfrac{x^{2} - 4}{x - 2}$.
+
+\Item{2.} $\dfrac{x^{2} - 4}{x + 2}$.
+
+\Item{3.} $\dfrac{a^{2} - 9}{a - 3}$.
+
+\Item{4.} $\dfrac{a^{2} - 9}{a + 3}$.
+
+\Item{5.} $\dfrac{c^{2} - 25}{c - 5}$.
+
+\Item{6.} $\dfrac{c^{2} - 25}{c + 5}$.
+
+\Item{7.} $\dfrac{49x^{2} - y^{2}}{7x - y}$.
+
+\Item{8.} $\dfrac{49x^{2} - y^{2}}{7x + y}$.
+
+\Item{9.} $\dfrac{9b^{2} - 1}{3b - 1}$.
+
+\Item{10.} $\dfrac{9b^{2} - 1}{3b + 1}$.
+
+\Item{11.} $\dfrac{16x^{4} - 25a^{2}}{4x^{2} - 5a}$.
+
+\Item{12.} $\dfrac{16x^{4} - 25a^{2}}{4x^{2} + 5a}$.
+\end{multicols}
+
+\begin{multicols}{2}
+\Item{13.} $\dfrac{9x^{2} - 25y^{2}}{3x - 5y}$.
+
+\Item{14.} $\dfrac{a^{2}-(b - c)^{2}}{a-(b - c)}$.
+
+\Item{15.} $\dfrac{a^{2}-(b - c)^{2}}{a + (b - c)}$.
+
+\Item{16.} $\dfrac{a^{2}-(2b - c)^{2}}{a-(2b - c)}$.
+
+\Item{17.} $\dfrac{(5a - 7b)^{2} - 1}{(5a - 7b) - 1}$.
+
+\Item{18.} $\dfrac{(5a - 7b)^{2} - 1}{(5a - 7b) + 1}$.
+
+\Item{19.} $\dfrac{z^{2}-(x - y)^{2}}{z-(x - y)}$.
+
+\Item{20.} $\dfrac{z^{2}-(x - y)^{2}}{z + (x - y)}$.
+%% -----File: 075.png---Folio 69-------
+
+\Item{21.} $\dfrac{a^{2}-(2b - c)^{2}}{a + (2b - c)}$.
+
+\Item{22.} $\dfrac{(x + 3y)^{2} - z^{2}}{(x + 3y) - z}$.
+
+\Item{23.} $\dfrac{(x + 3y)^{2} - z^{2}}{x + 3y + z}$.
+
+\Item{24.} $\dfrac{(a + 2b)^{2} - 4c^{2}}{(a + 2b) - 2c}$.
+
+\Item{25.} $\dfrac{(a + 2b)^{2} - 4c^{2}}{(a + 2b) + 2c}$.
+
+\Item{26.} $\dfrac{1 - (3x - 2y)^{2}}{1 + (3x - 2y)}$.
+\end{multicols}
+
+\Paragraph{100. Difference of Two Cubes.} By performing the division
+we have
+\[
+\frac{a^{3} - b^{3}}{a - b} = a^{2} + ab + b^{2}. \EqText{Hence,}
+\]
+\begin{Theorem}[\textsc{Rule 2.}] The difference of the cubes of two numbers is
+divisible by the difference of the numbers, and the quotient
+is the sum of the squares of the numbers plus their product.
+\end{Theorem}
+
+\Exercise{29.}
+
+Write by inspection the quotient of:
+\begin{multicols}{3}
+\Item{1.} $\dfrac{1 - x^{3}}{1 - x}$.
+
+\Item{2.} $\dfrac{1 - 8a^{3}}{1 - 2a}$.
+
+\Item{3.} $\dfrac{1 - 27c^{3}}{1 - 2c}$.
+
+\Item{4.} $\dfrac{8a^{3} - b^{3}}{2a - b}$.
+
+\Item{5.} $\dfrac{64b^{3} - 27c^{3}}{4b - 3c}$.
+
+\Item{6.} $\dfrac{27x^{3} - 8y^{3}}{3x - 2y}$.
+
+\Item{7.} $\dfrac{x^{3}y^{3} - z^{3}}{xy - z}$.
+
+\Item{8.} $\dfrac{a^{3}b^{3} - 8}{ab - 2}$.
+
+\Item{9.} $\dfrac{125a^{3} - b^{3}}{5a - b}$.
+
+\Item{10.} $\dfrac{a^{3} - 8b^{3}}{a - 2b}$.
+
+\Item{11.} $\dfrac{a^{3} - 64}{a - 4}$.
+
+\Item{12.} $\dfrac{a^{9} - 27}{a^{3} - 3}$.
+
+\Item{13.} $\dfrac{a^{12} - x^{6}y^{6}}{a^{4} - x^{2}y^{2}}$.
+
+\Item{14.} $\dfrac{x^{15} - a^{9}b^{9}}{x^{5} - a^{3}b^{3}}$.
+
+\Item{15.} $\dfrac{27x^{3}y^{3} - z^{12}}{3xy - z^{4}}$.
+
+\Item{16.} $\dfrac{x^{3}y^{3}z^{3} - 1}{xyz - 1}$.
+
+\Item{17.} $\dfrac{8a^{3}b^{3}c^{3} - 27}{2abc - 3}$.
+
+\Item{18.} $\dfrac{1 - 64x^{3}y^{3}z^{3}}{1 - 4xyz}$.
+\end{multicols}
+%% -----File: 076.png---Folio 70-------
+
+\Paragraph{101. Sum of Two Cubes.} By performing the division,
+we find that
+\[
+\frac{a^{3} + b^{3}}{a + b} = a^{2} - ab + b^{2}. \EqText{Hence,}
+\]
+\begin{Theorem}[\textsc{Rule 3.}] The sum of the cubes of two numbers is divisible
+by the sum of the numbers, and the quotient is the sum
+of the squares of the numbers minus their product.
+\end{Theorem}
+
+\Exercise{30.}
+
+Write by inspection the quotient of:
+\begin{multicols}{3}
+\Item{1.} $\dfrac{1 + x^{3}}{1 + x}$.
+
+\Item{2.} $\dfrac{1 + 8a^{3}}{1 + 2a}$.
+
+\Item{3.} $\dfrac{1 + 27c^{3}}{1 + 3c}$.
+
+\Item{4.} $\dfrac{8a^{3} + b^{3}}{2a + b}$.
+
+\Item{5.} $\dfrac{64b^{3} + 27c^{3}}{4b + 3c}$.
+
+\Item{6.} $\dfrac{27x^{3} + 8y^{3}}{3x + 2y}$.
+
+\Item{7.} $\dfrac{8x^{3} + 125y^{3}}{2x + 5y}$.
+
+\Item{8.} $\dfrac{x^{3}y^{3} + z^{3}}{xy + z}$.
+
+\Item{9.} $\dfrac{a^{3}b^{3} + 8}{ab + 2}$.
+
+\Item{10.} $\dfrac{125a^{3} + b^{3}}{5a + b}$.
+
+\Item{11.} $\dfrac{a^{3} + 8b^{3}}{a + 2b}$.
+
+\Item{12.} $\dfrac{a^{6} + 64}{a^{2} + 4}$.
+
+\Item{13.} $\dfrac{a^{9} + 27}{a^{3} + 3}$.
+
+\Item{14.} $\dfrac{8a^{6} + b^{3}}{2a^{2} + b}$.
+
+\Item{15.} $\dfrac{a^{12} + x^{6}y^{6}}{a^{4} + x^{2}y^{2}}$.
+
+\Item{16.} $\dfrac{x^{15} + a^{9}b^{9}}{x^{5} + a^{3}b^{3}}$.
+
+\Item{17.} $\dfrac{27x^{3}y^{3} + z^{12}}{3xy + z^{4}}$.
+
+\Item{18.} $\dfrac{x^{3}y^{3}z^{3} + 1}{xyz + 1}$.
+
+\Item{19.} $\dfrac{8a^{3}b^{3}c^{3} + 27}{2abc + 3}$.
+
+\Item{20.} $\dfrac{1 + 64x^{3}y^{3}z^{3}}{1 + 4xyz}$.
+
+\Item{21.} $\dfrac{1 + 27a^{6}b^{3}c^{3}}{1 + 3a^{2}bc}$.
+\end{multicols}
+
+Find by division the quotient of:
+\begin{multicols}{3}
+\Item{22.} $\dfrac{x^{4} - y^{4}}{x - y}$.
+
+\Item{23.} $\dfrac{x^{4} - y^{4}}{x + y}$.
+
+\Item{24.} $\dfrac{x^{5} - y^{5}}{x - y}$.
+
+\Item{25.} $\dfrac{x^{5} + y^{5}}{x + y}$.
+
+\Item{26.} $\dfrac{x^{6} - y^{6}}{x - y}$.
+
+\Item{27.} $\dfrac{x^{6} - y^{6}}{x + y}$.
+\end{multicols}
+%% -----File: 077.png---Folio 71-------
+
+
+\Chapter{VII.}{Factors.}
+
+\Paragraph{102. Rational Expressions.} An expression is \emph{rational} when
+none of its terms contain square or other roots.
+
+\Paragraph{103. Factors of Rational and Integral Expressions.} By factors
+of a given integral number in arithmetic we mean
+integral numbers that will divide the given number without
+remainder. Likewise by factors of a rational and integral
+expression in algebra we mean rational and integral
+expressions that will divide the given expression without
+remainder.
+
+\Paragraph{104. Factors of Monomials.} The factors of a monomial
+may be found by inspection. Thus, the factors of~$21a^{2}b$
+are $3$, $7$, $a$, $a$, and~$b$.
+
+\Paragraph{105. Factors of Polynomials.} The form of a polynomial
+that can be resolved into factors often suggests the process
+of finding the factors.
+
+
+\Section{Case I.}
+
+\Paragraph{106. When all the terms have a common factor.}
+
+\Item{1.} Resolve into factors $3a^{2} - 6ab$.
+
+Since $3a$~is seen to be a factor of each term, we have
+\begin{align*}
+\frac{3a^{2} - 6ab}{3a} &= \frac{3a^{2}}{3a} - \frac{6ab}{3a} = a - 2b. \\
+\therefore\ 3a^{2} - 6ab &= 3a(a - 2b).
+\end{align*}
+
+Hence, the required factors are $3a$~and~$a - 2b$.
+%% -----File: 078.png---Folio 72-------
+
+\Item{2.} Resolve into factors $4x^{3} + 12x^{2} - 8x$.
+
+Since $4x$ is seen to be a factor of each term, we have
+\begin{align*}
+\frac{4x^{3} + 12x^{2} - 8x}{4x}
+ &= \frac{4x^{3}}{4x} + \frac{12x^{2}}{4x} - \frac{8x}{4x} \\
+ &= x^{2} + 3x - 2. \\
+\therefore\
+4x^{3} + 12x^{2} - 8x &= 4x(x^{2} + 3x - 2).
+\end{align*}
+
+Hence the required factors are $4x$~and~$x^{2} + 3x - 2$.
+
+\Exercise{31.}
+
+Resolve into two factors:
+\begin{multicols}{2}
+\Item{1.} $2x^{2} - 4x$.
+
+\Item{2.} $3a^{3} - 6a$.
+
+\Item{3.} $5a^{2}b^{2} - 10a^{3}b^{3}$.
+
+\Item{4.} $3x^{2}y + 4xy^{2}$.
+
+\Item{5.} $8a^{3}b^{2} + 4a^{2}b^{3}$.
+
+\Item{6.} $3a^{4} - 12a^{2} - 6a^{3}$.
+
+\Item{7.} $4x^{2} - 8x^{4} - 12x^{5}$.
+
+\Item{8.} $5 - 10x^{2}y^{2} + 15x^{2}y$.
+
+\Item{9.} $7a^{2} + 14a - 21a^{3}$.
+
+\Item{10.} $3x^{3}y^{3} - 6x^{4}y^{4} - 9x^{2}y^{2}$.
+\end{multicols}
+
+\Section{Case II.}
+
+\Paragraph{107. When the terms can be grouped so as to show a common
+factor in each group.}
+
+\Item{1.} Resolve into factors $ac + ad + bc + bd$.
+\begin{align*}
+ac + ad + bc + bd
+ &= (ac + ad) + (bc + bd)
+ \Tag{(1)} \\
+ &= a(c + d) + b(c + d)
+ \Tag{(2)} \\
+ &= (a + b)(c + d).
+ \Tag{(3)}
+\end{align*}
+
+\begin{Remark}[Note.] The first two terms of $ac + ad + bc + bd$ are seen to
+have the common factor~$a$, and the last two terms, the common factor~$b$.
+Hence we bracket the first two terms and also the last two
+terms. Then we take out the factor~$a$ from $(ac + ad)$ and $b$~from
+$(bc + bd)$, and get equation~(2). Since one factor is seen in~(2) to be
+$c + d$, dividing by $c + d$, we obtain the other factor, $a + b$.
+\end{Remark}
+%% -----File: 079.png---Folio 73-------
+
+\Item{2.} Find the factors of $ac + ad - bc - bd$.
+\begin{align*}
+ac + ad - bc - bd
+ &= (ac + ad) - (bc + bd) \\
+ &= a(c + d) - b(c + d) \\
+ &= (a - b)(c + d).
+\end{align*}
+
+\begin{Remark}[Note.] Here the last two terms, $-bc - bd$, being put within a
+parenthesis preceded by the sign~$-$, have their signs changed to~$+$.
+\end{Remark}
+
+\Item{3.} Resolve into factors $2x^{3} - 3x^{2} - 4x + 6$.
+\begin{align*}
+2x^{3} - 3x^{2} - 4x + 6
+ &= (2x^{3} - 3x^{2}) - (4x - 6) \\
+ &= x^{2}(2x - 3) - 2(2x - 3) \\
+ &= (x^{2} - 2)(2x - 3).
+\end{align*}
+
+\Item{4.} Resolve into factors $x^{3} + x^{2} - ax - a$.
+\begin{align*}
+x^{3} + x^{2} - ax - a
+ &= (x^{3} + x^{2}) - (ax + a) \\
+ &= x^{2}(x + 1) - a(x + 1) \\
+ &= (x^{2} - a)(x + 1).
+\end{align*}
+
+\Item{5.} Resolve into factors $x^{3} + 3ax^{2} + x + 3a$.
+\begin{align*}
+x^{3} + 3ax^{2} + x + 3a
+ &= (x^{3} + 3ax^{2}) + (x + 3a) \\
+ &= x^{2}(x + 3a) + 1(x + 3a) \\
+ &= (x^{2} + 1)(x + 3a).
+\end{align*}
+
+\Exercise{32.}
+
+Resolve into factors:
+\begin{multicols}{2}
+\Item{1.} $x^{3} + x^{2} + x + 1$.
+
+\Item{2.} $x^{3} - x^{2} + x - 1$.
+
+\Item{3.} $x^{2} + xy + xz + yz$.
+
+\Item{4.} $ax - bx - ay + by$.
+
+\Item{5.} $a^{2} - ac + ab - bc$.
+
+\Item{6.} $x^{2} - bx + 3x - 3b$.
+
+\Item{7.} $2x^{3} - x^{2} + 4x - 2$.
+
+\Item{8.} $a^{2} - 3a - ab + 3b$.
+
+\Item{9.} $6a^{2} + 2ab - 3ac - bc$.
+
+\Item{10.} $abxy + cxy + abc + c^{2}$.
+
+\Item{11.} $ax - ay - bx + cy - cx + by$.
+
+\Item{12.} $(a - b)^{2} - 2c(a - b)$.
+\end{multicols}
+%% -----File: 080.png---Folio 74-------
+
+
+\Section{Case III.}
+
+\Paragraph{108. When a binomial is the difference of two squares.}
+
+\Item{1.} Resolve into factors $x^{2} - y^{2}$.
+\begin{DPgather*}
+\lintertext{\indent Since,}
+(x + y)(x - y) = x^{2} - y^{2},
+\end{DPgather*}
+the factors of $x^{2} - y^{2}$ are $x + y$ and~$x - y$.
+
+\Dictum{To find the factors of a binomial when it is the difference of
+two squares}, therefore,
+\begin{Theorem}
+Take the square root of the first term and the square root
+of the second term.
+
+The sum of these roots will form the first factor;
+
+The difference of these roots will form the second factor.
+\end{Theorem}
+
+\Paragraph{109.} The \Defn{square root} of a \emph{monomial} is one of the \textbf{two equal
+factors} of the monomial.
+
+Thus $9x^{8}y^{2} = 3x^{4}y × 3x^{4}y$; and $3x^{4}y$ is the square root
+of~$9x^{8}y^{2}$.
+
+The rule for extracting the square root of a \emph{monomial,
+when a perfect square}, is as follows:
+\begin{Theorem}
+Extract the square root of the coefficient, and divide the
+index of each letter by~$2$.
+\end{Theorem}
+
+\Exercise{33.}
+
+Resolve into factors:
+\begin{multicols}{3}
+\Item{1.} $4 - x^{2}$.
+
+\Item{2.} $9 - x^{2}$.
+
+\Item{3.} $9a^{2} - x^{2}$.
+
+\Item{4.} $25 - x^{2}$.
+
+\Item{5.} $25x^{2} - a^{2}$.
+
+\Item{6.} $16a^{4} - 121$.
+
+\Item{7.} $121a^{4} - 16$.
+
+\Item{8.} $4a^{2}b^{2} - c^{2}d^{2}$.
+
+\Item{9.} $1 - x^{2}y^{2}$.
+
+\Item{10.} $81x^{2}y^{2} - 1$.
+
+\Item{11.} $49a^{2}b^{2} - 4$.
+
+\Item{12.} $25a^{4}b^{4} - 9$.
+\end{multicols}
+%% -----File: 081.png---Folio 75-------
+
+\begin{multicols}{2}
+\Item{13.} $9a^{8}b^{6} - 16x^{10}$.
+
+\Item{14.} $144x^{2}y^{2} - 1$.
+
+\Item{15.} $100x^{6}y^{2}z^{4} - 1$.
+
+\Item{16.} $1 - 121a^{4}b^{8}c^{12}$.
+
+\Item{17.} $25a^{2} - 64x^{6}y^{6}$.
+
+\Item{18.} $16x^{16}-25y^{18}$.
+\end{multicols}
+
+Find, by resolving into factors, the value of:
+\begin{multicols}{2}
+\Item{19.} $(375)^{2} - (225)^{2}$.
+
+\Item{20.} $(579)^{2} - (559)^{2}$.
+
+\Item{21.} $(873)^{2} - (173)^{2}$.
+
+\Item{22.} $(101)^{2} - (99)^{2}$.
+
+\Item{23.} $(7244)^{2} - (7242)^{2}$.
+
+\Item{24.} $(3781)^{2} - (219)^{2}$.
+\end{multicols}
+
+\Paragraph{110.} If the squares are compound expressions, the same
+method may be employed.
+
+\Item{1.} Resolve into factors $(x + 3y)^{2} - 16a^{2}$.
+\begin{Soln}
+The square root of the first term is~$x + 3y$.
+
+The square root of the second term is~$4a$.
+
+The sum of these roots is~$x + 3y - 4a$.
+
+The difference of these roots is $x + 3y - 4a$.
+
+Therefore $(x + 3y)^{2} - 16a^{2} = (x + 3y + 4a)(x + 3y - 4a)$.
+\end{Soln}
+
+\Item{2.} Resolve into factors $a^{2} - (3b - 5c)^{2}$.
+\begin{Soln}
+The square roots of the terms are $a$~and~$(3b - 5c)$.
+
+The sum of these roots is $a + (3b - 5c)$, or $a + 3b - 5c$.
+
+The difference of these roots is $a - (3b - 5c)$, or $a - 3b + 5c$.
+
+Therefore $a^{2} - (3b - 5c)^{2} = (a + 3b - 5c)(a - 3b + 5c)$.
+\end{Soln}
+
+\Exercise{34.}
+
+\DPtypo{}{Resolve into factors:}
+\begin{multicols}{2}
+\Item{1.} $(x + y)^{2} - z^{2}$.
+
+\Item{2.} $(x - y)^{2} - z^{2}$.
+
+\Item{3.} $z^{2} - (x + y)^{2}$.
+
+\Item{4.} $z^{2} - (x - y)^{2}$.
+
+\Item{5.} $(x + y)^{2} - 4z^{2}$.
+
+\Item{6.} $4z^{2} - (x - y)^{2}$.
+
+\Item{7.} $(a + 2b)^{2} - c^{2}$.
+
+\Item{8.} $(a - 2b)^{2} - c^{2}$.
+
+\Item{9.} $c^{2} - (a - 2b)^{2}$.
+
+\Item{10.} $(2a + 5c)^{2} - 1$.
+%% -----File: 082.png---Folio 76-------
+
+\Item{11.} $1 - (2a - 5c)^{2}$.
+
+\Item{12.} $(a + 3b)^{2} - 16c^{2}$.
+
+\Item{13.} $(a - 5b)^{2} - 9c^{2}$.
+
+\Item{14.} $16c^{2} - (a - 5b)^{2}$.
+
+\Item{15.} $4a^{2} - (x + y)^{2}$.
+
+\Item{16.} $b^{2} - (a - 2x)^{2}$.
+
+\Item{17.} $4z^{2} - (x + 3y)^{2}$.
+
+\Item{18.} $9 - (3a - 7b)^{2}$.
+
+\Item{19.} $16a^{2} - (2b + 5c)^{2}$.
+
+\Item{20.} $25c^{2} - (3a - 2x)^{2}$.
+
+\Item{21.} $9a^{2} - (3b - 5c)^{2}$.
+
+\Item{22.} $16y^{2} - (a - 3c)^{2}$.
+
+\Item{23.} $49m^{2} - (p + 2q)^{2}$.
+
+\Item{24.} $36n^{2} - (d - 2c)^{2}$.
+
+\Item{25.} $(x + y)^{2} - (a + b)^{2}$.
+
+\Item{26.} $(x - y)^{2} - (a - b)^{2}$.
+
+\Item{27.} $(2x + 3)^{2} - (2a + b)^{2}$.
+
+\Item{28.} $(b - c)^{2} - (a - 2x)^{2}$.
+
+\Item{29.} $(3x - y)^{2} - (2a - b)^{2}$.
+
+\Item{30.} $(x - 3y)^{2} - (a + 2b)^{2}$.
+
+\Item{31.} $(x + 2y)^{2} - (a + 3b)^{2}$.
+
+\Item{32.} $(x + y)^{2} - (a - z)^{2}$.
+\end{multicols}
+
+
+\Section{Case IV.}
+
+\Paragraph{111. When a binomial is the difference of two cubes.}
+\begin{DPgather*}
+\lintertext{\indent Since}
+\frac{a^{3} - b^{3}}{a - b} = a^{2} + ab + b^{2},
+\end{DPgather*}
+the factors of $a^{3} - b^{3}$ are $a - b$ and $a^{2} + ab + b^{2}$.
+
+In like manner we can resolve into factors any expression
+which can be written as the difference of two cubes.
+
+\Paragraph{112.} The rule for extracting the cube root of a \emph{monomial,
+when the monomial is a perfect cube}, is,
+\begin{Theorem}
+Extract the cube root of the coefficient, and divide the index
+of each letter by~$3$.
+\end{Theorem}
+
+\ScreenBreak
+\Item{1.} Resolve into factors $8a^{3} - 27b^{6}$.
+
+Since $8a^{3} = (2a)^{3}$, and $27b^{6} = (3b^{2})^{3}$, we can write
+$8a^{3} - 27b^{6}$ as $(2a)^{3} - (3b^{2})^{3}$.
+%% -----File: 083.png---Folio 77-------
+\begin{DPgather*}
+\lintertext{\indent Since}
+a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}),
+\end{DPgather*}
+we have, by putting $2a$ for~$a$ and $3b^{2}$ for~$b$,
+\begin{align*}
+(2a)^{3} - (3b^{2})^{3}
+ &= (2a - 3b^{2})[(2a)^{2} + 2a × 3b^{2} + (3b^{2})^{2}] \\
+ &= (2a - 3b^{2})(4a^{2} + 6ab^{2} + 9b^{4}).
+\end{align*}
+
+\Item{2.} Resolve into factors $64x^{3} - 1$.
+\begin{align*}
+64x^{3} - 1
+ &= (4x)^{3} - 1 \\
+ &= (4x - 1)[(4x)^{2} + 4x +1] \\
+ &= (4x - 1)(16x^{2} + 4x + 1).
+\end{align*}
+
+\Dictum{To find the factors of a binomial when it is the difference of
+two cubes}, therefore,
+\begin{Theorem}
+Take the difference of the cube roots of the terms for one
+factor, and the sum of the squares of the cube roots of the
+terms plus their product for the other factor.
+\end{Theorem}
+
+\ScreenBreak
+\Exercise{35.}
+
+Resolve into factors:
+\begin{multicols}{3}
+\Item{1.} $8x^{3} - y^{3}$.
+
+\Item{2.} $x^{3} - 1$.
+
+\Item{3.} $x^{3}y^{3} - z^{3}$.
+
+\Item{4.} $x^{3} - 64$.
+
+\Item{5.} $125a^{3} - b^{3}$.
+
+\Item{6.} $a^{3} - 343$.
+
+\Item{7.} $a^{3}b^{3} - 27c^{3}$.
+
+\Item{8.} $x^{3}y^{3}z^{3} - 8$.
+
+\Item{9.} $8a^{3}b^{3} - 27y^{6}$.
+
+\Item{10.} $64x^{3} - y^{9}$.
+
+\Item{11.} $27a^{3} - 64c^{6}$.
+
+\Item{12.} $x^{3}y^{3} - 216z^{3}$.
+
+\Item{13.} $64x^{3} - 729y^{3}$.
+
+\Item{14.} $27a^{3} - 512c^{3}$.
+
+\Item{15.} $8x^{6} - 125y^{3}$.
+
+\Item{16.} $64x^{12} - 27y^{15}$.
+
+\Item{17.} $216 - 8a^{3}$.
+
+\Item{18.} $343 - 27y^{3}$.
+\end{multicols}
+
+
+\Section{Case V.}
+
+\Paragraph{113. When a binomial is the sum of two cubes.}
+\begin{DPgather*}
+\lintertext{\indent Since}
+\frac{a^{3} + b^{3}}{a + b} = a^{2} - ab + b^{2},
+\end{DPgather*}
+the factors of $a^{3} + b^{3}$ are $a + b$ and $a^{2} - ab + b^{2}$.
+%% -----File: 084.png---Folio 78-------
+
+In like manner we can resolve into factors any expression
+which can be written as the sum of two cubes.
+
+\Item{1.} Resolve into factors $8x^{3} + 27y^{3}$.
+
+Since by §~112, $8x^{3} = (2x)^{3}$ and $27y^{3} = (3y)^{3}$, we can
+write $8x^{3} + 27y^{3}$ as $(2x)^{3} + (3y)^{3}$.
+
+\begin{DPgather*}
+\lintertext{\indent Since}
+a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2}),
+\end{DPgather*}
+we have, by putting $2x$ for~$a$, and $3y$ for~$b$,
+\begin{align*}
+(2x)^{3} + (3y)^{3}
+ &= (2x + 3y)[(2x)^{2} - 2x × 3y + (3y)^{2}] \\
+ &= (2x + 3y)(4x^{2} - 6xy + 9y^{2}).
+\end{align*}
+
+\Item{2.} Resolve into factors $125a^{3} + 64x^{6}$\Add{.}
+\begin{gather*}
+125a^{3} = (5a)^{3},\quad 64x^{6} = (4x^{2})^{3}; \\
+\begin{aligned}
+\therefore 125a^{3} + 64x^{6}
+ &= (5a + 4x^{2})[(5a)^{2} - 5a × 4x^{2} + (4x^{2})^{2}] \\
+ &= (5a + 4x^{2})(25a^{2} - 20ax^{2} + 16x^{4})
+\end{aligned}
+\end{gather*}
+
+\Dictum{To find the factors of a binomial when it is the sum of two
+cubes}, therefore,
+\begin{Theorem}
+Take the sum of the cube roots of the terms for one factor,
+and the sum of the squares of the cube roots of the terms
+minus their product for the other factor.
+\end{Theorem}
+
+\PrintBreak
+\Exercise{36.}
+
+Resolve into factors:
+\begin{multicols}{3}
+\Item{1.} $x^{3} + 1$.
+
+\Item{2.} $8x^{3} + y^{3}$.
+
+\Item{3.} $x^{3} + 125$.
+
+\Item{4.} $64a^{3} + 27$.
+
+\Item{5.} $x^{3}y^{3} + z^{3}$.
+
+\Item{6.} $a^{3} + 64$.
+
+\Item{7.} $8a^{6} + b^{3}$.
+
+\Item{8.} $x^{3} + 343$.
+
+\Item{9.} $8 + x^{3}y^{3}z^{3}$.
+
+\Item{10.} $y^{9} + 64x^{3}$.
+
+\Item{11.} $a^{3}b^{3} + 27x^{3}$.
+
+\Item{12.} $8y^{3}z^{3} + x^{6}$.
+
+\Item{13.} $y^{9} + 64x^{6}$.
+
+\Item{14.} $64a^{12} + x^{15}$.
+
+\Item{15.} $27x^{15} + 8a^{6}$.
+
+\Item{16.} $27x^{9} + 512$.
+
+\Item{17.} $343 + 64x^{3}$.
+
+\Item{18.} $125 + 27y^{3}$.
+\end{multicols}
+%% -----File: 085.png---Folio 79-------
+
+
+\Section{Case VI.}
+
+\Paragraph{114. When a trinomial is a perfect square.}
+\begin{DPgather*}
+\lintertext{\indent Since}
+(x + y)^{2} = x^{2} + 2xy + y^{2},
+\end{DPgather*}
+the factors of $x^{2} + 2xy + y^{2}$ are $x + y$ and $x + y$.
+
+\begin{DPgather*}
+\lintertext{\indent Since}
+(x - y)^{2} = x^{2} - 2xy + y^{2},
+\end{DPgather*}
+the factors of $x^{2} - 2xy + y^{2}$ are $x - y$ and $x - y$.
+
+Therefore, a trinomial is a perfect square, if its first and
+last terms are perfect squares and positive, and its middle
+term is twice the product of their square roots.
+
+\Dictum{To find the factors of a trinomial when it is a perfect square},
+therefore,
+\begin{Theorem}
+Extract the square roots of the first and last terms, and
+connect these square roots by the sign of the middle term.
+\end{Theorem}
+
+Thus, if we wish to find the square root of
+\[
+16a^{2} - 24ab + 9b^{2},
+\]
+we take the square roots of $16a^{2}$ and $9b^{2}$, which are $4a$
+and~$3b$, respectively, and connect these square roots by
+the minus sign, the sign of the middle term. The square
+root is therefore
+\[
+4a - 3b.
+\]
+
+Again, if we wish to find the square root of
+\[
+25x^{2} + 40xy + 16y^{2},
+\]
+we take the square roots of $25x^{2}$ and $16y^{2}$ and connect these
+roots by the plus sign, the sign of the middle term. The
+square root is therefore
+\[
+5x + 4y.
+\]
+%% -----File: 086.png---Folio 80-------
+
+\Exercise{37.}
+
+Resolve into factors:
+\begin{multicols}{2}
+\Item{1.} $4x^{2} + 4xy + y^{2}$.
+
+\Item{2.} $x^{2} + 6xy + 9y^{2}$.
+
+\Item{3.} $x^{2} + 16x + 64$.
+
+\Item{4.} $x^{2} + 10ax + 25a^{2}$.
+
+\Item{5.} $a^{2} - 16a + 64$.
+
+\Item{6.} $a^{2} - 10ab + 25b^{2}$.
+
+\Item{7.} $c^{2} - 6cd + 9d^{2}$.
+
+\Item{8.} $4x^{2} - 4x + 1$.
+
+\Item{9.} $4a^{2} - 12ab + 9b^{2}$.
+
+\Item{10.} $9a^{2} - 24ab + 16b^{2}$.
+
+\Item{11.} $x^{2} + 8xy + 16y^{2}$.
+
+\Item{12.} $x^{2} - 8xy + 16y^{2}$.
+
+\Item{13.} $4x^{2} - 20xy + 25y^{2}$.
+
+\Item{14.} $1 + 20a + 100a^{2}$.
+
+\Item{15.} $49a^{2} - 28a + 4$.
+
+\Item{16.} $36a^{2} + 60ab + 25b^{2}$.
+
+\Item{17.} $81x^{2} - 36bx + 4b^{2}$.
+
+\Item{18.} $m^{2}n^{2} + 14mnx^{2} + 49x^{2}$.
+\end{multicols}
+
+
+\PrintBreak
+\Section{Case VII.}
+
+\Paragraph{115. When a trinomial has the form $x^{2} + ax + b$.}
+
+Where $a$ is the \emph{algebraic sum} of two numbers, and is
+either positive or negative; and $b$~is the \emph{product} of these
+two numbers, and is either positive or negative.
+\begin{DPgather*}
+\lintertext{\indent Since}
+(x + 5)(x + 3) = x^{2} + 8x + 15,
+\end{DPgather*}
+the factors of $x^{2} + 8x + 15$ are $x + 5$ and $x + 3$.
+\begin{DPgather*}
+\lintertext{\indent Since}
+(x + 5)(x - 3) = x^{2} + 2x- 15,
+\end{DPgather*}
+the factors of $x^{2} + 2x - 15$ are $(x + 5)$ and $(x - 3)$.
+
+Hence, if a trinomial of the form $x^{2} + ax + b$ is such an
+expression that it can be resolved into two binomial factors,
+it is obvious that the first term of each factor will be~$x$,
+and that the second terms of the factors will be two
+numbers whose product is~$b$, the last term of the trinomial,
+and whose algebraic sum is~$a$, the coefficient of~$x$ in the
+middle term of the trinomial.
+%% -----File: 087.png---Folio 81-------
+
+\Item{1.} Resolve into factors $x^{2} + 11x + 30$.
+\begin{Soln}
+We are required to find two numbers whose product is~$30$ and
+whose sum is~$11$.
+
+Two numbers whose product is $30$ are $1$~and~$30$, $2$~and~$15$, $3$~and~$10$,
+$5$~and~$6$, and the sum of the last two numbers is~$11$. Hence,
+\[
+x^{2} + 11x + 30 = (x + 5)(x + 6).
+\]
+%[** TN: Solutions sometimes printed in normal-size type; using smaller type]
+\end{Soln}
+
+\Item{2.} Resolve into factors $x^{2} - 7x + 12$.
+\begin{Soln}
+We are required to find two numbers whose product is~$12$ and
+whose algebraic sum is~$-7$.
+
+Since the product is~$+12$, the two numbers are \emph{both positive} or \emph{both
+negative}, and since their sum is~$-7$, they must both be negative.
+
+Two negative numbers whose product is~$12$ are $-12$~and~$-1$, $-6$
+and~$-2$, $-4$~and~$-3$, and the sum of the last two numbers is~$-7$.
+Hence,
+\[
+x^{2} - 7x + 12 = (x - 4)(x - 3).
+\]
+\end{Soln}
+
+\Item{3.} Resolve into factors $x^{2} + 2x - 24$.
+\begin{Soln}
+We are required to find two numbers whose product is~$-24$ and
+whose algebraic sum is~$2$.
+
+Since the product is~$-24$, one of the numbers is positive and the
+other negative, and since their sum is~$+2$, the larger number is
+positive.
+
+Two numbers whose product is~$-24$, and the larger number positive,
+are $24$~and~$-1$, $12$~and~$-2$, $8$~and~$-3$, $6$~and~$-4$, and the sum
+of the last two numbers is~$+2$. Hence,
+\[
+x^{2} + 2x - 24 = (x + 6)(x - 4).
+\]
+\end{Soln}
+
+\Item{4.} Resolve into factors $x^{2} - 3x - 18$.
+\begin{Soln}
+Since the product is~$-18$, one of the numbers is positive and the
+other negative, and since their sum is~$-3$, the larger number is
+negative.
+
+Two numbers whose product is~$-18$, and the larger number negative,
+are $-18$~and~$1$, $-9$~and~$2$, $-6$~and~$3$, and the sum of the last
+two numbers is~$-3$. Hence,
+\[
+x^{2} - 3x - 18 = (x - 6)(x + 3).
+\]
+\end{Soln}
+%% -----File: 088.png---Folio 82-------
+
+\Exercise{38.}
+
+Resolve into factors:
+\begin{multicols}{2}
+\Item{1.} $a^{2} + 5a + 6$.
+
+\Item{2.} $a^{2} - 5a + 6$.
+
+\Item{3.} $a^{2} + 6a + 5$.
+
+\Item{4.} $a^{2} - 6a + 5$.
+
+\Item{5.} $a^{2} + 4a - 5$.
+
+\Item{6.} $a^{2} - 4a - 5$.
+
+\Item{7.} $c^{2} - 9c + 18$.
+
+\Item{8.} $c^{2} + 9c + 18$.
+
+\Item{9.} $c^{2} + 3c - 18$.
+
+\Item{10.} $c^{2} - 3c - 18$.
+
+\Item{11.} $x^{2} + 9x + 14$.
+
+\Item{12.} $x^{2} - 9x + 14$.
+
+\Item{13.} $x^{2} - 5x - 14$.
+
+\Item{14.} $x^{2} - 9x + 20$.
+
+\Item{15.} $x^{2} - x - 20$.
+
+\Item{16.} $x^{2} + x - 20$.
+
+\Item{17.} $x^{2} - 10x + 21$.
+
+\Item{18.} $x^{2} - 4x - 21$.
+
+\Item{19.} $x^{2} + 4x - 21$.
+
+\Item{20.} $x^{2} - 15x + 56$.
+
+\Item{21.} $x^{2} - x - 56$.
+
+\Item{22.} $x^{2} - 10x + 9$.
+
+\Item{23.} $x^{2} + 13x + 30$.
+
+\Item{24.} $x^{2} + 7x - 30$.
+
+\Item{25.} $x^{2} - 7x - 30$.
+
+\Item{26.} $a^{2} + ab - 6b^{2}$.
+
+\Item{27.} $a^{2} - ab - 6b^{2}$.
+
+\Item{28.} $a^{2} + 3ab - 4b^{2}$.
+
+\Item{29.} $a^{2} - 3ab - 4b^{2}$.
+
+\Item{30.} $a^{2}x^{2} - 2ax - 63$.
+
+\Item{31.} $a^{2} + 2ax - 63x^{2}$.
+
+\Item{32.} $a^{2} - 9ab + 20b^{2}$.
+
+\Item{33.} $x^{2}y^{2} - 19xyz + 48z^{2}$.
+
+\Item{34.} $a^{2}b^{2} + 15abc + 44c^{2}$.
+
+\Item{35.} $x^{2} - 13xy + 36y^{2}$.
+
+\Item{36.} $x^{2} + 19xy + 84y^{2}$.
+
+\Item{37.} $a^{2}x^{2} - 23axy + 102y^{2}$.
+
+\Item{38.} $x^{4} - 9x^{2}y^{2} + 20y^{4}$.
+
+\Item{39.} $a^{4}x^{4} - 24a^{2}x^{2}y^{2} + 143y^{4}$.
+
+\Item{40.} $a^{6}b^{6} - 23a^{3}b^{3}c^{2} + 132c^{4}$.
+
+\Item{41.} $a^{2} - 20abc - 96b^{2}c^{2}$.
+
+\Item{42.} $a^{2} - 4abc - 96b^{2}c^{2}$.
+
+\Item{43.} $a^{2} - 10abc - 96b^{2}c^{2}$.
+
+\Item{44.} $a^{2} + 29abc - 96b^{2}c^{2}$.
+
+\Item{45.} $a^{2} - 46abc - 96b^{2}c^{2}$.
+
+\Item{46.} $a^{2} + 49abc + 48b^{2}c^{2}$.
+
+\Item{47.} $x^{2} - 18xyz - 243y^{2}z^{2}$.
+
+\Item{48.} $x^{2}y^{2} - xyz - 182z^{2}$.
+\end{multicols}
+%% -----File: 089.png---Folio 83-------
+
+\Exercise{39.}
+
+\Section{Examples For Review.}
+
+Resolve into factors:
+\begin{multicols}{2}
+\Item{1.} $a^{3} - 7a$.
+
+\Item{2.} $3a^{2}b^{2} - 2a^{3}b + 3ab^{3}$.
+
+\Item{3.} $(a - b)^{2} + (a - b)$.
+
+\Item{4.} $(a + b)^{2} - 1$.
+
+\Item{5.} $a^{3} + 8b^{3}$.
+
+\Item{6.} $(x^{2} - 4y^{2}) + (x - 2y)$.
+
+\Item{7.} $(a^{3} - b^{3}) + (a - b)$.
+
+\Item{8.} $a^{2} - 6ab + 9b^{2}$.
+
+\Item{9.} $x^{2} - x -2$.
+
+\Item{10.} $x^{2} - 2x - 3$.
+
+\Item{11.} $x^{2} + 4x - 21$.
+
+\Item{12.} $a^{2} - 11a - 26$.
+
+\Item{13.} $ax^{2} + bx^{2} + 3a + 3b$.
+
+\Item{14.} $x^{2} - 3x- xy + 3y$.
+
+\Item{15.} $x^{2} - 7x + 12$.
+
+\Item{16.} $a^{2} + 5ab + 6b^{2}$.
+
+\Item{17.} $x^{4} + 10x^{2} + 25$.
+
+\Item{18.} $x^{2} - 18x + 81$.
+
+\Item{19.} $x^{2} - 21x + 110$.
+
+\Item{20.} $x^{2} + 19x + 88$.
+
+\Item{21.} $x^{2} - 19x + 88$.
+
+\Item{22.} $x^{3} - x^{2} + x - 1$.
+
+\Item{23.} $9x^{4} - x^{2}$.
+
+\Item{24.} $1 - (a - b)^{2}$.
+
+\Item{25.} $(a^{3} + b^{3}) + (a + b)$.
+
+\Item{26.} $m^{2}x - n^{2}x + m^{2}y - n^{2}y$.
+
+\Item{27.} $(x - y)^{2} - z^{2}$.
+
+\Item{28.} $z^{2} - (x - y)^{2}$.
+
+\Item{29.} $4a^{4} - (3a - 1)^{2}$.
+
+\Item{30.} $8x^{3} - y^{3}$.
+
+\Item{31.} $x^{3} - 3x^{2}y$.
+
+\Item{32.} $x^{3} - 27y^{3}$.
+
+\Item{33.} $x^{2} + 3x - 40$.
+
+\Item{34.} $x^{2} + 3xy - 10y^{2}$.
+
+\Item{35.} $1 - 16x^{2}$.
+
+\Item{36.} $a^{6} - 9a^{2}b^{4}$.
+
+\Item{37.} $x^{3} + 3x^{2}y + 2xy^{2}$.
+
+\Item{38.} $x^{4} + 4x^{3}y + 3x^{2}y^{2}$.
+
+\Item{39.} $x^{2} - 4xy^{2} + 4y^{4}$.
+
+\Item{40.} $16x^{4} + 8x^{2} + 1$.
+
+\Item{41.} $9a^{4} - 4a^{2}c^{2}$.
+
+\Item{42.} $a^{3}b - a^{2}b^{2} - 2ab^{3}$.
+
+\Item{43.} $x^{4} - x^{3} + 8x - 8$.
+
+\Item{44.} $a^{4} - a^{3}x + ay^{3} - xy^{3}$.
+\end{multicols}
+%% -----File: 090.png---Folio 84-------
+
+
+\Chapter{VIII.}{Common Factors and Multiples.}
+
+\Paragraph{116. Common Factors.} A \Defn{common factor} of two or more
+\emph{integral numbers} is an integral number which divides each
+of them without a remainder.
+
+\Paragraph{117.} A \Defn{common factor} of two or more integral and rational
+\emph{expressions} is an integral and rational expression which
+divides each of them without a remainder.
+
+\begin{Remark}
+Thus $5a$~is a common factor of $20a$~and~$25a$, $3x^{2}y^{2}$ is a common
+factor of~$12x^{2}y^{2}$ and~$15x^{3}y^{3}$.
+\end{Remark}
+
+\Paragraph{118.} Two \emph{numbers} are said to be \Defn{prime} to each other
+when they have no common factor except~$1$.
+
+\Paragraph{119.} Two \emph{expressions} are said to be \Defn{prime} to each other
+when they have no common factor except~$1$.
+
+\Paragraph{120.} The \Defn{highest common factor} of two or more integral
+\emph{numbers} is the greatest number that will divide each of
+them without a remainder.
+
+\Paragraph{121.} The \Defn{highest common factor} of two or more integral
+and rational \emph{expressions} is an integral and rational expression
+of highest degree that will divide each of them without
+a remainder.
+
+\begin{Remark}
+Thus $3a^{2}$ is the highest common factor of $3a^{2}$, $6a^{3}$, and~$12a^{4}$,
+$5x^{2}y^{2}$ is the highest common factor of $10x^{3}y^{2}$ and~$15x^{2}y^{2}$.
+\end{Remark}
+
+For brevity, we use \HCF\ for ``highest common factor.''
+%% -----File: 091.png---Folio 85-------
+
+\Paragraph{122. To Find the Highest Common Factor of Two or More
+Algebraic Expressions.}
+
+\Item{1.} Find the \HCF\ of $42a^{3}b^{2}$ and~$30a^{2}b^{4}$.
+\begin{alignat*}{2}
+&42a^{3}b^{2} &&= 2 × 3 × 7 × aaa × bb; \\
+&30a^{2}b^{4} &&= 2 × 3 × 5 × aa × bbbb. \\
+\therefore\ &\text{the \HCF} &&= 2 × 3 × aa × bb,
+\quad\text{or}\quad 6a^{2}b^{2}.
+\end{alignat*}
+
+\Item{2.} Find the \HCF\ of $x^{2} - 9y^{2}$ and $x^{2} + 6xy + 9y^{2}$.
+\begin{alignat*}{2}
+&x^{2} - 9y^{2} &&= (x + 3y)(x - 3y); \\
+&x^{2} + 6xy + 9y^{2} &&= (x + 3y)(x + 3y). \\
+\therefore\ &\text{the \HCF} &&= (x + 3y).
+\end{alignat*}
+
+\Item{3.} Find the \HCF\ of $4x^{2} - 4x - 80$, $2x^{2} - 18x + 40$.
+\begin{alignat*}{3}
+&4x^{2} -& 4x &- 80 &&= 4(x^{2} - x-20) \\
+&&& &&= 4(x - 5)(x + 4); \\
+&2x^{2} -& 18x &+ 40 &&= 2(x^{2} - 9x + 20) \\
+&&& &&= 2(x - 5)(x - 4). \\
+\therefore\ &\rlap{\text{the \HCF}} &&&&= 2(x - 5).
+\end{alignat*}
+
+\Dictum{To find the \HCF\ of two or more expressions}, therefore,
+\begin{Theorem}
+Resolve each expression into its simplest factors.
+
+Find the product of all the common factors, taking each
+factor the least number of times it occurs in any of the given
+expressions.
+\end{Theorem}
+
+\begin{Remark}[Note.] The \emph{highest common factor} in Algebra corresponds to the
+\emph{greatest common measure}, or \emph{greatest common divisor} in Arithmetic.
+We cannot apply the terms \emph{greatest} and \emph{least} to an algebraic expression
+in which particular values have not been given to the letters
+contained in the expression. Thus $a$~is \emph{greater} than~$a^{2}$, if $a$~stands
+for~$\frac{1}{4}$.
+\end{Remark}
+%% -----File: 092.png---Folio 86-------
+
+\Exercise{40.}
+
+Find the \HCF\ of:
+\begin{multicols}{2}
+\Item{1.} $330$ and $546$.
+
+\Item{2.} $20x^{3}$ and $15x^{4}$.
+
+\Item{3.} $42ax^{2}$ and $60a^{2}x$.
+
+\Item{4.} $35a^{2}b^{2}$ and $49ab^{3}$.
+
+\Item{5.} $28x^{4}$ and $63y^{4}$.
+
+\Item{6.} $54a^{2}b^{2}$ and $56a^{3}b^{3}$.
+
+\Item{7.} $x^{3} + 3x^{2}y$ and $x^{3} + 27y^{3}$.
+
+\Item{8.} $x^{2} + 3x$ and $x^{2} - 9$.
+
+\Item{9.} $2ax^{3} + x^{3}$ and $8a^{3} + 1$.
+
+\Item{10.} $(x + y)^{2}$ and $x^{2} - y^{2}$.
+
+\Item{11.} $a^{3} + a^{2}x$ and $a^{2} - x^{2}$.
+
+\Item{12.} $a^{2} - 4b^{2}$ and $a^{2} + 2ab$.
+\end{multicols}
+
+\Item{13.} $x^{2} - 1$ and $x^{2} + 2x - 3$.
+
+\Item{14.} $x^{2} + 5x + 6$ and $x^{2} + 4x + 3$.
+
+\Item{15.} $x^{2} - 9x + 18$ and $x^{2} - 10x + 24$.
+
+\Item{16.} $x^{3} + 1$ and $x^{2} - x + 1$.
+
+\Item{17.} $x^{2} - 3x + 2$ and $x^{2} - 4x + 3$.
+
+\Item{18.} $x^{2} - 3xy + 2y^{2}$ and $x^{2} - 2xy + y^{2}$.
+
+\Item{19.} $x^{2} - 4x - 5$ and $x^{2} - 25$.
+
+\Item{20.} $(a - b)^{2} - c^{2}$ and $ab - b^{2} - bc$.
+
+\Item{21.} $x^{2} + xy -2y^{2}$ and $x^{2} + 5xy + 6y^{2}$.
+
+\Item{22.} $x^{2} + 7xy + 12y^{2}$ and $x^{2} + 3xy - 4y^{2}$.
+
+\Item{23.} $x^{3} - 8y^{3}$ and $x^{2} + 2xy + 4y^{2}$.
+
+\Item{24.} $x^{3} - 2x^{2} - x + 2$ and $x^{2} - 4x + 4$.
+
+\Item{25.} $1 - 5a + 6a^{2}$ and $1 - 7a + 12a^{2}$.
+
+\Item{26.} $x^{2} - 8xy + 7y^{2}$ and $x^{2} - 3xy - 28y^{2}$.
+
+\Item{27.} $8a^{3} + b^{3}$ and $4a^{2} + 4ab + b^{2}$.
+
+\Item{28.} $x^{2} - (y - z)^{2}$ and $(x + y)^{2} - z^{2}$.
+%% -----File: 093.png---Folio 87-------
+
+\Paragraph{123. Common Multiples.} A \Defn{common multiple} of two or
+more integral \emph{numbers} is a number which is exactly divisible
+by each, of the numbers.
+
+A \Defn{common multiple} of two or more \emph{expressions} is an expression
+which is exactly divisible by each of the expressions.
+
+\Paragraph{124.} The \Defn{lowest common multiple} of two or more \emph{numbers}
+is the least number that is exactly divisible by each of the
+given numbers.
+
+The \Defn{lowest common multiple} of two or more \emph{expressions} is
+the expression of lowest degree that is exactly divisible by
+each of the given expressions.
+
+We use \LCM\ for ``lowest common multiple.''
+
+\Paragraph{To find the lowest common multiple of two or more algebraic
+expressions.}
+
+\Item{1.} Find the \LCM\ of $42a^{3}b^{2}$, $30a^{2}b^{4}$, and~$66ab^{3}$.
+\begin{align*}
+42a^{3}b^{2} &= 2 × 3 × 7 × a^{3} × b^{2}; \\
+30a^{2}b^{4} &= 2 × 3 × 5 × a^{2} × b^{4}; \\
+66ab^{3} &= 2 × 3 × 11 × a × b^{3}.
+\end{align*}
+
+\begin{Soln}
+The \LCM\ must evidently contain each factor the greatest number
+of times that it occurs in any expression.
+\begin{align*}
+\therefore\ \text{\LCM}
+ &= 2 × 3 × 7 × 5 × 11a^{3} × b^{4}, \\
+ &= 2310a^{3}b^{4}.
+\end{align*}
+\end{Soln}
+
+\Item{2.} Find the \LCM\ of $4x^{2} - 4x - 80$ and $2x^{2} - 18x + 40$.
+\begin{Soln}
+\begin{alignat*}{3}
+&4x^{2} -& 4x &- 80 &&= 4(x^{2} - x - 20) = 4(x - 5)(x + 4); \\
+&2x^{2} -& 18x &+ 40 &&= 2(x^{2} - 9x + 20) = 2(x - 5)(x - 4). \\
+\therefore\ &\rlap{\text{\LCM}}&&& &= 4(x - 5)(x + 4)(x - 4).
+\end{alignat*}
+\end{Soln}
+
+\Dictum{To find the \LCM\ of two or more expressions}, therefore,
+%% -----File: 094.png---Folio 88-------
+\begin{Theorem}
+Resolve each expression into its simplest factors.
+
+Find the product of all the different factors, taking each
+factor the greatest number of times it occurs in any of the
+given expressions.
+\end{Theorem}
+
+\Exercise{41.}
+
+Find the \LCM\ of:
+\begin{multicols}{2}
+\Item{1.} $9xy^{3}$ and $6x^{2}y$.
+
+\Item{2.} $3abc^{2}$ and $2a^{2}bc^{3}$.
+
+\Item{3.} $4a^{3}b$ and $10ab^{3}$.
+
+\Item{4.} $6a^{3}b^{3}$ and $15a^{2}b^{4}$.
+
+\Item{5.} $21xy^{3}$ and $27x^{3}y^{5}$.
+
+\Item{6.} $xy^{3}z^{2}$ and $x^{2}y^{2}z^{3}$.
+
+\Item{7.} $a^{2}$ and $a^{2} + a$.
+
+\Item{8.} $x^{2}$ and $x^{3} - 3x^{2}$.
+
+\Item{9.} $x^{2} - 1$ and $x^{2} + x$.
+
+\Item{10.} $x^{2} - 1$ and $x^{2} - x$.
+
+\Item{11.} $x^{2} + xy$ and $xy + y^{2}$.
+
+\Item{12.} $x^{2} + 2x$ and $(x + 2)^{2}$.
+\end{multicols}
+
+\Item{13.} $a^{2} + 4a + 4$ and $a^{2} + 5a + 6$.
+
+\Item{14.} $c^{2} + c - 20$ and $c^{2} - c - 30$.
+
+\Item{15.} $b^{2} + b - 42$ and $b^{2} - 11b + 30$.
+
+\Item{16.} $y^{2} - 10y + 24$ and $y^{2} + y -20$.
+
+\Item{17.} $z^{2} + 2z - 35$ and $z^{2} - 11z + 30$.
+
+\Item{18.} $x^{2} - 64; x^{3} - 64$; and $x + 8$.
+
+\Item{19.} $a^{2} - b^{2}; (a + b)^{2}$; and $(a - b)^{2}$.
+
+\Item{20.} $4ab(a + b)^{2}$ and $2a^{2}(a^{2} - b^{2})$.
+
+\Item{21.} $y^{2} + 7y + 12; y^{2} + 6y + 8$; and $y^{2} + 5y +6$.
+
+\Item{22.} $x^{2} - 1; x^{3} + x^{2} + x + 1$; and $x^{3} - x^{2} + x - 1$.
+
+\Item{23.} $1 - x^{2}; 1 - x^{3}$; and $1 + x$.
+
+\Item{24.} $x^{2} + 2xy + y^{2}; x^{2} - y^{2}$; and $x^{2} - 2xy + y^{2}$.
+
+\Item{25.} $x^{3} - 27; x^{2} + 2x - 15; x^{2} + 5x$.
+
+\Item{26.} $(a + b)^{2} - c^{2}; (a + b + c)^{2}$; and $a + b - c$.
+
+\Item{27.} $x^{2} - (a + b)x + ab$ and $x^{2} - (a + c)x + ac$.
+
+\Item{28.} $(a + b)^{2} - c^{2}$ and $a^{2} + ab + ac$.
+%% -----File: 095.png---Folio 89-------
+
+
+\Chapter{IX.}{Fractions.}
+
+\Paragraph{125.} An \Defn{algebraic fraction} is the indicated quotient of
+two expressions, written in the form~$dfrac{a}{b}$.
+
+The dividend~$a$ is called the \Defn{numerator}, and the divisor~$b$
+is called the \Defn{denominator}; and the numerator and denominator
+are called the \Defn{terms} of the fraction.
+
+\Paragraph{126.} The introduction of the same factor into the dividend
+and divisor does not alter the value of the quotient,
+and the rejection of the same factor from the dividend and
+divisor does not alter the value of the quotient.
+\begin{DPgather*}
+\lintertext{\indent Thus}
+\frac{12}{4} = 3;\quad
+\frac{2 × 12}{2 × 4} = 3; \frac{12÷2}{4÷2} = 3. \EqText{Hence,}
+\end{DPgather*}
+\begin{Theorem}
+The value of a fraction is not altered if the numerator and
+denominator are both multiplied, or both divided, by the
+same factor.
+\end{Theorem}
+
+
+\Section{Reduction of Fractions.}
+
+\Paragraph{127.} To reduce a fraction is to change its \emph{form} without
+altering its \emph{value}.
+
+
+\Section{Case I.}
+
+\Paragraph{128. To Reduce a Fraction to its Lowest Terms.}
+
+A fraction is in its \emph{lowest terms} when the numerator and
+denominator have no common factor. We have, therefore,
+the following rule:
+%% -----File: 096.png---Folio 90-------
+\begin{Theorem}
+Resolve the numerator and denominator into their prime
+factors, and cancel all the common factors.
+\end{Theorem}
+
+Reduce the following fractions to their lowest terms:
+
+\Item{1.} $\dfrac{38a^{2}b^{3}c^{4}}{57a^{3}bc^{2}} = \dfrac{2 × 19a^{2}b^{3}c^{4}}{3 × 19a^{3}bc^{2}} = \dfrac{2b^{2}c^{2}}{3a}$.
+
+\Item{2.} $\dfrac{a^{3} - x^{3}}{a^{2} - x^{2}} = \dfrac{(a - x)(a^{2} + ax + x^{2})}{(a - x)(a + x)} = \dfrac{a^{2} + ax + x^{2}}{a + x}$.
+
+\Item{3.} $\dfrac{a^{2} + 7a + 10}{a^{2} + 5a + 6} = \dfrac{(a + 5)(a + 2)}{(a + 3)(a + 2)} = \dfrac{a + 5}{a + 3}$.
+
+\Exercise{42.}
+
+Reduce to lowest terms:
+\begin{multicols}{3}
+\Item{1.} $\dfrac{2a}{6ab}$.
+
+\Item{2.} $\dfrac{12m^{2}n}{15mn^{2}}$.
+
+\Item{3.} $\dfrac{21m^{2}p^{2}}{28mp^{4}}$.
+
+\Item{4.} $\dfrac{3x^{3}y^{2}z}{6xy^{3}z^{2}}$.
+
+\Item{5.} $\dfrac{5a^{3}b^{3}c^{3}}{15c^{5}}$.
+
+\Item{6.} $\dfrac{34x^{3}y^{4}z^{5}}{51x^{2}y^{3}z^{5}}$.
+
+\Item{7.} $\dfrac{46m^{2}np^{3}}{69mnp^{4}}$.
+
+\Item{8.} $\dfrac{39a^{2}b^{3}c^{4}}{52a^{5}bc^{3}}$.
+
+\Item{9.} $\dfrac{58xy^{4}z^{6}}{87xy^{2}z^{2}}$.
+\end{multicols}
+
+\begin{multicols}{2}
+\Item{10.} $\dfrac{abx - bx^{2}}{acx - cx^{2}}$.
+
+\Item{11.} $\dfrac{4a^{2} - 9b^{2}}{4a^{2} + 6ab}$.
+
+\Item{12.} $\dfrac{3a^{2} + 6a}{a^{2} + 4a + 4}$.
+
+\Item{13.} $\dfrac{x^{2} + 5x}{x^{2} + 4x-5}$.
+
+\Item{14.} $\dfrac{xy - 3y^{2}}{x^{3} - 27y^{3}}$.
+
+\Item{15.} $\dfrac{x^{2} + 5x + 4}{x^{2} - x-20}$.
+
+\Item{16.} $\dfrac{x^{2} + 2x + 1}{x^{2} - x-2}$.
+
+\Item{17.} $\dfrac{(a + b)^{2} - c^{2}}{a^{2} + ab-ac}$.
+
+\Item{18.} $\dfrac{x^{2} + 9x + 20}{x^{2} + 7x + 12}$.
+
+\Item{19.} $\dfrac{x^{2} - 14x - 15}{x^{2} - 12x - 45}$.
+\end{multicols}
+%% -----File: 097.png---Folio 91-------
+
+
+\PrintBreak
+\Section{Case II.}
+
+\Paragraph{129. To Reduce a Fraction to an Integral or Mixed Expression.}
+
+\Item{1.} Reduce $\dfrac{x^{3} - 1}{x - 1}$ to an integral or mixed expression.
+
+By division, $\dfrac{x^{3} - 1}{x - 1} = x^{2} + x + 1$.
+
+\Item{2.} Reduce $\dfrac{x^{3} - 1}{x + 1}$ to an integral or mixed expression.
+
+By division, $\dfrac{x^{3} - 1}{x + 1} = x^{2} - x + 1 - \dfrac{2}{x + 1}$.
+
+\ScreenBreak
+\Dictum{To reduce a fraction to an integral or mixed expression},
+therefore,
+\begin{Theorem}
+Divide the numerator by the denominator.
+\end{Theorem}
+
+\begin{Remark}[Note.] If there is a remainder, this remainder must be written
+as the numerator of a fraction of which the divisor is the denominator,
+and this fraction with its proper sign must be annexed to the integral
+part of the quotient.
+\end{Remark}
+
+\Exercise{43.}
+
+Reduce to integral or mixed expressions:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{a^{2} - b^{2} + 2}{a - b}$.
+
+\Item{2.} $\dfrac{a^{2} - b^{2} - 2}{a + b}$.
+
+\Item{3.} $\dfrac{a^{3} - 2a^{2} + 2a + 1}{a^{2} - a - 1}$.
+
+\Item{4.} $\dfrac{2x^{2} - 2x + 1}{x + 1}$.
+
+\Item{5.} $\dfrac{8x^{3}}{2x + 1}$.
+
+\Item{6.} $\dfrac{5x^{3} + 9x^{2} + 3}{x^{2} + x - 1}$.
+
+\Item{7.} $\dfrac{a^{3} + a^{2} + 7a - 2}{a^{2} + a + 2}$.
+
+\Item{8.} $\dfrac{y^{4} + y^{2}x^{2} + x^{4}}{y^{2} + yx + x^{2}}$.
+
+\Item{9.} $\dfrac{x^{4} - 3x^{3} + x - 1}{x^{2} + x + 1}$.
+
+\Item{10.} $\dfrac{x^{5} - x^{4} + 1}{x^{2} - x - 1}$.
+\end{multicols}
+%% -----File: 098.png---Folio 92-------
+
+
+\ScreenBreak
+\Section{Case III.}
+
+\Paragraph{130. To Reduce a Mixed Expression to a Fraction.}
+
+The process is precisely the same as in Arithmetic. Hence,
+\begin{Theorem}
+Multiply the integral expression by the denominator, to
+the product add the numerator, and under the result write
+the denominator.
+\end{Theorem}
+
+Reduce to a fraction $a - b - \dfrac{a^{2} - ab - b^{2}}{a + b}$.
+\begin{align*}
+a - b - \frac{a^{2} - ab - b^{2}}{a + b}
+ &= \frac{(a - b)(a + b) - (a^{2} - ab - b^{2})}{a + b} \\
+ &= \frac{a^{2} - b^{2} - a^{2} + ab + b^{2}}{a + b} \\
+ &= \frac{ab}{a + b}.
+\end{align*}
+
+\begin{Remark}[Note.] The dividing line between the terms of a fraction has the
+force of a vinculum affecting the numerator. If, therefore, a \emph{minus
+sign} precedes the dividing line, as in the preceding Example, and
+this line is removed, the numerator of the given fraction must be
+enclosed in a parenthesis preceded by the minus sign, or the sign of
+every term of the numerator must be changed.
+\end{Remark}
+
+\ScreenBreak
+\Exercise{44.}
+
+Reduce to a fraction:
+\begin{multicols}{2}
+\Item{1.} $x - y + \dfrac{2xy}{x - y}$.
+
+\Item{2.} $x + y - \dfrac{2xy}{x + y}$.
+
+\Item{3.} $1 - \dfrac{x - y}{x + y}$.
+
+\Item{4.} $a - x - \dfrac{a^{2} + x^{2}}{a - x}$.
+
+\Item{5.} $x + 2 - \dfrac{x^{2} - 4}{x - 3}$.
+
+\Item{6.} $\dfrac{x - 3}{x - 2} - 2x + 1$.
+
+\Item{7.} $\dfrac{x + 3}{x + 2} + x^{2} - x - 1$.
+
+\Item{8.} $2a - 1 + \dfrac{3 - 4a}{a - 3}$.
+
+\Item{9.} $1 - 2a^{2} - \dfrac{a^{2} - a + 2}{a - 1}$.
+
+\Item{10.} $a^{2} + 2a - 5 - \dfrac{2a - 1}{3a^{2} + 1}$.
+\end{multicols}
+%% -----File: 099.png---Folio 93-------
+
+
+\Section{Case IV.}
+
+\Paragraph{131. To Reduce Fractions to their Lowest Common Denominator.}
+
+The process is the same as in Arithmetic. Hence:
+\begin{Theorem}
+Find the lowest common multiple of the denominators;
+this will be the required denominator. Divide this denominator
+by the denominator of each fraction.
+
+Multiply the first numerator by the first quotient, the second
+numerator by the second quotient, and so on.
+
+The products will be the respective numerators of the
+equivalent fractions.
+\end{Theorem}
+
+\begin{Remark}[Note.] Every fraction should be in its lowest terms before the
+common denominator is found.
+\end{Remark}
+
+\Item{1.} Reduce $\dfrac{3x}{4a^{2}}$, $\dfrac{2y}{3a}$, and $\dfrac{5}{6a^{3}}$ to equivalent fractions
+having the lowest common denominator.
+\begin{Soln}
+The \LCM\ of $4a^{2}$, $3a$, and $6a^{3} = 12a^{3}$.
+
+The respective quotients are $3a$, $4a^{2}$, and~$2$.
+
+The products are $9ax$, $8a^{2}y$, and~$10$.
+
+Hence, the required fractions are
+\[
+\frac{9ax}{12a^{3}},\quad
+\frac{8a^{2}y}{12a^{3}}, \quad\text{and}\quad
+\frac{10}{12a^{3}}.
+\]
+\end{Soln}
+
+\Item{2.} Express $\dfrac{1}{x^{2} + 5x + 6}$ and $\dfrac{1}{x^{2} + 4x + 3}$ with lowest
+common denominator.
+\begin{Soln}
+The factors of the denominators are $x + 3$, $x + 2$; and $x + 3$, $x + 1$.
+
+Hence the lowest common denominator (\LCD) is $(x + 3)(x + 2)(x + 1)$,
+and the required numerators are $x + 1$ and $x + 2$. Hence the required
+fractions are
+\[
+%[** TN: Equations not displayed in the original]
+\frac{x + 1}{(x + 3)(x + 2)(x + 1)} \quad\text{and}\quad
+\frac{x + 2}{(x + 3)(x + 2)(x + 1)}.
+\]
+\end{Soln}
+%% -----File: 100.png---Folio 94-------
+
+\ScreenBreak
+\Exercise{45.}
+
+Express with lowest common denominator:
+
+\begin{multicols}{2}
+\Item{1.} $\dfrac{x}{x - a}$, $\dfrac{x^{2}}{x^{2} - a^{2}}$.
+
+\Item{2.} $\dfrac{a}{a + b}$, $\dfrac{a^{2}}{a^{2} - b^{2}}$.
+
+\Item{3.} $\dfrac{1}{1 + 2a}$, $\dfrac{1}{1 - 4a^{2}}$.
+
+\Item{4.} $\dfrac{9}{16 - x^{2}}$, $\dfrac{4 - x}{4 + x}$.
+
+\Item{5.} $\dfrac{a^{2}}{27 - a^{3}}$, $\dfrac{a}{3 - a}$.
+
+\Item{6.} $\dfrac{1}{x^{2} - 5x + 6}$, $\dfrac{1}{x^{2} - x-6}$.
+\end{multicols}
+
+
+\Section{Addition and Subtraction of Fractions.}
+
+\Paragraph{132.} The algebraic sum of two or more fractions which
+have the same denominator, is a fraction whose numerator
+is the algebraic sum of the numerators of the given fractions,
+and whose denominator is the common denominator
+of the given fractions. Hence,
+
+\Dictum{To add fractions},
+\begin{Theorem}
+Reduce the fractions to equivalent fractions having the
+same denominator; and write the algebraic sum of the
+numerators of these fractions over the common denominator.
+\end{Theorem}
+
+\Paragraph{133. When the denominators are simple expressions.}
+
+\Item{1.} Simplify $\dfrac{3a - 4b}{4} - \dfrac{2a - b + c}{3} + \dfrac{a - 4c}{12}$.
+\begin{Soln}
+The $\text{\LCD} = 12$.
+
+The multipliers, that is, the quotients obtained by dividing $12$ by
+$4$, $3$, and $12$, are $3$,~$4$, and~$1$.
+
+Hence the sum of the fractions equals
+\begin{align*}
+&\frac{9a - 12b}{12} - \frac{8a - 4b + 4c}{12} + \frac{a - 4c}{12} \\
+&\quad= \frac{9a - 12b - 8a + 4b - 4c + a - 4c}{12} \\
+&\quad= \frac{2a - 8b-8c}{12} = \frac{a - 4b - 4c}{6}.
+\end{align*}
+\end{Soln}
+%% -----File: 101.png---Folio 95-------
+
+The preceding work may be arranged as follows:
+\begin{Soln}
+The $\text{\LCD} = 12$.
+
+The multipliers are $3$,~$4$, and~$1$, respectively.
+\begin{gather*}
+\begin{array}{l*{5}{cr}cl}
+3(3a &-& 4b & & ) &=& 9a &-&12b & & &=& \text{1st numerator.} \\
+\llap{$-$}
+4(2a &-& b &+& c) &=&-8a &+& 4b &-& 4c &=& \text{2d numerator.} \\
+1( a &-& & &4c) &=& a & & &-& 4c &=& \text{3d numerator.} \\
+\cline{7-11}
+ & & & & & & 2a &-& 8b &-& 8c \\
+ & & & & &\rlap{or}& 2(a &-& 4b &-& 4c) &=& \text{the sum of the numerators.}
+\end{array} \\
+\therefore\ \text{sum of fractions} = \frac{2(a - 4b - 4c)}{12} = \frac{a - 4b - 4c}{6}.
+\end{gather*}
+\end{Soln}
+
+\Exercise{46.}
+
+Find the sum of:
+
+\Item{1.} $\dfrac{x + 1}{2} + \dfrac{x - 3}{5} + \dfrac{x + 5}{10}$.
+
+\Item{2.} $\dfrac{2x - 1}{3} + \dfrac{x + 5}{4} + \dfrac{x - 4}{6}$.
+
+\Item{3.} $\dfrac{7x - 1}{6} - \dfrac{3x - 2}{7} + \dfrac{x - 5}{3}$.
+
+\Item{4.} $\dfrac{3x - 2}{9} - \dfrac{x - 2}{6} + \dfrac{5x + 3}{4}$.
+
+\Item{5.} $\dfrac{x - 1}{6} - \dfrac{x - 3}{3} + \dfrac{x - 5}{2}$.
+
+\Item{6.} $\dfrac{x - 2y}{2x} + \dfrac{x + 5y}{4x} - \dfrac{x + 7y}{8x}$.
+
+\Item{7.} $\dfrac{5x - 11}{3} - \dfrac{2x - 1}{10} - \dfrac{11x - 5}{15}$.
+
+\Item{8.} $\dfrac{x - 3}{3x} - \dfrac{x^{2} - 6x}{5x^{2}} - \dfrac{7x^{2} - x^{3}}{15x^{3}}$.
+
+\Item{9.} $\dfrac{ac - b^{2}}{ac} - \dfrac{ab - c^{2}}{ab} + \dfrac{a^{2} - bc}{bc}$.
+%% -----File: 102.png---Folio 96-------
+
+\PrintBreak
+\Paragraph{134. When the denominators have compound expressions,
+arranged in the same order.}
+
+\Item{1.} Simplify $\dfrac{a + b}{a - b} - \dfrac{a - b}{a + b} - \dfrac{4ab}{a^{2} - b^{2}}$.
+\begin{Soln}
+The \LCD\ is $(a - b)(a + b)$.
+
+The multipliers are $a + b$, $a - b$, and~$1$, respectively.
+\begin{gather*}
+\begin{array}{l*{3}{cr}cl}
+ (a + b)(a + b) &=& a^{2} &+& 2ab &+& b^{2} &=& \text{1st numerator.} \\
+\llap{$-$}
+ (a - b)(a - b) &=&-a^{2} &+& 2ab &-& b^{2} &=& \text{2d numerator.} \\
+\llap{$-$}
+ 1(4ab) &=& &-& 4ab & & &=& \text{3d numerator.} \\
+\cline{3-7}
+ & & \multicolumn{5}{c}{0} &=& \text{sum of numerators.}
+\end{array} \\
+\therefore\ \text{Sum of fractions${} = 0$.}
+\end{gather*}
+\end{Soln}
+
+\Exercise{47.}
+
+Find the sum of:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{1}{x + 3} + \dfrac{1}{x - 2}$.
+
+\Item{2.} $\dfrac{1}{x + 1} + \dfrac{1}{x - 1}$.
+
+\Item{3.} $\dfrac{4}{x - 8} - \dfrac{1}{x + 2}$.
+
+\Item{4.} $\dfrac{a + x}{a - x} - \dfrac{a - x}{a + x}$.
+
+\Item{5.} $\dfrac{x}{x - a} - \dfrac{x^{2}}{x^{2} - a^{2}}$.
+
+\Item{6.} $\dfrac{4a^{2} + b^{2}}{4a^{2} - b^{2}} - \dfrac{2a + b}{2a - b}$.
+
+\Item{7.} $\dfrac{7}{9 - a^{2}} - \dfrac{1}{3 + a} - \dfrac{1}{3 - a}$.
+
+\Item{8.} $\dfrac{1}{a - b} - \dfrac{1}{a + b} - \dfrac{b}{a^{2} - b^{2}}$.
+\end{multicols}
+%[** TN: Adjusted layout]
+
+\Item{9.} $\dfrac{2}{x - 2} - \dfrac{2}{x + 2} + \dfrac{5x}{x^{2} - 4}$.
+
+\Item{10.} $\dfrac{3 - x}{1 - 3x} - \dfrac{3 + x}{1 + 3x} - \dfrac{15x - 1}{1 - 9x^{2}}$.
+
+\begin{multicols}{2}
+\Item{11.} $\dfrac{1}{a} - \dfrac{1}{a + 3} + \dfrac{3}{a + 1}$.
+
+\Item{12.} $\dfrac{x}{x - 1} - \dfrac{1} - \dfrac{1}{x + 1}$.
+\end{multicols}
+
+\Item{13.} $\dfrac{x + 1}{x + 2} + \dfrac{x - 2}{x - 3} + \dfrac{2x + 7}{x^{2} - x - 6}$.
+
+\Item{14.} $\dfrac{1}{x(x - 1)} - \dfrac{2}{x^{2} - 1} + \dfrac{1}{x(x + 1)}$.
+%% -----File: 103.png---Folio 97-------
+
+\Exercise{48.}
+
+Find the sum of:
+
+\Item{1.} $\dfrac{1}{2x + 1} + \dfrac{1}{2x - 1} - \dfrac{4x}{4x^{2} - 1}$.
+
+\Item{2.} $\dfrac{a^{2} + b^{2}}{a^{2} - b^{2}} + \dfrac{a}{a + b} - \dfrac{b}{a - b}$.
+
+\Item{3.} $\dfrac{3a}{1 - a^{2}} + \dfrac{2}{1 - a} - \dfrac{2}{1 + a}$.
+
+\Item{4.} $\dfrac{1}{2x + 5y} - \dfrac{3x}{4x^{2} - 25y^{2}} + \dfrac{1}{2x + 5y}$.
+
+\Item{5.} $\dfrac{1}{x + 4y} - \dfrac{8y}{x^{2} - 16y^{2}} + \dfrac{1}{x - 4y}$.
+
+\Item{6.} $\dfrac{3}{2x - 3} - \dfrac{2}{2x + 3} - \dfrac{3}{4x^{2} - 9}$.
+
+
+\Section{Multiplication and Division of Fractions.}
+
+\Paragraph{135.} Find the product of $\dfrac{a}{b} × \dfrac{c}{d}$.
+
+Let $\dfrac{a}{b} = x$, and $\dfrac{c}{d} = y$.
+
+Then $a = bx$, and $c = dy$.
+
+The product of these two equations is
+\begin{DPalign*}
+ac &= bdxy. \\
+\lintertext{\indent Divide by~$bd$,}
+\frac{ac}{bd} &= xy. \displaybreak[1] \\
+\lintertext{\indent But}
+\frac{a}{b} × \frac{c}{d} = xy. \displaybreak[1] \\
+\lintertext{\indent Therefore}
+\frac{a}{b} × \frac{c}{d} = \frac{ac}{bd}.
+\end{DPalign*}
+%% -----File: 104.png---Folio 98-------
+
+\Dictum{To find the product of two fractions}, therefore,
+\begin{Theorem}
+Find the product of the numerators for the required
+numerator, and the product of the denominators for the
+required denominator.
+\end{Theorem}
+
+In like manner,
+\[
+\frac{a}{b} × \frac{c}{d} × \frac{e}{f} = \frac{ac}{bd} × \frac{e}{f} = \frac{ace}{bdf}.
+\]
+
+\Paragraph{136. Reciprocals.} If the product of two numbers is equal
+to~$1$, each of the numbers is called the \Defn{reciprocal} of the
+other.
+
+The reciprocal of $\dfrac{a}{b}$ is $\dfrac{b}{a}$, for $\dfrac{b}{a} × \dfrac{a}{b} = \dfrac{ba}{ab} = 1$.
+
+The reciprocal of a fraction, therefore, is the fraction
+inverted.
+
+%[** TN: Next line broken in the original]
+Since $\dfrac{a}{b} ÷ \dfrac{a}{b} = 1$, and $\dfrac{b}{a} × \dfrac{a}{b} = 1$,
+it follows that
+\begin{Theorem}
+To divide by a fraction is the same as to multiply by its
+reciprocal.
+\end{Theorem}
+
+\Paragraph{137.} \Dictum{To Divide by a Fraction}, therefore,
+\begin{Theorem}
+Invert the divisor and multiply.
+\end{Theorem}
+
+\begin{Remark}[Note.] Every mixed expression should first be reduced to a fraction,
+and every integral expression should be written as a fraction
+having $1$~for the denominator. Both terms of each fraction should
+be expressed in their prime factors, and if a factor is common to a
+numerator and denominator, it should be cancelled, as the cancelling
+of a common factor \emph{before} the multiplication is evidently equivalent
+to cancelling it \emph{after} the multiplication.
+\end{Remark}
+%% -----File: 105.png---Folio 99-------
+
+\Item{1.} Find the product of $\dfrac{3a^{2}b}{2x^{2}y} × \dfrac{6xy^{2}}{7ab} × \dfrac{7abc}{9a^{2}by^{2}}$.
+\[
+\frac{3a^{2}b}{2x^{2}y} × \frac{6xy^{2}}{7ab} × \frac{7abc}{9a^{2}by^{2}}
+ = \frac{3 × 6 × 7a^{3}b^{2}cxy^{2}}{2 × 7 × 9a^{3}b^{2}x^{2}y^{3}}
+ = \frac{c}{xy}.
+\]
+
+\Item{2.} Find the product of $\dfrac{ab - b^{2}}{a + b} × \dfrac{ab + b^{2}}{a^{2} - b^{2}}$.
+\[
+\frac{ab - b^{2}}{a + b} × \frac{ab + b^{2}}{a^{2} - b^{2}}
+ = \frac{b(a - b)}{(a + b)} × \frac{b(a + b)}{(a - b)(a + b)}
+ = \frac{b^{2}}{a + b}.
+\]
+
+\Item{3.} Find quotient of $\dfrac{ab}{(a - b)^{2}} ÷ \dfrac{ac}{a^{2} - b^{2}}$.
+\begin{align*}
+\frac{ab}{(a - b)^{2}} ÷ \frac{ac}{a^{2} - b^{2}}
+ &= \frac{ab}{(a - b)(a - b)} × \frac{(a - b)(a + b)}{ac} \\
+ &= \frac{b(a + b)}{c(a - b)}.
+\end{align*}
+
+\Item{4.} Find the result of $\dfrac{1}{x} × \dfrac{x^{2} - 1}{x^{2} - 4x - 5} ÷ \dfrac{x^{2} + 2x - 3}{x^{2} - 25}$.
+\begin{align*}
+&\frac{1}{x} × \frac{x^{2} - 1}{x^{2} - 4x - 5} ÷ \frac{x^{2} + 2x - 3}{x^{2} - 25} \\
+&\qquad= \frac{1}{x} × \frac{x^{2} - 1}{x^{2} - 4x - 5} × \frac{x^{2} - 25}{x^{2} + 2x - 3} \\
+&\qquad= \frac{1}{x} × \frac{(x - 1)(x + 1)}{(x - 5)(x + 1)} × \frac{(x - 5)(x + 5)}{(x + 3)(x - 1)} \\
+&\qquad= \frac{x + 5}{x(x + 3)}.
+\end{align*}
+%% -----File: 106.png---Folio 100-------
+
+\Exercise{49.}
+
+Express in the simplest form:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{15a^{2}}{7b^{2}} × \dfrac{28ab}{9a^{3}c}$.
+
+\Item{2.} $\dfrac{3x^{2}y^{2}z^{3}}{4a^{2}b^{2}c^{2}} × \dfrac{8a^{3}b^{2}c^{2}}{9x^{2}yz^{3}}$.
+
+\Item{3.} $\dfrac{5m^{2}n^{2}p^{4}}{3x^{2}yz^{3}} × \dfrac{21xyz^{2}}{20m^{2}n^{2}p^{2}}$.
+
+\Item{4.} $\dfrac{16a^{4}b^{2}c^{3}}{21m^{2}x^{3}y^{4}} × \dfrac{3m^{3}x^{3}y^{4}}{8a^{2}b^{2}c^{2}}$.
+
+\Item{5.} $\dfrac{2a}{bc} × \dfrac{3b}{ac} × \dfrac{5c}{ab}$.
+
+\Item{6.} $\dfrac{2a^{3}}{3bc} × \dfrac{3b^{3}}{5ac} × \dfrac{5c^{3}}{2ab}$.
+
+\Item{7.} $\dfrac{5abc^{3}}{3x^{2}} ÷ \dfrac{10ac^{3}}{6bx^{2}}$.
+
+\Item{8.} $\dfrac{x^{2} - a^{2}}{x^{2} - 4a^{2}} × \dfrac{x + 2a}{x - a}$.
+
+\Item{9.} $\dfrac{x^{2}y^{2} + 3xy}{4c^{2} - 1} × \dfrac{2c + 1}{xy + 3}$.
+
+\Item{10.} $\dfrac{a^{2} - 100}{a^{2} - 9} × \dfrac{a - 3}{a - 10}$.
+
+\Item{11.} $\dfrac{9x^{2} - 4y^{2}}{x^{2} - 4} × \dfrac{x + 2}{3x - 2y}$.
+
+\Item{12.} $\dfrac{25a^{2} - b^{2}}{16a^{2} - 9b^{2}} ÷ \dfrac{5a - b}{4a - 3b}$.
+\end{multicols}
+%[** TN: Moved end of two-column layout up two questions]
+
+\Item{13.} $\dfrac{x^{2} - 49}{(a + b)^{2} - c^{2}} ÷ \dfrac{x + 7}{(a + b) - c}$.
+
+\Item{14.} $\dfrac{x^{2} + 2x + 1}{x^{2} - 25} ÷ \dfrac{x + 1}{x^{2} + 5x}$.
+
+\Item{15.} $\dfrac{a^{2} + 3a + 2}{a^{2} + 5a + 6} × \dfrac{a^{2} + 7a + 12}{a^{2} + 9a + 20}$.
+
+\Item{16.} $\dfrac{y^{2} - y-30}{y^{2} - 36} × \dfrac{y^{2} - y-2}{y^{2} + 3y-10} × \dfrac{y^{2} + 6y}{y^{2} + y}$.
+
+\Item{17.} $\dfrac{x^{2} - 2x + 1}{x^{2} - y^{2}} × \dfrac{x^{2} + 2xy + y^{2}}{x - 1} ÷ \dfrac{x^{2} - 1}{x^{2} - xy}$.
+
+\Item{18.} $\dfrac{a^{2} - b^{2}}{a^{2} - 3ab + 2b^{2}} × \dfrac{ab - 2b^{2}}{a^{2} + ab} ÷ \dfrac{(a - b)^{2}}{a(a - b)}$.
+
+\Item{19.} $\dfrac{(a + b)^{2} - c^{2}}{a^{2} + ab-ac} × \dfrac{a^{2}b^{2}c^{2}}{a^{2} + ab + ac} ÷ \dfrac{b^{2}c^{2}}{abc}$.
+
+\Item{20.} $\dfrac{x^{2} + 7xy + 10y^{2}}{x^{2} + 6xy + 5y^{2}} × \dfrac{x + 1}{x^{2} + 4x + 4} ÷ \dfrac{1}{x + 2}$.
+%% -----File: 107.png---Folio 101-------
+
+\Paragraph{138. Complex Fractions.} A complex fraction is one that
+has a fraction in the numerator, or in the denominator, or
+in both.
+
+The shortest way to reduce to its simplest form a complex
+fraction is to multiply both terms of the fraction by
+the \LCD\ of the fractions contained in the numerator and
+denominator.
+
+\Item{1.} Simplify $\dfrac{3x}{x - \frac{1}{4}}$.
+
+Multiply both terms by~$4$, and we have
+\[
+\frac{12x}{4x - 1}.
+\]
+
+\Item{2.} Simplify $\dfrac{\dfrac{a + x}{a - x} - \dfrac{a - x}{a + x}}{\dfrac{a + x}{a - x} + \dfrac{a - x}{a + x}}$.
+
+The \LCD\ of the fractions in the numerator and denominator
+is
+\[
+(a - x)(a + x).
+\]
+
+Multiply by $(a - x)(a + x)$, and the result is
+\begin{align*}
+&\frac{(a + x)^{2} - (a - x)^{2}}{(a + x)^{2} + (a - x)^{2}} \\
+&\qquad= \frac{(a^{2} + 2ax + x^{2}) - (a^{2} - 2ax + x^{2})}
+ {(a^{2} + 2ax + x^{2}) + (a^{2} - 2ax + x^{2})} \\
+&\qquad= \frac{a^{2} + 2ax + x^{2} - a^{2} + 2ax - x^{2}}
+ {a^{2} + 2ax + x^{2} + a^{2} - 2ax + x^{2}} \\
+&\qquad= \frac{4ax}{2a^{2} + 2x^{2}} \\
+&\qquad= \frac{2ax}{a^{2} + x^{2}}.
+\end{align*}
+%% -----File: 108.png---Folio 102-------
+
+\Exercise{50.}
+
+Reduce to the simplest form:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{\dfrac{x}{b} + \dfrac{y}{b}}{\dfrac{z}{b}}$.
+
+\Item{2.} $\dfrac{x + \dfrac{y}{4}}{x - \dfrac{y}{3}}$.
+
+\Item{3.} $\dfrac{\dfrac{ab}{7} - 3d}{3c - \dfrac{ab}{d}}$.
+
+\Item{4.} $\dfrac{1 + \dfrac{1}{x + 1}}{1 - \dfrac{1}{x - 1}}$.
+
+\Item{5.} $\dfrac{\dfrac{2m + x}{m + x} - 1}{1 - \dfrac{x}{m + x}}$.
+
+\Item{6.} $\dfrac{\dfrac{x + y}{x^{2} - y^{2}}}{\dfrac{x - y}{x + y}}$.
+
+\Item{7.} $\dfrac{a + \dfrac{ab}{a - b}}{a - \dfrac{ab}{a + b}}$.
+
+\Item{8.} $\dfrac{9a^{2} - 64}{a - 1 - \dfrac{a + 4}{4}}$.
+
+\Item{9.} $\dfrac{\dfrac{1}{x} + \dfrac{1}{y}}{\dfrac{1}{x} - \dfrac{1}{y}}$.
+
+\Item{10.} $\dfrac{x + 3 + \dfrac{2}{x}}{1 + \dfrac{3}{x} + \dfrac{2}{x^{2}}}$.
+
+\Item{11.} $\dfrac{\dfrac{1}{x} - \dfrac{2}{x^{2}} + \dfrac{1}{x^{3}}}{\dfrac{(1 - x)^{2}}{x^{2}}}$.
+
+\Item{12.} $\dfrac{x^{2} - x-6}{1 - \dfrac{4}{x^{2}}}$.
+
+\Item{13.} $\dfrac{a^{2} - a + \dfrac{a - 1}{a + 1}}{a + \dfrac{1}{a + 1}}$.
+
+\Item{14.} $\dfrac{\dfrac{4a(a - x)}{a^{2} - x^{2}}}{\dfrac{a - x}{a + x}}$.
+\end{multicols}
+%% -----File: 109.png---Folio 103-------
+
+
+\Chapter{X.}{Fractional Equations.}
+
+\Paragraph{139. To Reduce Equations containing Fractions.}
+
+\Item{1.} Solve $\dfrac{x}{3} - \dfrac{x - 1}{11} = x - 9$.
+\begin{Soln}
+Multiply by~$33$, the \LCM\ of the denominators.
+\begin{DPalign*}
+\lintertext{\indent Then,}
+11x - 3x + 3 &= 33x - 297. \\
+\lintertext{\indent Transpose,}
+11x - 3x - 33x &= - 297 - 3. \\
+\lintertext{\indent Combine,}
+- 25x &= - 300. \\
+\lintertext{\indent Divide by~$-25$,}
+x &= 12.
+\end{DPalign*}
+\end{Soln}
+
+\begin{Remark}[Note.] Since the minus sign precedes the second fraction, in removing
+the denominator, the~$+$ (understood) before~$x$, the first term
+of the numerator, is changed to~$-$, and the~$-$ before~$1$, the second
+term of the numerator, is changed to~$+$.
+\end{Remark}
+
+\Dictum{To clear an equation of fractions}, therefore,
+\begin{Theorem}
+Multiply each term by the \LCM\ of the denominators.
+\end{Theorem}
+
+If a fraction is preceded by a \textbf{minus sign}, \emph{the sign of
+every term of the numerator must be changed when the
+denominator is removed}.
+
+\Item{2.} Solve $\dfrac{x + 1}{4} - \frac{1}{5}(x - 1) = 1$.
+\begin{Soln}
+Multiply by~$20$, the \LCD
+\begin{DPalign*}
+5x + 5 - 4(x - 1) &= 20. \\
+5x + 5 - 4x + 4 &= 20. \\
+\lintertext{\indent Transpose,}
+5x - 4x &= 20 - 5 - 4. \\
+\lintertext{\indent Combine,}
+x &= 11.
+\end{DPalign*}
+\end{Soln}
+%% -----File: 110.png---Folio 104-------
+
+\Item{3.} Solve
+\[
+7x - \frac{(2x - 3)(3x - 5)}{5} = \frac{153}{10} - \frac{(4x - 5)(3x - 1)}{10}.
+\]
+\begin{Soln}
+Multiply by~$10$, the \LCD, and we have
+\[
+70x - 2(2x - 3)(3x - 5) = 153 - (4x - 5) (3x - 1).
+\]
+
+Find the products of $(2x - 3)(3x - 5)$ and $(4x - 5)(3x - 1)$.
+\[
+70x - 2(6x^{2} - 19x + 15) = 153 - (12x^{2} - 19x + 5).
+\]
+
+Remove the parentheses,
+\[
+70x - 12x^{2} + 38x - 30 = 153 - 12x^{2} + 19x - 5.
+\]
+
+Cancel the~$-12x^{2}$ on each side and transpose,
+\begin{DPalign*}
+70x + 38x - 19x &= 153 + 30 - 5. \\
+\lintertext{\indent Combine,}
+89x &= 178. \\
+\lintertext{\indent Divide by~$89$,}
+x &= 2.
+\end{DPalign*}
+\end{Soln}
+
+\Item{4.} Solve $\dfrac{2x + 1}{2x - 1} - \dfrac{2x - 1}{2x + 1} = \dfrac{8}{4x^{2} - 1}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Since}
+4x^{2} - 1 &= (2x + 1)(2x - 1), \\
+\lintertext{the \LCD}
+ &= (2x + 1)(2x - 1).
+\end{DPalign*}
+Multiply by the \LCD, and we have,
+\begin{DPalign*}
+4x^{2} + 4x + 1-(4x^{2} - 4x + 1) &= 8. \\
+\therefore 4x^{2} + 4x + 1 - 4x^{2} + 4x - 1 &= 8. \\
+\therefore 8x &= 8. \\
+\therefore x &= 1.
+\end{DPalign*}
+\end{Soln}
+
+\Item{5.} Solve $\dfrac{4}{x + 1} - \dfrac{x + 1}{x - 1} + \dfrac{x^{2} - 3}{x^{2} - 1} = 0$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Since}
+x^{2} - 1 &= (x + 1)(x - 1) \\
+\lintertext{the \LCD}
+ &= (x + 1)(x - 1).
+\end{DPalign*}
+
+Multiply by the \LCD, $x^{2} - 1$, and we have,
+\begin{DPalign*}
+4(x - 1) - (x + 1)(x + 1) + x^{2} - 3 &= 0. \\
+\therefore 4x - 4 - x^{2} - 2x - 1 + x^{2} - 3 &= 0. \\
+\therefore 2x &= 8. \\
+\therefore x &= 4.
+\end{DPalign*}
+\end{Soln}
+%% -----File: 111.png---Folio 105-------
+
+%[** TN: Force page break in both print and screen layout]
+\newpage
+\Exercise{51.}
+
+Solve:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{x - 1}{2} = \dfrac{x + 1}{3}$.
+
+\Item{2.} $\dfrac{3x - 1}{4} = \dfrac{2x + 1}{3}$.
+
+\Item{3.} $\dfrac{6x - 19}{2} = \dfrac{2x - 11}{3}$.
+
+\Item{4.} $\dfrac{7x - 40}{8} = \dfrac{9x - 80}{10}$.
+\end{multicols}
+%[** TN: Move end of two-column layout up six questions]
+
+\Item{5.} $\dfrac{3x - 116}{4} + \dfrac{180 - 5x}{6} = 0$.
+
+\Item{6.} $\dfrac{3x - 4}{2} - \dfrac{3x - 1}{16} = \dfrac{6x - 5}{8}$.
+
+\Item{7.} $\dfrac{x - 1}{8} - \dfrac{x + 1}{18} = 1$.
+
+\Item{8.} $\dfrac{60 - x}{14} - \dfrac{3x - 5}{7} = \dfrac{3x}{4}$.
+
+\Item{9.} $\dfrac{3x - 1}{11} - \dfrac{2 - x}{10} = \dfrac{6}{5}$.
+
+\Item{10.} $\dfrac{4x}{x + 1} - \dfrac{x}{x - 2} = 3$.
+
+\Item{11.} $\dfrac{2x + 1}{4} - \dfrac{4x - 1}{10} + 1 - \frac{1}{4} = 0$.
+
+\Item{12.} $\dfrac{x - 1}{5} - \dfrac{43 - 5x}{6} - \dfrac{3x - 1}{8} = 0$.
+
+\Item{13.} $\dfrac{1}{x + 7} = \dfrac{2}{x + 1} - \dfrac{1}{x + 3}$.
+
+\Item{14.} $\dfrac{1}{x + 4} + \dfrac{2}{x + 6} - \dfrac{3}{x + 5} = 0$.
+
+\Item{15.} $\dfrac{4}{x^{2} - 1} + \dfrac{1}{x - 1} + \dfrac{1}{x + 1} = 0$.
+
+\Item{16.} $\dfrac{3x + 1}{4} - \dfrac{5x - 4}{7} = 12 - 2x - \dfrac{x - 2}{3}$.
+
+\Item{17.} $\frac{1}{8}(5x + 3) - \frac{1}{3}(3 - 4x) + \frac{1}{6}(9 - 5x) = \frac{1}{2}(31 - x)$.
+
+\Item{18.} $\frac{1}{15} (34x - 56) - \frac{1}{5}(7x - 3) - \frac{1}{3}(7x - 5) = 0$.
+%% -----File: 112.png---Folio 106-------
+
+\Exercise{52.}
+
+Solve:
+
+\Item{1.} $\frac{2}{3}(x + 1) - \frac{1}{7}(x + 5) = 1$.
+
+\Item{2.} $\frac{6}{7}(x - 9) - \frac{1}{3}(5 - x) + 3x + 1 = 0$.
+
+\Item{3.} $\frac{1}{3}(5x - 24) + \frac{1}{7}(x - 2) - 2(x - 1) = 0$.
+
+\Item{4.} $\dfrac{x + 3}{4} + \dfrac{7x - 2}{5} = \dfrac{5x - 1}{4} + \dfrac{5x + 4}{9}$.
+
+\Item{5.} $\dfrac{x + 1}{3} - \dfrac{x - 1}{4} = \dfrac{x - 2}{5} - \dfrac{x - 3}{6} + \dfrac{31}{60}$.
+
+\Item{6.} $\dfrac{(2x - 1)(2 - x)}{2} + x^{2} - \dfrac{1 + 3x}{2} = 0$.
+
+\Item{7.} $\dfrac{6x - 11}{4} - \dfrac{3 - 4x}{6} = \dfrac{4}{3} - \dfrac{x}{8}$.
+
+\Item{8.} $\dfrac{x + 6}{4} - \dfrac{16 - 3x}{12} = 4\frac{1}{6}$.
+
+\Item{9.} $x - \dfrac{x - 2}{3} = \dfrac{x + 23}{4} - \dfrac{10 + x}{5}$.
+
+\Item{10.} $\dfrac{5x + 3}{x - 1} + \dfrac{2x - 3}{2x - 1} = 6$.
+
+\Item{11.} $\dfrac{3x}{4x + 1} + 1 = 2 - \dfrac{x}{2(2x - 1)}$.
+
+\Item{12.} $\dfrac{8x + 7}{5x + 4} - 1 = 1 - \dfrac{2x}{5x + 1}$.
+
+\Item{13.} $\dfrac{x + 1}{2(x - 1)} - \dfrac{x - 1}{x + 1} = \dfrac{17 - x^{2}}{2(x^{2} - 1)}$.
+%% -----File: 113.png---Folio 107-------
+
+\Paragraph{140.} If the denominators contain both simple and compound
+expressions, it is generally best to remove the simple
+expressions first, and then the compound expressions. After
+each multiplication the result should be reduced to the
+simplest form.
+
+\Item{1.} Solve $\dfrac{4x + 3}{10} - \dfrac{2x + 3}{5x - 1} = \dfrac{2x - 1}{5}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Multiply by~$10$,}
+4x + 3 - \frac{10(2x + 3)}{5x - 1} &= 4x - 2. \\
+\lintertext{\indent Transpose,}
+4x + 3 - 4x + 2 &= \frac{10(2x + 3)}{5x - 1}. \\
+\lintertext{\indent Combine,}
+5 &= \frac{10(2x + 3)}{5x - 1}. \displaybreak[1] \\
+\lintertext{\indent Divide by~$5$,}
+1 &= \frac{2(2x + 3)}{5x - 1}. \\
+\lintertext{\indent Multiply by $5x - 1$,}
+5x - 1 &= 4x + 6. \\
+\lintertext{\indent Transpose and combine,}
+x &= 7.
+\end{DPalign*}
+\end{Soln}
+
+\Exercise{53.}
+
+Solve:
+
+\Item{1.} $\dfrac{10x + 13}{18} - \dfrac{x + 2}{x - 3} = \dfrac{5x - 4}{9}$.
+
+\Item{2.} $\dfrac{6x + 7}{10} - \dfrac{3x + 1}{5} = \dfrac{x - 1}{3x - 4}$.
+
+\Item{3.} $\dfrac{11x - 12}{14} - \dfrac{11x - 7}{19x + 7} = \dfrac{22x - 36}{28}$.
+
+\Item{4.} $\dfrac{2x - 1}{5} + \dfrac{2x - 3}{17x - 12} = \dfrac{4x - 3}{10}$.
+
+\Item{5.} $\dfrac{11x - 13}{7} - \dfrac{13x + 7}{3x + 7} = \dfrac{22x - 75}{14}$.
+
+\Item{6.} $\dfrac{6x - 13}{2x + 3} + \dfrac{6x + 7}{9} - \dfrac{2x + 4}{3} = 0$.
+%% -----File: 114.png---Folio 108-------
+
+\Paragraph{141. Literal Equations.} Literal equations are equations
+in which some or all of the known numbers are represented
+by letters; the numbers regarded as known numbers are
+usually represented by the \emph{first} letters of the alphabet.
+
+\Item{1.} Solve $\dfrac{x + a}{x - b} + \dfrac{x + b}{x - a} = 2$.
+\begin{Soln}
+Multiply by $(x - a)(x - b)$,
+\begin{DPalign*}
+\llap{$(x + a)(x - a) + (x + b)(x - b)$} &= 2(x - a)(x - b), \\
+\lintertext{or}
+x^{2} - a^{2} + x^{2} - b^{2} &= 2x^{2} - 2ax - 2bx + 2ab. \displaybreak[1] \\
+\lintertext{\indent Transpose,}
+x^{2} + x^{2} - 2x^{2} + 2ax + 2bx &= a^{2} + 2ab + b^{2}\Add{.} \displaybreak[1] \\
+\lintertext{\indent Combine,}
+2ax + 2bx &= a^{2} + 2ab + b^{2}, \\
+\lintertext{or}
+2(a + b)x &= a^{2} + 2ab + b^{2}. \displaybreak[1] \\
+\lintertext{\indent \rlap{Divide by~$a + b$,}}
+2x &= a + b\Add{,} \\
+\therefore x &= \frac{a + b}{2}.
+\end{DPalign*}
+\end{Soln}
+
+\Exercise{54.}
+
+Solve:
+
+\Item{1.} $a(x - a) = b(x - b)$.
+
+\Item{2.} $(a + b)x + (a - b)x = a^{2}$.
+
+\Item{3.} $(a + b)x - (a - b)x = b^{2}$.
+
+\Item{4.} $(2x - a) + (x - 2a) = 3a$.
+
+\Item{5.} $(x + a + b) + (x + a - b) = 2b$.
+
+\Item{6.} $(x - a)(x - b) = x(x + c)$.
+
+\Item{7.} $x^{2} + b^{2} = (a - x)(a - x)$.
+
+\Item{8.} $(a + b)(2 - x) = (a - b)(2 + x)$.
+
+\Item{9.} $(x - a)(2x - a) = 2(x - b)^{2}$.
+
+\Item{10.} $(a + bx)(c + d) = (a + b)(c + dx)$.
+
+\Item{11.} $\dfrac{x}{a - b} - \dfrac{3a}{a + b} = \dfrac{bx}{a^{2} - b^{2}}$.
+%% -----File: 115.png---Folio 109-------
+
+\PrintBreak
+\Paragraph{142. Problems involving Fractional Equations.}
+
+\Exercise{55.}
+
+Ex. The sum of the third and fifth parts of a certain
+number exceeds two times the difference of the fourth and
+sixth parts by~$22$. Find the number.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number\Add{.}} \\
+\lintertext{\indent Then}
+\frac{x}{3} + \frac{x}{5} &= \text{the sum of its third and fifth parts,} \\
+\frac{x}{4} - \frac{x}{6} &= \text{the difference of its fourth and sixth parts,} \\
+2\left(\frac{x}{4} - \frac{x}{6}\right)
+ &= \text{$2$~times the difference of} \\
+ &\qquad\text{its fourth and sixth parts,}
+\end{DPalign*}
+\begin{DPalign*}
+\frac{x}{3} + \frac{x}{5} - 2\left(\frac{x}{4} - \frac{x}{6}\right)
+ &= \text{the given excess.} \\
+\lintertext{\indent But}
+22 &= \text{the given excess.} \\
+\therefore \frac{x}{3} + \frac{x}{5} - 2\left(\frac{x}{4} - \frac{x}{6}\right)
+ &= 22.
+\end{DPalign*}
+
+Multiply by~$60$ the \LCD\ of the fractions.
+\begin{DPalign*}
+20x + 12x - 30x + 20x &= 60 × 22. \\
+\lintertext{\indent Combining,}
+22x &= 60 × 22\Add{,} \\
+\therefore x &= 60.
+\end{DPalign*}
+
+The required number, therefore, is~$60$.
+\end{Soln}
+
+\Item{1.} The difference between the fifth and seventh parts of
+a certain number is~$2$. Find the number.
+
+\Item{2.} One-half of a certain number exceeds the sum of its
+fifth and seventh parts by~$11$. Find the number.
+
+\Item{3.} The sum of the third and sixth parts of a certain
+number exceeds the difference of its sixth and ninth parts
+by~$16$. Find the number.
+
+\Item{4.} There are two consecutive numbers, $x$~and~$x + 1$, such
+that one-half the larger exceeds one-third the smaller
+number by~$10$. Find the numbers.
+%% -----File: 116.png---Folio 110-------
+
+\Exercise{56.}
+
+Ex. The sum of two numbers is~$63$, and if the greater
+is divided by the smaller number, the quotient is~$2$ and the
+remainder~$3$. Find the numbers.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the greater number.} \\
+\lintertext{\indent Then}
+63 - x &= \text{the smaller number.} \\
+\text{Since the quotient}
+ &= \frac{\text{Dividend} - \text{Remainder}}{\text{Divisor}},
+\end{DPalign*}
+and since, in this problem, the dividend is~$x$, the remainder is~$3$,
+and the divisor is~$63 - x$, we have
+\begin{DPalign*}
+\frac{x - 3}{63 - x} = 2. \\
+\lintertext{\indent Solving,}
+x &= 43.
+\end{DPalign*}
+
+The two numbers, therefore, are $43$~and~$20$.
+\end{Soln}
+
+\Item{1.} The sum of two numbers is~$100$, and if the greater is
+divided by the smaller number, the quotient is~$4$ and the
+remainder~$5$. Find the numbers.
+
+\Item{2.} The sum of two numbers is~$124$, and if the greater is
+divided by the smaller number, the quotient is~$4$ and the
+remainder~$4$. Find the numbers.
+
+\Item{3.} The difference of two numbers is~$49$, and if the greater
+is divided by the smaller, the quotient is~$4$ and the remainder~$4$.
+Find the numbers.
+
+\Item{4.} The difference of two numbers is~$91$, and if the
+greater is divided by the smaller, the quotient is~$8$ and the
+remainder~$7$. Find the numbers.
+
+\Item{5.} Divide $320$ into two parts such that the smaller part
+is contained in the larger part $11$~times, with a remainder
+of~$20$.
+%% -----File: 117.png---Folio 111-------
+
+\Exercise{57.}
+
+Ex. Eight years ago a boy was one-fourth as old as he
+will be one year hence. How old is he now?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of years old he is now.} \\
+\lintertext{\indent Then}
+x - 8 &= \text{the number of years old he was eight years ago,} \\
+\lintertext{and}
+x + 1 &= \text{the number of years old he will be one year hence.}
+\end{DPalign*}
+\begin{DPalign*}
+\therefore x - 8 &= \tfrac{1}{4}(x + 1). \\
+\lintertext{\indent Solving,}
+x &= 11.
+\end{DPalign*}
+
+Therefore the boy is $11$~years old.
+\end{Soln}
+
+\Item{1.} A son is one-fourth as old as his father. In $24$~years
+he will be one-half as old. Find the age of the son.
+
+\Item{2.} B's~age is one-sixth of A's~age. In $15$~years B's~age
+will be one-third of A's~age. Find their ages.
+
+\Item{3.} The sum of the ages of A~and~B is $30$~years, and $5$~years
+hence B's~age will be one-third of~A's. Find their
+ages.
+
+\Item{4.} A father is $35$~years old, and his son is one-fourth of
+that age. In how many years will the son be half as old
+as his father?
+
+\Item{5.} A is $60$~years old, and B's~age is two-thirds of~A's.
+How many years ago was B's~age one-fifth of~A's?
+
+\Item{6.} A son is one-third as old as his father. Four years
+ago he was only one-fourth as old as his father. What is
+the age of each?
+
+\Item{7.} A is $50$~years old, and B~is half as old as~A\@. In how
+many years will B be two-thirds as old as~A?
+
+\Item{8.} B~is one-half as old as~A\@. Ten years ago he was
+one-fourth as old as~A\@. What are their present ages?
+
+\Item{9.} The sum of the ages of a father and his son is $80$~years.
+The son's age increased by $5$~years is one-fourth of
+the father's age. Find their ages.
+%% -----File: 118.png---Folio 112-------
+
+\Exercise{58.}
+
+Ex. A~can do a piece of work in $2$~days, and B~can do
+it in $3$~days. How long will it take both together to do
+the work?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of days it will take both together.} \\
+\lintertext{\indent Then}
+\frac{1}{x} &= \text{\emph{the part both together can do in one day},} \\
+\tfrac{1}{2} &= \text{the part A can do in one day,} \\
+\tfrac{1}{3} &= \text{the part B can do in one day,} \\
+\lintertext{and}
+\tfrac{1}{2} + \tfrac{1}{3}
+ &= \text{\emph{the part both together can do in one day}.}
+\end{DPalign*}
+\begin{DPalign*}
+\therefore \frac{1}{2} + \frac{1}{3} &= \frac{1}{x}. \\
+\lintertext{\indent Solving,}
+x &= 1\tfrac{1}{5}.
+\end{DPalign*}
+
+Therefore they together can do the work in $1\frac{1}{5}$~days.
+\end{Soln}
+
+\Item{1.} A~can do a piece of work in $3$~days, B~in $5$~days, and
+C~in $6$~days. How long will it take them to do it working
+together?
+
+\Item{2.} A~can do a piece of work in $5$~days, B~in $4$~days, and
+C~in $3$~days. How long will it take them together to do
+the work?
+
+\Item{3.} A~can do a piece of work in $2\frac{1}{2}$~days, B~in $3\frac{1}{2}$~days,
+and C~in $3\frac{3}{4}$~days. How long will it take them together to
+do the work?
+
+\Item{4.} A~can do a piece of work in $10$~days, B~in $12$~days;
+A~and~B together, with the help of~C, can do the work in
+$4$~days. How long will it take C~alone to do the work?
+
+\Item{5.} A~and~B together can mow a field in $10$~hours, A~and~C
+in $12$~hours, and A~alone in $20$~hours. In what time
+can B~and~C together mow the field?
+
+\Item{6.} A~and~B together can build a wall in $12$~days, A~and~C
+in $15$~days, B~and~C in $20$~days. In what time can they
+build the wall if they all work together?
+
+\begin{Remark}[Hint.] By working \emph{$2$~days each} they build $\frac{1}{12} + \frac{1}{15} + \frac{1}{20}$ of it.
+\end{Remark}
+%% -----File: 119.png---Folio 113-------
+
+\Exercise{59.}
+
+Ex. A cistern can be filled by three pipes in $15$, $20$, and
+$30$~hours, respectively. In what time will it be filled by
+all the pipes together?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of hours it will take all together.} \\
+\lintertext{\indent Then}
+\frac{1}{x} &= \text{the part all together can fill in one hour\Add{.}} \\
+\llap{$\tfrac{1}{15} + \tfrac{1}{20}$} + \tfrac{1}{30}
+ &= \text{the part all together can fill in one hour\Add{.}}
+\end{DPalign*}
+\begin{DPalign*}
+\frac{1}{15} + \frac{1}{20} + \frac{1}{30} &= \frac{1}{x}\Add{.} \\
+\lintertext{\indent Solving,}
+x &= 6 \tfrac{2}{3}\Add{.}
+\end{DPalign*}
+
+Therefore the pipes together can fill it in $6 \frac{2}{3}$~hours.
+\end{Soln}
+
+\Item{1.} A cistern can be filled by three pipes in $16$, $24$, and
+$32$~hours, respectively. In what time will it be filled by
+all the pipes together?
+
+\Item{2.} A tank can be filled by two pipes in $3$~hours and $4$~hours,
+respectively, and can be emptied by a third pipe in
+$6$~hours. In what time will the cistern be filled if the pipes
+are all running together?
+
+\Item{3.} A tank can be filled by three pipes in $1$~hour and $40$
+minutes, $3$~hours and $20$ minutes, and $5$~hours, respectively.
+In what time will the tank be filled if all three pipes are
+running together?
+
+\Item{4.} A cistern can be filled by three pipes in $2\frac{1}{3}$~hours, $3\frac{1}{2}$~hours,
+and $4\frac{2}{3}$~hours, respectively. In what time will the
+cistern be filled if all the pipes are running together?
+
+\Item{5.} A cistern has three pipes. The first pipe will fill the
+cistern in $12$~hours, the second in $20$~hours, and all three
+pipes together will fill it in $6$~hours. How long will it take
+the third pipe alone to fill it?
+%% -----File: 120.png---Folio 114-------
+
+\Exercise{60.}
+
+Ex. A courier who travels $6$~miles an hour is followed,
+after $2$~hours, by a second courier who travels $7\frac{1}{2}$~miles an
+hour. In how many hours will the second courier overtake
+the first?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of hours the first travels.} \\
+\lintertext{\indent Then}
+x - 2 &= \text{the number of hours the second travels,} \\
+6x &= \text{the number of miles the first travels,} \\
+\lintertext{and}
+(x - 2) 7\tfrac{1}{2} &= \text{the number of miles the second travels.}
+\displaybreak[1] \\
+\intertext{\indent They both travel the same distance.}
+\therefore 6x &= (x - 2) 7\tfrac{1}{2}, \\
+\lintertext{or}
+12x &= 15x - 30. \\
+\therefore x &= 10.
+\end{DPalign*}
+
+Therefore the second courier will overtake the first in $10 - 2$, or
+$8$~hours.
+\end{Soln}
+
+\Item{1.} A sets out from Boston and walks towards Portland
+at the rate of $3$~miles an hour. Three hours afterward B
+sets out from the same place and walks in the same direction
+at the rate of $4$~miles an hour. How far from Boston
+will B~overtake~A?
+
+\Item{2.} A courier who goes at the rate of $6\frac{1}{2}$~miles an hour is
+followed, after $4$~hours, by another who goes at the rate of
+$7\frac{1}{2}$~miles an hour. In how many hours will the second
+overtake the first?
+
+\Item{3.} A person walks to the top of a mountain at the rate
+of two miles an hour, and down the same way at the rate
+of $4$~miles an hour. If he is out $6$~hours, how far is it to
+the top of the mountain?
+
+\Item{4.} In going a certain distance, a train travelling at the
+rate of $40$~miles an hour takes $2$~hours less than a train
+travelling $30$~miles an hour. Find the distance.
+%% -----File: 121.png---Folio 115-------
+
+\Exercise{61.}
+
+Ex. A hare takes $4$~leaps to a greyhound's~$3$; but $2$~of
+the greyhound's leaps are equivalent to $3$~of the hare's.
+The hare has a start of $50$~leaps. How many leaps must
+the greyhound take to catch the hare?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+3x &= \text{the number of leaps taken by the greyhound.} \\
+\lintertext{\indent Then}
+4x &= \text{the number of leaps of the hare in the same time.} \\
+%[** TN: Hack to coax spacing]
+\lintertext{\indent Also, l\rlap{et}}
+a &= \text{the number of feet in one leap of the hare.} \displaybreak[1] \\
+\lintertext{\indent Then}
+\frac{3a}{2} &= \text{the number of feet in one leap of the hound.}
+\displaybreak[1] \\
+\lintertext{\indent \rlap{Therefore,}}
+&\quad 3x x \frac{3a}{2} \quad\text{or}\quad
+\frac{9ax}{2} = \text{the whole distance}.
+\end{DPalign*}
+
+As the hare has a start of $50$~leaps, and takes $4x$~leaps more before
+she is caught, and as each leap is $a$~feet,
+\begin{DPalign*}
+(50 + 4x)a &= \text{the whole distance.} \\
+\therefore \frac{9ax}{2} &= (50 + 4x)a. \\
+\lintertext{\indent Multiply by~$2$,}
+9ax &= (100 + 8x)a, \\
+\lintertext{\indent Divide by~$a$,}
+9x &= 100 + 8x, \\
+x &= 100, \\
+\therefore 3x &= 300.
+\end{DPalign*}
+
+Therefore the greyhound must take $300$~leaps.
+\end{Soln}
+
+\Item{1.} A hound makes $3$~leaps while a rabbit makes~$5$; but
+$1$~of the hound's leaps is equivalent to $2$~of the rabbit's.
+The rabbit has a start of $120$~leaps. How many leaps
+will the rabbit take before she is caught?
+
+\Item{2.} A rabbit takes $6$~leaps to a dog's~$5$, and $7$~of the dog's
+leaps are equivalent to $9$~of the rabbit's. The rabbit has
+a start of~$60$ of her own leaps. How many leaps must the
+dog take to catch the rabbit?
+
+\Item{3.} A dog makes $4$~leaps while a rabbit makes~$5$; but $3$~of
+the dog's leaps are equivalent to $4$~of the rabbit's. The
+rabbit has a start of $90$~of the \emph{dog's leaps}. How many
+leaps will each take before the rabbit is caught?
+%% -----File: 122.png---Folio 116-------
+
+\Exercise{62.}
+
+Ex. Find the time between $2$ and $3$~o'clock when the
+hands of a clock are together.
+\begin{Soln}
+At 2 o'clock the hour-hand is 10 minute-spaces ahead of the
+minute-hand.
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{\emph{the number of spaces the minute-hand moves over}.} \\
+\lintertext{\indent The\rlap{n}}
+x - 10 &= \text{the number of spaces the hour-hand moves over.}
+\displaybreak[1] \\
+\intertext{\indent Now, as the minute-hand moves $12$~times as fast as the hour-hand,}
+\llap{$12(x - 10)$} &= \text{\emph{the number of spaces the minute-hand moves over}.}
+\end{DPalign*}
+\begin{DPalign*}
+\therefore 12(x - 10) &= x, \\
+\lintertext{and}
+11x &= 120. \\
+\therefore x &= 10\tfrac{10}{11}.
+\end{DPalign*}
+
+Therefore the time is $10\frac{10}{11}$~minutes past $2$~o'clock.
+\end{Soln}
+
+\Item{1.} Find the time between $5$ and $6$~o'clock when the
+hands of a clock are together.
+
+\Item{2.} Find the time between $2$ and $3$~o'clock when the
+hands of a clock are at right angles to each other.
+
+\begin{Remark}[Hint.] In this case the minute-hand is $15$~minutes ahead of the
+hour-hand.
+\end{Remark}
+
+\Item{3.} Find the time between $2$ and $3$~o'clock when the
+hands of a clock point in opposite directions.
+
+\begin{Remark}[Hint.] In this case the minute-hand is $30$~minutes ahead of the
+hour-hand.
+\end{Remark}
+
+\Item{4.} Find the time between $1$ and $2$~o'clock when the
+hands of a clock are at right angles to each other.
+
+\Item{5.} Find the time between $1$ and $2$~o'clock when the
+hands of a clock point in opposite directions.
+
+\Item{6.} At what time between $7$ and $8$~o'clock are the hands
+of a watch together?
+%% -----File: 123.png---Folio 117-------
+
+\Exercise{63.}
+
+Ex. A rectangle has its length $6$~feet more and its width
+$5$~feet less than the side of its equivalent square. Find the
+dimensions of the rectangle.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of feet in a side of the square.} \\
+\lintertext{\indent Then}
+x + 6 &= \text{the number of feet in the length of the rectangle,} \\
+\lintertext{and}
+x - 5 &= \text{the number of feet in the width of the rectangle.}
+\intertext{Since the area of a rectangle is equal to the product of the number
+of units of length in the length and width of the rectangle,}
+\llap{$(x + 6)(x - 5)$} &= \text{the area of the rectangle in square feet,} \\
+\lintertext{and}
+x × x &= \text{the area of the square in square feet.}
+\end{DPalign*}
+
+But these areas are equal.
+\begin{DPalign*}
+\therefore (x + 6)(x - 5) &= x^{2}. \\
+\lintertext{\indent Solving,}
+x &= 30.
+\end{DPalign*}
+
+Therefore the dimensions of the rectangle are $36$~feet and $25$~feet.
+\end{Soln}
+
+\Item{1.} A rectangle has its length and breadth respectively $7$~feet
+longer and $6$~feet shorter than the side of the equivalent
+square. Find its area.
+
+\Item{2.} The length of a floor exceeds the breadth by $5$~feet.
+If each dimension were $1$~foot more, the area of the floor
+would be $42$~sq.~ft.\ more. Find its dimensions.
+
+\Item{3.} A rectangle whose length is $6$~feet more than its
+breadth, would have its area $35$~sq.~ft.\ more, if each dimension
+were $1$~foot more. Find its dimensions.
+
+\Item{4.} The length of a rectangle exceeds its width by $3$~feet.
+If the length is increased by $3$~feet and the width diminished
+by $2$~feet, the area will not be altered. Find its
+dimensions.
+
+\Item{5.} The length of a floor exceeds its width by $10$~feet
+If each dimension were $2$~feet more, the area would be $144$~sq.~ft.\
+more. Find its dimensions.
+%% -----File: 124.png---Folio 118-------
+
+\Paragraph{143. Formulas and Rules.} When the \emph{given} numbers of a
+problem are represented by letters, the result obtained from
+solving the problem is a general expression which includes
+all problems of that class. Such an expression is called a
+\Defn{formula}, and the translation of this formula into words is
+called a \Defn{rule}.
+
+\Paragraph{144.} We will illustrate by examples.
+
+\Item{1.} The sum of two numbers is~$s$, and their difference~$d$.
+Find the numbers.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the smaller number;} \\
+\lintertext{then}
+x + d &= \text{the larger number.} \displaybreak[1] \\
+\lintertext{\indent Hence}
+x + x + d &= s, \\
+\lintertext{or}
+2x &= s - d. \\
+\therefore x &= \frac{s - d}{2}, \displaybreak[1] \\
+\lintertext{and}
+x + d &= \frac{s - d}{2} + d = \frac{s - d + 2d}{2}, \\
+ &= \frac{s + d}{2}.
+\end{DPalign*}
+
+Therefore the numbers are $\dfrac{s + d}{2}$ and $\dfrac{s - d}{2}$.
+\end{Soln}
+
+As these formulas hold true whatever numbers $s$~and~$d$
+stand for, we have the general rule for finding two numbers
+when their sum and difference are given:
+\begin{Theorem}
+Add the difference to the sum and take half the result for
+the greater number.
+
+Subtract the difference from the sum and take half the
+result for the smaller number.
+\end{Theorem}
+
+\Item{2.} If A~can do a piece of work in $a$~days, and B~can
+do the same work in $b$~days, in how many days can both
+together do it?
+%% -----File: 125.png---Folio 119-------
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the required number of days\Add{.}} \\
+\lintertext{\indent Then,}
+\frac{1}{x} &= \text{\emph{the part both together can do in one day}\Add{.}}
+\displaybreak[1] \\
+\lintertext{\indent Now}
+\frac{1}{a} &= \text{the part A can do in one day,} \\
+\lintertext{and}
+\frac{1}{b} &= \text{the part B can do in one day\Add{,}} \\
+\lintertext{therefore}
+\frac{1}{a} + \frac{1}{b}
+ &= \text{\emph{the part both together can do in one day}}
+\end{DPalign*}
+\begin{DPalign*}
+\frac{1}{a} + \frac{1}{b} &= \frac{1}{x}\Add{.} \\
+\lintertext{\indent Whence}
+x &= \frac{ab}{a + b}\Add{.}
+\end{DPalign*}
+\end{Soln}
+
+The translation of this formula gives the following rule
+for finding the time required by two agents together to
+produce a given result when the time required by each
+agent separately is known.
+\begin{Theorem}
+Divide the product of the numbers which express the units
+of time required by each to do the work by the sum of these
+numbers, the quotient is the time required by both together.
+\end{Theorem}
+
+\Paragraph{145. Interest Formulas.} The elements involved in computation
+of interest are the \emph{principal}, \emph{rate}, \emph{time}, \emph{interest},
+and \emph{amount}.
+\begin{DPalign*}
+\lintertext{\indent Let}
+p &= \text{the principal,} \\
+r &= \text{the interest of \$$1$ for $1$~year, at the given rate,} \\
+t &= \text{the time expressed in years,} \\
+i &= \text{the interest for the given time and rate,} \\
+a &= \text{the amount (sum of principal and interest).}
+\end{DPalign*}
+
+\Paragraph{146. Given the Principal, Rate, and Time. Find the Interest.}
+
+Since $r$ is the interest of~\$$1$ for $1$~year, $pr$~is the interest
+of~\$$p$ for $1$~year, and $prt$~is the interest of~\$$p$ for $t$~years
+\begin{DPgather*}
+i = prt.
+\rintertext{(Formula 1.)}
+\end{DPgather*}
+
+\begin{Theorem}[\textsc{Rule.}] Find the product of the principal, rate, and time\Add{.}
+\end{Theorem}
+%% -----File: 126.png---Folio 120-------
+
+\Paragraph{147. Given the Interest, Rate, and Time. Find the Principal.}
+\begin{DPalign*}
+\lintertext{\indent By formula 1,}
+prt &= i. \\
+\lintertext{\indent Divide by~$rt$,}
+p &= \frac{i}{rt}.
+\rintertext{(Formula 2.)}
+\end{DPalign*}
+
+\begin{Theorem}[\textsc{Rule.}] Divide the interest by the product of the rate and
+time.
+\end{Theorem}
+
+\Paragraph{148. Given the Amount, Rate, and Time. Find the Principal.}
+\begin{DPalign*}
+\lintertext{\indent From formula 1,}
+p + prt &= a, \\
+\lintertext{or}
+p(1 + rt) &= a. \\
+\lintertext{\indent Divide by $1 + rt$,}
+p &= \frac{a}{1 + rt}.
+\rintertext{(Formula 3.)}
+\end{DPalign*}
+
+\begin{Theorem}[\textsc{Rule.}] Divide the amount by $1$~plus the product of the
+rate and time.
+\end{Theorem}
+
+\Paragraph{149. Given the Amount, Principal, and Rate. Find the Time.}
+\begin{DPalign*}
+\lintertext{\indent From formula 1,}
+p + prt &= a. \\
+\lintertext{\indent Transpose~$p$,}
+prt &= a - p. \\
+\lintertext{\indent Divide by~$pr$,}
+t &= \frac{a - p}{pr}.
+\rintertext{(Formula 4.)}
+\end{DPalign*}
+
+\begin{Theorem}[\textsc{Rule.}] Subtract the principal from the amount, and
+divide the result by the product of the principal and rate.
+\end{Theorem}
+
+\Paragraph{150. Given the Amount, Principal, and Time. Find the Rate.}
+\begin{DPalign*}
+\lintertext{\indent From formula 1,}
+p + prt &= a. \\
+\lintertext{\indent Transpose~$p$,}
+prt &= a - p. \\
+\lintertext{\indent Divide by~$pt$,}
+r &= \frac{a - p}{pt}.
+\rintertext{(Formula 5.)}
+\end{DPalign*}
+
+\begin{Theorem}[\textsc{Rule.}] Subtract the principal from the amount, and
+divide the result by the product of the principal and time.
+\end{Theorem}
+%% -----File: 127.png---Folio 121-------
+
+\Exercise{64.}
+
+Solve the following examples by the preceding formulas:
+
+\Item{1.} The sum of two angles is $120°\, 30'\, 30''$ and their difference
+$59°\, 30'\, 30''$. Find the angles.
+
+\Item{2.} Find the interest of \$$1000$ for $3$~years and $4$~months
+at~$4$\%.
+
+\Item{3.} Find the principal that will amount to \$$2280$ in $3$~years
+and $6$~months at~$4$\%.
+
+\Item{4.} Find the principal that will produce \$$280$ interest in
+$2$~years and $4$~months at~$3$\%.
+
+\Item{5.} Find the principal that will produce \$$270$ interest
+in $1$~year and $6$~months at~$6$\%.
+
+\Item{6.} Find the principal that will amount to \$$590$ in $4$~years
+at~$4\frac{1}{2}$\%.
+
+\Item{7.} Find the rate if the amount of \$$250$ for $4$~years
+is~\$$300$.
+
+\Item{8.} Find the rate if \$$1000$ amounts to \$$2000$ in $16$~years
+and $8$~months.
+
+\Item{9.} Find the time required for the interest on \$$400$ to
+be \$$54$ at~$4\frac{1}{2}$\%.
+
+\Item{10.} Find the time required for \$$160$ to amount to \$$250$
+at~$6$\%.
+
+\Item{11.} How much money must be invested at~$5$\% to yield
+an annual income of~\$$1250$?
+
+\Item{12.} Find the principal that will produce \$$100$ a month
+if invested at $6$\%~per annum.
+
+\Item{13.} Find the rate if the interest on \$$1000$ for $8$~months
+is~\$$40$.
+
+\Item{14.} Find the time for a sum of money on interest at~$5$\%
+to double itself.
+%% -----File: 128.png---Folio 122-------
+
+
+\Chapter{XI.}{Simultaneous Equations of the First
+Degree.}
+
+\Paragraph{151.} If we have two unknown numbers and but one relation
+between them, we can find an unlimited number of
+pairs of values for which the given relation will hold true.
+Thus, if $x$~and~$y$ are unknown, and we have given only the
+one relation $x + y = 10$, we can \emph{assume} any value for~$x$,
+and then from the relation $x + y = 10$ find the corresponding
+value of~$y$. For from $x + y = 10$ we find $y = 10 - x$.
+If $x$~stands for~$1$, $y$~stands for~$9$; if $x$~stands for~$2$, $y$~stands
+for~$8$; if $x$~stands for~$-2$, $y$~stands for~$12$; and so on without
+end.
+
+\Paragraph{152.} We may, however, have two equations that express
+\emph{different} relations between the two unknown numbers.
+Such equations are called \Defn{independent equations}. Thus,
+$x + y = 10$ and $x - y = 2$ are independent equations, for
+they evidently express \emph{different} relations between $x$~and~$y$.
+
+\Paragraph{153.} Independent equations involving the \emph{same} unknown
+numbers are called \Defn{simultaneous equations}.
+
+If we have two unknown numbers, and two independent
+equations involving them, there is but \emph{one} pair of values
+which will hold true for both equations. Thus, if besides
+the relation $x + y = 10$, we have also the relation $x - y = 2$,
+the only pair of values for which both equations will hold
+true is the pair $x = 6$, $y = 4$.
+
+Observe that in this problem $x$~stands for the same number
+in \emph{both} equations; so also does~$y$.
+%% -----File: 129.png---Folio 123-------
+
+\Paragraph{154.} Simultaneous equations are solved by combining
+the equations so as to obtain a single equation with one
+unknown number.
+
+This process is called \Defn{Elimination}.
+
+\Paragraph{155. Elimination by Addition or Subtraction.}
+
+%[** TN: Omitted large brace for grouping, horizontal bar indicating summation]
+\Item{1.} Solve:
+\begin{alignat*}{2}
+5x &- 3y &&= 20
+\Tag{(1)} \\
+2x &+ 5y &&= 39
+\Tag{(2)}
+\end{alignat*}
+\begin{Soln}
+Multiply (1) by~$5$, and (2) by~$3$,
+\begin{DPalign*}
+25x - 15y &= 100
+\Tag{(3)} \\
+ 6x + 15y &= 117
+\Tag{(4)} \\
+\lintertext{\indent Add (3) and (4),}
+31x \PadTo{{} + 15y}{} &= 217 \\
+\therefore x &= 7.
+\intertext{\indent Substitute the value of~$x$ in~(2),}
+14 + 5y &= 39. \\
+5y &= 25. \\
+\therefore y &= 5.
+\end{DPalign*}
+
+In this solution $y$~is eliminated by \emph{addition}.
+\end{Soln}
+
+\Item{2.} Solve:
+\begin{alignat*}{2}
+6x &+ 35y &&= 177
+\Tag{(1)} \\
+8x &- 21y &&= \Z33
+\Tag{(2)}
+\end{alignat*}
+\begin{Soln}
+Multiply (1) by~$4$, and (2) by~$3$,
+\begin{DPalign*}
+24x + 140y &= 708
+\Tag{(3)} \\
+24x - \Z63y &= \Z99
+\Tag{(4)} \\
+\lintertext{\indent Subtract,}
+203y &= 609 \\
+\therefore y &= 3. \\
+\intertext{\indent Substitute the value of~$y$ in (2),}
+8x - 63 &= 33. \\
+8x &= 96. \\
+\therefore x &= 12.
+\end{DPalign*}
+
+In this solution $x$~is eliminated by \emph{subtraction}.
+\end{Soln}
+%% -----File: 130.png---Folio 124-------
+
+\Paragraph{156.} \Dictum{To eliminate by addition or subtraction}, therefore,
+\begin{Theorem}
+Multiply the equations by such numbers as will make the
+coefficients of one of the unknown numbers equal in the
+resulting equations.
+
+Add the resulting equations if these equal coefficients have
+unlike signs; subtract one from the other if these equal coefficients
+have like signs.
+\end{Theorem}
+
+\begin{Remark}[Note.] It is generally best to select the letter to be eliminated
+which requires the smallest multipliers to make its coefficients equal;
+and the smallest multiplier for each equation is found by dividing
+the \LCM\ of the coefficients of this letter by the given coefficient
+in that equation. Thus, in example~2, the \LCM\ of $6$~and~$8$ (the
+coefficients of~$x$) is~$24$, and hence the smallest multipliers of the two
+equations are $4$~and~$3$, respectively.
+\end{Remark}
+
+Sometimes the solution is simplified by first adding the
+given equations, or by subtracting one from the other.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Ex.}
+x + 49y &= 51
+\Tag{(1)} \\
+49x + \PadTo{49y}{y} &= 99
+\Tag{(2)} \displaybreak[1] \\
+\lintertext{\indent Add (1) and (2),}
+50x + 50y &= 150
+\Tag{(3)} \displaybreak[1] \\
+\lintertext{\indent Divide (3) by~$50$,}
+x + y &= 3.
+\Tag{(4)} \displaybreak[1] \\
+\lintertext{\indent \rlap{Subtract (4) from (1),}}
+48y &= 48. \\
+\therefore y &= 1. \displaybreak[1] \\
+\lintertext{\indent \rlap{Subtract (4) from (2),}}
+48x &= 96. \\
+\therefore x &= 2.
+\end{DPalign*}
+\end{Soln}
+
+\Exercise{65.}
+
+Solve by addition or subtraction:
+\begin{multicols}{2}
+\Item{1.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 5x &+ 4y &&= 14 \\
+17x &- 3y &&= 31
+\end{alignedat}\right\}$}
+
+\Item{2.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 3x &- 2y &&= \Z5 \\
+ 2x &+ 5y &&= 16
+\end{alignedat}\right\}$}
+
+\Item{3.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 2x &- 3y &&= \Z7 \\
+ 5x &+ 2y &&= 27
+\end{alignedat}\right\}$}
+
+\Item{4.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 7x &+ 6y &&= 20 \\
+ 2x &+ 5y &&= \Z9
+\end{alignedat}\right\}$}
+
+\Item{5.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ x &+ 5y &&= 11 \\
+ 3x &+ 2y &&= \Z7
+\end{alignedat}\right\}$}
+
+\Item{6.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 3x &- 5y &&= 13 \\
+ 4x &- 7y &&= 17
+\end{alignedat}\right\}$}
+%% -----File: 131.png---Folio 125-------
+
+\Item{7.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 8x &- \Z y &&= \Z3 \\
+ 7x &+ 2y &&= 63
+\end{alignedat}\right\}$}
+
+\Item{8.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 5x &- 4y &&= \Z7 \\
+ 7x &+ 3y &&= 70
+\end{alignedat}\right\}$}
+
+\Item{9.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ x &+ 21y &&= \Z2 \\
+ 2x &+ 27y &&= 19
+\end{alignedat}\right\}$}
+
+\Item{10.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 6x &- 13y &&= -1 \\
+ 5x &- 12y &&= -2
+\end{alignedat}\right\}$}
+
+\Item{11.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 7x &+ \Z y &&= 265 \\
+ 3x &- 5y &&= \Z\Z5
+\end{alignedat}\right\}$}
+
+\Item{12.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 2x &+ 3y &&= \Z7 \\
+ 8x &- 5y &&= 11
+\end{alignedat}\right\}$}
+
+\Item{13.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 5x &+ 7y &&= 19 \\
+ 7x &+ 4y &&= 15
+\end{alignedat}\right\}$}
+
+\Item{14.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+11x &- 12y &&= \Z9 \\
+ 4x &+ \Z5y &&= 22
+\end{alignedat}\right\}$}
+
+\Item{15.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ x &+ 8y &&= 17 \\
+ 7x &- 3y &&= \Z1
+\end{alignedat}\right\}$}
+
+\Item{16.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 4x &+ 3y &&= 25 \\
+ 5x &- 4y &&= \Z8
+\end{alignedat}\right\}$}
+\end{multicols}
+
+Clear of fractions and solve:
+\begin{multicols}{2}
+\Item{17.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{2x}{3} &- \frac{5y}{4} &&= 3 \\
+ \frac{7x}{4} &- \frac{5y}{3} &&= \frac{43}{3}
+\end{alignedat}\right\}$}
+
+\Item{18.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{7x}{6} &+ \frac{6y}{7} &&= 32 \\
+ \frac{5x}{4} &- \frac{2y}{3} &&= 1
+\end{alignedat}\right\}$}
+
+\Item{19.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned}
+ \frac{x + y}{4} - \frac{7x - 5y}{11} &= 3 \\
+ \frac{x}{5} - \frac{2y}{7} + 1 &= 0
+\end{aligned}\right\}$}
+
+\Item{20.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned}
+ \frac{ 6x + 7y}{2} &= 22 \\
+ \frac{55y - 2x}{5} &= 20
+\end{aligned}\right\}$}
+\end{multicols}
+
+\Item{21.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{x + y}{2} &- \frac{x - y}{3} &&= \Z8 \\
+ \frac{x + y}{3} &+ \frac{x - y}{4} &&= 11
+\end{alignedat}\right\}$}
+
+\Item{22.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned}
+ \frac{8x - 5y}{7} + \frac{11y - 4x}{5} &= 4 \\
+ \frac{17x - 13y}{5} + \frac{2x}{3} &= 7
+\end{aligned}\right\}$}
+%% -----File: 132.png---Folio 126-------
+
+\Item{23.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{ 5x - 3y}{3} &+ \frac{7x - 5y}{11} &&= 4 \\
+ \frac{15y - 3x}{7} &+ \frac{7y - 3x}{5} &&= 4
+ \end{alignedat}\right\}$}
+
+\Item{24.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned}
+ \frac{2x - 3}{4} - \frac{y - 8}{5} &= \frac{y + 3}{4} \\
+ \frac{x - 7}{3} + \frac{4y + 1}{11} &= 3
+ \end{aligned}\right\}$}
+
+\Item{25.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{x - 2y}{6} &- \frac{x + 3y}{4} &&= \frac{3}{2} \\
+ \frac{2x - y}{6} &- \frac{3x + y}{4} &&= \frac{5y}{4}
+ \end{alignedat}\right\}$}
+
+\Item{26.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{x}{a + b} &+ \frac{y}{a - b} &&= \frac{1}{a - b} \\
+ \frac{x}{a + b} &- \frac{y}{a - b} &&= \frac{1}{a + b}
+ \end{alignedat}\right\}$}
+
+\begin{Remark}[Note.] To find $x$ in problem~26, add the equations; to find~$y$,
+subtract one from the other. Do not clear of fractions.
+\end{Remark}
+
+\Paragraph{157. Problems involving Two Unknown Numbers.}
+
+Ex. If A gives B \$$10$, B~will have three times as much
+money as~A\@. If B gives A \$$10$, A~will have twice as
+much money as~B\@. How much has each?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of dollars A has,} \\
+\lintertext{and}
+y &= \text{the number of dollars B has.} \displaybreak[1] \\
+\intertext{\indent Then, after A gives B \$$10,$}
+x - 10 &= \text{the number of dollars A has,} \\
+y + 10 &= \text{the number of dollars B has.} \displaybreak[1] \\
+\intertext{\indent Since B's money is now $3$~times A's, we have,}
+y + 10 &= 3(x - 10).
+\Tag{(1)} \displaybreak[1] \\
+%% -----File: 133.png---Folio 127-------
+\intertext{\indent If B gives A \$$10$,}
+x + 10 &= \text{the number of dollars A has,} \\
+y - 10 &= \text{the number of dollars B has.} \displaybreak[1] \\
+\intertext{\indent Since A's money is now $2$~times B's, we have}
+x + 10 &= 2(y - 10).
+\Tag{(2)}
+\end{DPalign*}
+
+From the solution of equations (1) and (2), $x = 22$, and $y = 26$.
+
+Therefore A has \$$22$, and B has~\$$26$.
+\end{Soln}
+
+\Exercise{66.}
+
+\Item{1.} If A gives B \$$200$, A~will then have half as much
+money as~B; but if B gives A \$$200$, B~will have one-third
+as much as A\@. How much has each?
+
+\Item{2.} Half the sum of two numbers is~$20$, and three times
+their difference is~$18$. Find the numbers.
+
+\Item{3.} The sum of two numbers is~$36$, and their difference
+is equal to one-eighth of the smaller number increased by~$2$.
+Find the numbers.
+
+\Item{4.} If $4$~yards of velvet and $3$~yards of silk are sold for~\$$33$,
+and $5$~yards of velvet and $6$~yards of silk for~\$$48$,
+what is the price per yard of the velvet and of the silk?
+
+\Item{5.} If $7$~bushels of wheat and $10$~of rye are sold for~\$$15$,
+and $4$~bushels of wheat and $5$~of rye are sold for~\$$8$, what
+is the price per bushel of the wheat and of the rye?
+
+\Item{6.} If $12$~pounds of tea and $4$~pounds of coffee cost~\$$7$,
+and $4$~pounds of tea and $12$~pounds of coffee cost~\$$5$, what is
+the price per pound of tea and of coffee?
+
+\Item{7.} Six horses and $7$~cows can be bought for~\$$1000$,
+and $11$~horses and $13$~cows for~\$$1844$. Find the value of
+a horse and of a cow.
+%% -----File: 134.png---Folio 128-------
+
+\Exercise{67.}
+
+Ex. A certain fraction becomes equal to~$\frac{1}{2}$ if $2$~is added
+to its numerator, and equal to~$\frac{1}{3}$ if $3$~is added to its denominator.
+Find the fraction.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+\frac{x}{y} &= \text{the required fraction.} \\
+\lintertext{\indent Then}
+\frac{x + 2}{y} &= \frac{1}{2}, \\
+\lintertext{and}
+\frac{x}{y + 3} &= \frac{1}{3}.
+\end{DPalign*}
+
+The solution of these equations gives $7$ for~$x$, and $18$ for~$y$.
+
+Therefore the required fraction is~$\frac{7}{18}$.
+\end{Soln}
+
+\Item{1.} If the numerator of a certain fraction is increased
+by~$2$ and its denominator diminished by~$2$, its value will
+be~$1$. If the numerator is increased by the denominator
+and the denominator is diminished by~$5$, its value will be~$5$.
+Find the fraction.
+
+\Item{2.} If $1$~is added to the denominator of a fraction, its
+value will be~$\frac{1}{2}$. If $2$~is added to its numerator, its value
+will be~$\frac{3}{5}$. Find the fraction.
+
+\Item{3.} If $1$~is added to the numerator of a fraction, its value
+will be~$\frac{1}{5}$. If $1$~is added to its denominator, its value will
+be~$\frac{1}{7}$. Find the fraction.
+
+\Item{4.} If the numerator of a fraction is doubled and its
+denominator diminished by~$1$, its value will be~$\frac{1}{2}$. If its
+denominator is doubled and its numerator increased by~$1$,
+its value will be~$\frac{1}{7}$. Find the fraction.
+
+\Item{5.} In a certain proper fraction the difference between
+the numerator and the denominator is~$15$. If the numerator
+is multiplied by~$4$ and the denominator increased by~$6$,
+its value will be~$1$. Find the fraction.
+%% -----File: 135.png---Folio 129-------
+
+\Exercise{68.}
+
+The expression $64$ means $60 + 4$, that is, $10$~\emph{times} $6 + 4$,
+and has for its \emph{digits} $6$~and~$4$. If the digits were unknown
+and represented by $x$~and~$y$, the number would be represented
+by~$10x + y$.
+
+Ex. The sum of the two digits of a number is~$10$, and if
+$18$~is added to the number, the digits will be reversed.
+Find the number.
+\begin{Soln}
+\begin{DPalign*}[m]
+\lintertext{\indent Let}
+x &= \text{the tens' digit,} \\
+\lintertext{and}
+y &= \text{the units' digit.} \\
+\lintertext{\indent Then}
+10x + y &= \text{the number.} \displaybreak[1] \\
+\lintertext{\indent Hence}
+x + y &= 10,
+\Tag{(1)} \\
+\lintertext{and}
+10x + y + 18 &= 10y + x.
+\Tag{(2)} \displaybreak[1] \\
+\lintertext{\indent From (2),}
+9x - 9y &= -18, \\
+\lintertext{or}
+x - y &= -2.
+\Tag{(3)} \displaybreak[1] \\
+\lintertext{\indent \rlap{Add (1) and (3),}}
+2x &= 8, \\
+\lintertext{and therefore}
+x &= 4. \\
+\lintertext{\indent \rlap{Subtract (3) from (1),}}
+2y &= 12, \\
+\lintertext{and therefore}
+y &= 6.
+\end{DPalign*}
+
+Therefore the number is~$46$.
+\end{Soln}
+
+\Item{1.} The sum of the two digits of a number is~$9$, and if $9$
+is added to the number, the digits will be reversed. Find
+the number.
+
+\Item{2.} A certain number of two digits is equal to eight times
+the sum of its digits, and if $45$~is subtracted from the
+number, the digits will be reversed. Find the number.
+
+\Item{3.} The sum of a certain number of two digits and the
+number formed by reversing the digits is~$132$, and the
+difference of these numbers is~$18$. Find the numbers.
+
+\Item{4.} The sum of the two digits of a number is~$9$, and if
+the number is divided by the sum of its digits, the quotient
+is~$6$. Find the number.
+%% -----File: 136.png---Folio 130-------
+
+\Exercise{69.}
+
+Ex. A sum of money, at simple interest, amounted to
+\$$2480$ in $4$~years, and to \$$2600$ in $5$~years. Find the sum
+and the rate of interest.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of dollars in the principal,} \\
+\lintertext{and}
+y &= \text{the rate of interest.}
+\end{DPalign*}
+
+The interest for one year is $\dfrac{y}{100}$ of the principal; that is, $\dfrac{xy}{100}$.
+For $4$~years the interest is~$\dfrac{4xy}{100}$, and for $5$~years~$\dfrac{5xy}{100}$. The amount
+is principal $+$~interest,
+\begin{DPalign*}
+\lintertext{or}
+x + \frac{4xy}{100} &= 2480. \\
+x + \frac{5xy}{100} &= 2600. \\
+\lintertext{\indent Hence}
+100x + 4xy &= 248,000.
+\Tag{(1)} \\
+100x + 5xy &= 260,000.
+\Tag{(2)} \displaybreak[1] \\
+\intertext{\indent Divide (1) by~$4$ and (2) by~$5$, and we have}
+25x + xy &= 62,000 \\
+20x + xy &= 52,000 \displaybreak[1] \\
+\lintertext{\indent Subtract,}
+5x \PadTo{{}+ xy}{} &= 10,000. \displaybreak[1] \\
+\lintertext{\indent Therefore}
+\PadTo{5x}{x} \PadTo{{}+ xy}{} &= \PadTo{10,000}{2000}.
+\end{DPalign*}
+
+Substitute the value of~$x$ in~(1), $y = 6$.
+
+Therefore the sum is \$$2000$, and the rate~$6$%.
+\end{Soln}
+
+\Item{1.} A sum of money, at simple interest, amounted in $5$~years
+to~\$$3000$, and in $6$~years to~\$$3100$. Find the sum
+and the rate of interest.
+
+\Item{2.} A sum of money, at simple interest, amounted in $10$~months
+to~\$$1680$, and in $18$~months to~\$$1744$. Find the
+sum and the rate of interest.
+
+\Item{3.} A man has \$$10,000$ invested, a part at~$4$\%, and the
+remainder at~$5$\%. The annual income from his $4$\%~investment
+is \$$40$~more than from his $5$\%~investment. Find the
+sum invested at~$4$\% and at~$5$\%.
+%% -----File: 137.png---Folio 131-------
+
+\Exercise{70.}
+
+\Section{Miscellaneous Examples.}
+
+\Item{1.} Half the sum of two numbers is~$20$; and $5$~times
+their difference is~$20$. Find the numbers.
+
+\Item{2.} A certain number when divided by a second number
+gives $7$ for a quotient and $4$ for a remainder. If three
+times the first number is divided by twice the second
+number, the quotient is~$11$ and the remainder~$4$. Find
+the numbers.
+
+\Item{3.} A fraction becomes $\frac{4}{5}$ in value by the addition of~$2$ to
+its numerator and $3$~to its denominator. If $2$~is subtracted
+from its numerator and $1$~from its denominator, the value
+of the fraction is~$\frac{3}{4}$. Find the fraction.
+
+\Item{4.} A farmer sold $50$~bushels of wheat and $30$~of barley
+for $74$~dollars; and at the same prices he sold $30$~bushels
+of wheat and $50$~bushels of barley for $70$~dollars. What
+was the price of the wheat and of the barley per bushel?
+
+\Item{5.} If A gave \$$10$ to~B, he would then have three times
+as much money as~B; but if B gave \$$5$ to~A, A~would
+have four times as much as~B\@. How much has each?
+
+\Item{6.} A and B have together \$$100$. If A~were to spend
+one-half of his money, and B~one-third of his, they would
+then have only \$$55$ between them. How much money
+has each?
+
+\Item{7.} A fruit-dealer sold $6$~lemons and $3$~oranges for $21$~cents,
+and $3$~lemons and $8$~oranges for $30$~cents. What
+was the price of each?
+
+\Item{8.} If A gives me $10$~apples, he will have just twice as
+many as~B\@. If he gives the $10$~apples to~$B$ instead of to
+me, A~and~B will each have the same number. How
+many apples has each?
+%% -----File: 138.png---Folio 132-------
+
+
+\Chapter{XII.}{Quadratic Equations.}
+
+\Paragraph{158.} An equation which contains the \emph{square} of the
+unknown number, but no higher power, is called a \Defn{quadratic
+equation}.
+
+\Paragraph{159.} A quadratic equation which involves but one unknown
+number as~$x$, can contain only:
+
+1. Terms involving the square of~$x$.
+
+2. Terms involving the first power of~$x$.
+
+3. Terms which do not involve~$x$.
+
+Collecting similar terms, every quadratic equation can be
+made to assume the form
+\[
+ax^{2} + bx + c = 0,
+\]
+where $a$,~$b$, and~$c$ are known numbers, and $x$~the unknown
+number.
+
+If $a$,~$b$,~$c$ are numbers expressed by figures, the equation
+is a \Defn{numerical quadratic}. If $a$,~$b$,~$c$ are numbers represented
+wholly or in part by letters, the equation is a \Defn{literal quadratic}.
+
+\Paragraph{160.} In the equation $ax^{2} + bx + c = 0$, $a$,~$b$, and~$c$ are
+called the \Defn{coefficients} of the equation. The third term,~$c$, is
+called the \Defn{constant term}.
+
+If the first power of~$x$ is wanting, the equation is a \Defn{pure
+quadratic}; in this case $b = 0$.
+
+If the first power of~$x$ is present, the equation is an
+\Defn{affected} or \Defn{complete quadratic}.
+%% -----File: 139.png---Folio 133-------
+
+
+\Section{Pure Quadratic Equations.}
+
+\Paragraph{161. Examples.}
+
+\Item{1.} Solve the equation $5x^{2} - 48 = 2x^{2}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent We have}
+5x^{2} - 48 &= 2x^{2}. \\
+\lintertext{\indent Collect the terms,}
+3x^{2} &= 48. \displaybreak[1] \\
+\lintertext{\indent Divide by~$3$,}
+x^{2} &= 16. \\
+\lintertext{\indent Extract the square root,}
+x &= ±4.
+\end{DPalign*}
+
+The sign~$±$ before the~$4$, read \emph{plus or minus}, shows that the root
+is either $+$~or~$-$. For $(+4) × (+4) = 16$, and $(-4) × (-4) = 16$
+
+The square root of any number is positive or negative. Hitherto
+we have given only the positive value. In this chapter we shall
+give both values. This sign~$\surd$, called the \Defn{radical sign}, is used to
+indicate that a root is to be extracted. Thus $\sqrt{4}$~means the square
+root of~$4$ is required. $\sqrt[3]{4}$~means the third root of~$4$ is required; the
+small figure placed over the radical sign is called the \Defn{index} of the
+root, and shows the root required.
+\end{Soln}
+
+\Item{2.} Solve the equation $3x^{2} - 15 = 0$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent We have}
+3x^{2} &= 15, \\
+\lintertext{or}
+x^{2} &= 5. \\
+\lintertext{\indent Extract the square root,}
+x &= ±\sqrt{5}.
+\end{DPalign*}
+
+The roots cannot be found exactly, since the square root of~$5$ cannot
+be found exactly; it can, however, be determined approximately
+to any required degree of accuracy; for example, the roots lie between
+$2.23606$ and $2.23607$; and between $-2.23606$ and~$-2.23607$.
+\end{Soln}
+
+\Item{3.} Solve the equation $3x^{2} + 15 = 0$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent We have}
+3x^{2} &= -15, \\
+\lintertext{or}
+x^{2} &= -5. \\
+\lintertext{\indent Extract the square root,}
+x &= ±\sqrt{-5}.
+\end{DPalign*}
+
+There is no square root of a negative number, since the square of
+any number, positive or negative, is positive; $(-5) × (-5) = +25$.
+
+The square root of~$-5$ differs from the square root of~$+5$ in that
+the latter can be found as accurately as we please, while the former
+cannot be found at all.
+\end{Soln}
+%% -----File: 140.png---Folio 134-------
+
+\Paragraph{162.} A root which can be found exactly is called an \Defn{exact}
+or \Defn{rational} root. Such roots are either whole numbers or
+fractions.
+
+A root which is indicated but can be found only approximately
+is called a \Defn{surd}. Such roots involve the roots of
+imperfect powers.
+
+Rational and surd roots are together called \Defn{real} roots.
+
+A root which is indicated but cannot be found, either
+exactly or approximately, is called an \Defn{imaginary} root. Such
+roots involve the even roots of negative numbers.
+
+\Exercise{71.}
+
+Solve:
+\begin{multicols}{2}
+\Item{1.} $5x^{2} - 2 = 3x^{2} + 6$.
+
+\Item{2.} $3x^{2} + 1 = 2x^{2} + 10$.
+
+\Item{3.} $4x^{2} - 50 = x^{2} + 25$.
+
+\Item{4.} $(x - 6)(x + 6) = 28$.
+\end{multicols}
+
+\Item{5.} $(x - 5)(x + 5) = 24$.
+
+\Item{6.} $3(x^{2} - 11) + 2(x^{2} - 5) = 82$.
+
+\Item{7.} $11(x^{2} + 5) + 6(3 - x^{2}) = 198$.
+
+\Item{8.} $5x^{2} + 3 - 2(17 - x^{2}) = 32$.
+
+\Item{9.} $4(x + 1) - 4(x - 1) = x^{2} - 1$.
+
+\Item{10.} $86 - 52x = 2(8 - x)(2 - 3x)$.
+
+\Item{11.} Find two numbers that are to each other as $3$~to~$4$,
+and the difference of whose squares is~$112$.
+
+\begin{Remark}[Hint.] Let $3x$~stand for the smaller and $4x$~for the larger number.
+\end{Remark}
+
+\Item{12.} A boy bought a number of oranges for $36$~cents.
+The price of an orange was to the number bought as $1$~to~$4$.
+How many oranges did he buy, and how many cents
+did each orange cost?
+
+\Item{13.} A certain street contains $144$~square rods, and the
+length is $16$~times the width. Find the width.
+%% -----File: 141.png---Folio 135-------
+
+\Item{14.} Find the number of rods in the length, and in the
+width of a rectangular field containing $3\frac{3}{5}$~acres, if the
+length is $4$~times the width.
+
+
+\Section{Affected Quadratic Equations.}
+
+\Paragraph{163.} Since
+\[
+(x + b)^{2} = x^{2} + 2bx + b^{2}, \quad\text{and}\quad
+(x - b)^{2} = x^{2} - 2bx + b^{2},
+\]
+it is evident that the expression $x^{2} + 2bx$ or $x^{2} - 2bx$ lacks
+only the \emph{third term},~$b^{2}$, of being a perfect square.
+
+This third term is the square of half the coefficient of~$x$.
+
+Every affected quadratic may be made to assume the
+form $x^{2} + 2bx = c$ or $x^{2} - 2bx = c$, by dividing the equation
+through by the coefficient of~$x^{2}$.
+
+To \textbf{solve} such an equation:
+
+The first step is to add to both members \emph{the square of
+half the coefficient of~$x$}. This is called \emph{completing the square}.
+
+The second step is to \emph{extract the square root} of each member
+of the resulting equation.
+
+The third step is to \emph{reduce} the two resulting simple
+equations.
+
+\Item{1.} Solve the equation $x^{2} - 8x = 20$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent We have}
+x^{2} - 8x &= 20. \\
+\lintertext{\indent Complete the square,}
+x^{2} - 8x + 16 &= 36. \\
+\lintertext{\indent Extract the square root,}
+x - 4 &= ±6. \displaybreak[1] \\
+\lintertext{\indent Reduce, using the upper \rlap{sign,}}
+x &= 4 + 6 = 10, \\
+\lintertext{or using the lower sign,}
+x &= 4 - 6 = -2.
+\end{DPalign*}
+
+The roots are $10$ and~$-2$.
+
+Verify by putting these numbers for~$x$ in the given equation.
+\[
+\begin{array}{rcl<{\qquad}|>{\qquad}rcl}
+ x &=& 10, & x &=& -2, \\
+10^{2} - 8(10) &=& 20, & (-2)^{2} - 8(-2) &=& 20, \\
+ 100 - 80 &=& 20. & 4 + 16 &=& 20. \\
+\end{array}
+\]
+\end{Soln}
+%% -----File: 142.png---Folio 136-------
+
+\Item{2.} Solve the equation $\dfrac{x + 1}{x - 1} = \dfrac{4x - 3}{x + 9}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Free from fractions,}
+(x + 1)(x + 9) &= (x - 1)(4x - 3). \\
+\lintertext{\indent Therefore,}
+-3x^{2} + 17x &= -6.
+\end{DPalign*}
+
+Since the square root of a negative number cannot be taken, the
+coefficient of~$x^{2}$ must be changed to~$+$.
+\begin{DPalign*}
+\lintertext{\indent Divide by~$-3$,}
+x^{2} - \tfrac{17}{3}x &= 2. \displaybreak[1] \\
+\intertext{\indent
+Half the coefficient of~$x$ is $\frac{1}{2}$~of $-\frac{17}{3} = -\frac{17}{6}$, and the square of~$-\frac{17}{6}$
+is~$\frac{289}{36}$. Add the square of~$-\frac{17}{6}$ to both sides, and we have}
+x^{2} - \frac{17x}{3} + \left(\frac{17}{6}\right)^{2} &= 2 + \frac{289}{36}. \displaybreak[1] \\
+\lintertext{\indent Now}
+2 + \frac{289}{36} = \frac{72}{36} + \frac{289}{36} &= \frac{361}{36}, \\
+\lintertext{therefore,}
+x^{2} - \tfrac{17}{3}x + \left(\frac{17}{6}\right)^{2} &= \frac{361}{36}. \displaybreak[1] \\
+\lintertext{\indent \rlap{Extract the root,}}
+x - \frac{17}{6} &= ±\frac{19}{6}. \displaybreak[1] \\
+\lintertext{\indent Reduce,}
+x - \frac{17}{6} &= ±\frac{19}{6}. \\
+\therefore x &= \frac{17}{6} + \frac{19}{6} = \frac{36}{6} = 6, \\
+\lintertext{or}
+x &= \frac{17}{6} - \frac{19}{6} = -\frac{2}{6} = -\frac{1}{3}.
+\end{DPalign*}
+
+The roots are $6$~and~$-\dfrac{1}{3}$.
+
+Verify by putting these numbers for~$x$ in the original equation.
+\[
+\begin{array}[t]{rcl<{\qquad}|}
+x &=& 6. \\
+\dfrac{6 + 1}{6 - 1} &=& \dfrac{24 - 3}{6 + 9}. \\
+\dfrac{7}{5} &=& \dfrac{21}{15} \\
+\dfrac{7}{5} &=& \dfrac{7}{5} \\
+\end{array}
+\begin{array}[t]{>{\qquad}rcl}
+x &=& -\dfrac{1}{3} \\
+\dfrac{-\dfrac{1}{3} + 1}{-\dfrac{1}{3} - 1}
+ &=& \dfrac{-\dfrac{4}{3} - 3}{-\dfrac{1}{3} + 9}. \\
+-\dfrac{2}{4} &=& -\dfrac{13}{26}.
+\end{array}
+\]
+\end{Soln}
+%% -----File: 143.png---Folio 137-------
+
+\PrintBreak
+\Exercise{72.}
+
+Solve:
+\begin{multicols}{2}
+\Item{1.} $x^{2} - 12x + 27 = 0$.
+
+\Item{2.} $x^{2} - 6x + 8 = 0$.
+
+\Item{3.} $x^{2} - 4 = 4x - 7$.
+
+\Item{4.} $5x^{2} - 4x-1 = 0$.
+
+\Item{5.} $4x - 3 = 2x - x^{2}$.
+
+\Item{6.} $9x^{2} - 24x + 16 = 0$.
+
+\Item{7.} $6x^{2} - 5x-1 = 0$.
+
+\Item{8.} $4x + 3 = x^{2} + 2x$.
+
+\Item{9.} $16x^{2} - 16x + 3 = 0$.
+
+\Item{10.} $3x^{2} - 10x + 3 = 0$.
+
+\Item{11.} $x^{2} - 14x - 51 = 0$.
+
+\Item{12.} $34x - x^{2} - 225 = 0$.
+
+\Item{13.} $x^{2} + x - 20 = 0$.
+
+\Item{14.} $x^{2} - x - 12 = 0$.
+
+\Item{15.} $2x^{2} - 12x = - 10$.
+
+\Item{16.} $3x^{2} + 12x - 36 = 0$.
+
+\Item{17.} $(2x - 1)^{2} + 9 = 6(2x - 1)$.
+
+\Item{18.} $6(9x^{2} - x) = 55(x^{2} - 1)$.
+
+\Item{19.} $32 - 3x^{2} - 10x = 0$.
+
+\Item{20.} $9x^{2} - 6x - 143 = 0$.
+
+\Item{21.} $\dfrac{x}{x - 1} - \dfrac{x - 1}{x} = \dfrac{3}{2}$.
+
+\Item{22.} $\dfrac{1}{x - 2} + \dfrac{2}{x + 2} = \dfrac{5}{6}$.
+
+\Item{23.} $\dfrac{5x + 7}{x - 1} = 3x + 11$.
+
+\Item{24.} $\dfrac{7}{x + 4} - \dfrac{1}{4 - x} = \dfrac{2}{3}$.
+
+\Item{25.} $\dfrac{2}{x + 3} + \dfrac{x + 3}{2} = \dfrac{10}{3}$.
+
+\Item{26.} $\dfrac{2x}{x + 2} + \dfrac{x + 2}{2x} = 2$.
+
+\Item{27.} $\dfrac{3(x - 1)}{x + 1} - \dfrac{2(x + 1)}{x - 1} = 5$.
+
+\Item{28.} $\dfrac{2x + 5}{2x - 5} = \dfrac{7x - 5}{2x}$.
+
+\Item{29.} $\dfrac{3x - 1}{4x + 7} = \dfrac{x + 1}{x + 7}$.
+
+\Item{30.} $\dfrac{2x - 1}{x + 3} = \dfrac{x + 3}{2x - 1}$.
+
+\Item{31.} $\dfrac{x + 4}{x - 4} - \dfrac{x + 2}{x - 3} = 1$.
+
+\Item{32.} $\dfrac{4}{x - 1} - \dfrac{5}{x + 2} = \dfrac{1}{2}$.
+
+\Item{33.} $\dfrac{2}{x - 1} = \dfrac{3}{x - 2} + \dfrac{2}{x - 4}$.
+
+\Item{34.} $\dfrac{5}{x - 2} - \dfrac{3}{x - 1} = \dfrac{1}{2}$.
+
+\Item{35.} $\dfrac{x}{7 - x} + \dfrac{7 - x}{x} = \dfrac{29}{10}$.
+
+\Item{36.} $\dfrac{2x - 1}{x - 1} + \dfrac{1}{6} = \dfrac{2x - 3}{x - 2}$.
+\end{multicols}
+%% -----File: 144.png---Folio 138-------
+
+\ScreenBreak
+\Paragraph{164. Problems involving Quadratics.} Problems which involve
+quadratic equations apparently have two solutions,
+since a quadratic equation has two roots.
+
+When both roots of the quadratic equation are positive
+integers, they will, in general, both be admissible solutions.
+Fractional and negative roots will in some problems give
+admissible solutions; in other problems they will not give
+admissible solutions.
+
+The reason that every root of the equation will not
+always satisfy the conditions of the problem is that the
+problem may have certain restrictions, expressed or implied,
+that cannot be expressed in the equation.
+
+No difficulty will be found in selecting the result which
+belongs to the particular problem we are solving. Sometimes,
+by a change in the statement of the problem, we
+may form a new problem which corresponds to the result
+that was inapplicable to the original problem.
+
+Here as in simple equations x stands for an unknown
+\emph{number}.
+
+\Item{1.} The sum of the squares of two consecutive numbers is~$41$.
+Find the numbers.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{one number,} \\
+\lintertext{and}
+x + 1 &= \text{the other.} \\
+\lintertext{\indent Then}
+x^{2} + (x + 1)^{2} &= \text{the sum of the squares;} \\
+\lintertext{but}
+41 &= \text{the sum of the squares.}
+\end{DPalign*}
+\begin{align*}
+\therefore x^{2} + (x + 1)^{2} &= 41. \\
+x^{2} + x^{2} + 2x + 1 &= 41. \\
+2x^{2} + 2x &= 40. \\
+x^{2} + x &= 20.
+\end{align*}
+
+The solution of this equation gives $x = 4$, or~$-5$.
+
+The positive root~$4$ gives for the numbers $4$~and~$5$.
+\end{Soln}
+
+The negative root~$-5$ is inapplicable to the problem, as
+\emph{consecutive numbers} are understood to be integers which
+follow each other in the common scale: $1$,~$2$, $3$, $4\dots$.
+%% -----File: 145.png---Folio 139-------
+
+\Item{2.} In a certain nest seven times the number of birds in
+the nest is equal to twice the square of the number increased
+by~$3$. Find the number.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of birds\Add{.}} \\
+\lintertext{\indent Then}
+7x &= \text{$7$~times the number} \\
+\lintertext{and}
+2x^{2} + 3 &= \text{twice the square of the number plus~$3$.}
+\intertext{\indent As these two expressions are equal we have}
+2x^{2} + 3 &= 7x\Add{.}
+\end{DPalign*}
+
+The solution of this \emph{equation} gives $x = 3$ or $x = \frac{1}{2}$.
+
+The value $\frac{1}{2}$ is not applicable to the \emph{problem} for the number of
+birds must be a whole number.
+\end{Soln}
+
+\Item{3.} A cistern has two pipes. By one of them it can be
+filled $6$~hours sooner than by the other, and by both
+together in $4$~hours. Find the time it will take each pipe
+alone to fill it.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of hours it takes the smaller pipe.} \\
+\lintertext{\indent Then}
+x - 6 &= \text{the number of hours it takes the larger pipe.}
+\end{DPalign*}
+\begin{DPalign*}
+\lintertext{\indent Therefore}
+\frac{1}{x} + \frac{1}{x - 6} &= \text{the part both can fill in one hour.} \\
+\lintertext{\indent But}
+\frac{1}{4} &= \text{the part both can fill in one hour.} \\
+\frac{1}{x} + \frac{1}{x - 6} &= \frac{1}{4}
+\end{DPalign*}
+
+The solution of this \emph{equation} gives $x = 12$ or $x = 2$.
+
+The value~$2$ is not applicable to the \emph{problem}.
+
+Therefore it takes one pipe $12$~hr.\ and the other $6$~hr.
+\end{Soln}
+
+\Item{4.} A rug is $1$~yard longer than it is broad. The number
+of sq.~yds.\ in the rug is~$12$. Find its length and breadth.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of yards in the breadth\Add{.}} \\
+\lintertext{\indent Then}
+x + 1 &= \text{the number of yards in the length} \\
+\lintertext{and}
+x(x + 1) &= \text{the number of sq yds in the rug\Add{.}} \\
+\lintertext{\indent Hence}
+x(x + 1) &= 12\Add{.}
+\end{DPalign*}
+
+The solution of this equation gives $x = 3$ or $x = -4$.
+
+The dimensions are therefore $3$~yards and $4$~yards.
+\end{Soln}
+%% -----File: 146.png---Folio 140-------
+
+\Exercise{73.}
+
+\Item{1.} Find two numbers whose sum is~$11$, and whose
+product is~$30$.
+
+\Item{2.} Find two numbers whose difference is~$10$, and the
+sum of whose squares is~$250$.
+
+\Item{3.} A man is five times as old as his son, and the square
+of the son's age diminished by the father's age is~$24$. Find
+their ages.
+
+\Item{4.} A number increased by its square is equal to nine
+times the next higher number. Find the number.
+
+\Item{5.} The square of the sum of any two consecutive numbers
+lacks~$1$ of being twice the sum of the squares of the
+numbers. Show that this statement is true.
+
+\Item{6.} The length of a rectangular court exceeds its breadth
+by $2$~rods. If the length and breadth were each increased
+by $3$~rods, the area of the court would be $80$~square rods.
+Find the dimensions of the court.
+
+\Item{7.} The area of a certain square will be doubled, if its
+dimensions are increased by $6$~feet and $4$~feet respectively.
+Find its dimensions.
+
+\Item{8.} The perimeter of a rectangular floor is $76$~feet and
+the area of the floor is $360$~square feet. Find the dimensions
+of the floor.
+
+\Item{9.} The length of a rectangular court exceeds its breadth
+by $2$~rods, and its area is $120$~square rods. Find the
+dimensions of the court.
+
+\Item{10.} The combined ages of a father and son amount to
+$64$~years. Twice the father's age exceeds the square of the
+son's age by $8$~years. Find their respective ages.
+%% -----File: 147.png---Folio 141-------
+
+\Exercise{74.}
+
+Ex. A boat sails $30$~miles at a uniform rate. If the
+rate had been $1$~mile an hour more, the time of the sailing
+would have been $1$~hour less. Find the rate of the sailing.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the rate in miles per hour.} \\
+\lintertext{\indent Then}
+\frac{30}{x} &= \text{the number of hours.}
+\end{DPalign*}
+
+On the other supposition the rate would have been $x + 1$~miles
+an hour and the time~$\dfrac{30}{x + 1}$.
+\begin{DPalign*}
+\lintertext{\indent Hence}
+\frac{30}{x} - \frac{30}{x + 1} &= \text{the difference in hours for the sailing.} \\
+\lintertext{\indent But}
+1 &= \text{the difference in hours for the sailing.} \\
+\frac{30}{x} - \frac{30}{x + 1} &= 1\Add{.}
+\end{DPalign*}
+
+The solution of this equation gives $x = 5$, or $x = -6$.
+
+Therefore, the rate of the sailing is $5$~miles an hour.
+\end{Soln}
+
+\Item{1.} A boat sails $30$~miles at a uniform rate. If the rate
+had been $1$~mile an hour less, the time of the sailing would
+have been $1$~hour more. Find the rate of the sailing.
+
+\Item{2.} A laborer built $35$~rods of stone wall. If he had
+built $2$~rods less each day, it would have taken him $2$~days
+longer. How many rods did he build a day on the
+average?
+
+\Item{3.} A man bought flour for~\$$30$. Had he bought $1$~barrel
+more for the same sum, the flour would have cost
+him \$$1$~less per barrel. How many barrels did he buy?
+
+\Item{4.} A man bought some knives for~\$$6$. Had he bought
+$2$~less for the same money, he would have paid $25$~cents
+more for each knife. How many knives did he buy?
+
+\Item{5.} What number exceeds its square root by~$30$?
+
+\begin{Remark}[Hint.] Let $x^{2}$ denote the number.
+\end{Remark}
+%% -----File: 148.png---Folio 142-------
+
+
+\Chapter{XIII.}{Arithmetical Progression.}
+
+\Paragraph{165.} A series of numbers is said to form an \Defn{Arithmetical
+Progression} if the difference between any term and the preceding
+term is the same throughout the series.
+
+\begin{Remark}
+Thus $a$, $b$, $c$, $d$, etc., are in arithmetical progression if $b - a$, $c - b$,
+$d - c$,~etc., are all equal.
+\end{Remark}
+
+\Paragraph{166.} This difference is called the \Defn{common difference} of the
+progression, and is represented by~$d$. If $d$~is positive, the
+progression is an \emph{increasing} series; if $d$~is negative, the progression
+is a \emph{decreasing} series.
+
+What is the common difference in each of the following
+series?
+\[
+\begin{array}{r*{4}{>{\quad}r}}
+ 1, & \Neg4, & 7, & 10, & \dots \\
+ 5, & 7, & 9, & 11, & \dots \\
+10, & 9, & 8, & 7, & \dots \\
+ 7, & 3, & -1, & -5, & \dots \\
+\end{array}
+\]
+
+\Paragraph{167.} If the first term of an arithmetical progression is
+represented by~$a$ and the common difference by~$d$, then
+\begin{alignat*}{2}
+&\text{the \emph{second} term will be } && a + d, \\
+&\text{the \emph{third} term will be } && a + 2d, \\
+&\text{the \emph{fourth} term will be } && a + 3d,
+\end{alignat*}
+and so on, the coefficient of~$d$ in each term being always
+less by~$1$ than the \emph{number of the term}.
+
+Hence the $n$th~term will be $a + (n - 1)d$.
+
+If we represent the $n$th~term by~$l$, we have
+\[
+l = a + (n - 1)d.
+\Tag{Formula (1)}
+\]
+%% -----File: 149.png---Folio 143-------
+
+\Paragraph{168.} We can, therefore, find any term of an arithmetical
+progression if the first term and common difference are
+given, or if any \emph{two} terms are given.
+
+\Item{1.} Find the 10th~term of an arithmetical progression if
+the 1st~term is~$3$ and the common difference is~$4$.
+\begin{Soln}
+By formula~(1), the 10th~term is~$3 + (10 - 1)4$, or~$39$.
+\end{Soln}
+
+\Item{2.} If the 8th~term of an arithmetical progression is~$25$,
+and the 23d~term~$70$, find the series.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent By formula (1),}
+&\text{the 23d term is $a + 22d$,} \\
+\lintertext{and}
+&\text{the 8th term is $a + 7d$.}
+\end{DPalign*}
+\begin{DPalign*}
+\lintertext{\indent Therefore,}
+a + 22d &= 70 \\
+\lintertext{and}
+a + \Z7d &= 25\Add{.} \displaybreak[1] \\
+\lintertext{\indent Subtract,}
+15d &= 45 \\
+\lintertext{and}
+d &= 3, \\
+\lintertext{whence}
+a &= 4.
+\end{DPalign*}
+
+The series is therefore $4$, $7$, $10$, $13$,~etc.
+\end{Soln}
+
+\Paragraph{169. Arithmetical Mean.} If three numbers are in arithmetical
+progression, the middle number is called the arithmetical
+mean of the other two numbers.
+
+If $a$, $A$, $b$ are in arithmetical progression, $A$~is the arithmetical
+mean of $a$~and~$b$. Hence, by the definition of an
+arithmetical series,
+\begin{DPalign*}
+A - a &= b - A, \\
+\lintertext{whence}
+A &= \frac{a + b}{2}.
+\rintertext{Formula (2)}
+\end{DPalign*}
+\begin{Theorem}
+Hence, the arithmetical mean of any two numbers is found
+by taking half their sum.
+\end{Theorem}
+
+\Paragraph{170.} Sometimes it is required to insert several arithmetical
+means between two numbers.
+%% -----File: 150.png---Folio 144-------
+
+If $m = {}$the number of means, and $n = {}$the whole number
+of terms, then $m + 2 = n$. If $m + 2$ is substituted for~$n$
+in formula~(1),
+\begin{DPalign*}
+l &= a + (n - 1)d, \\
+\lintertext{the result is}
+l &= a + (m + 1)d. \displaybreak[1] \\
+\lintertext{\indent By transposing~$a$,}
+l - a &= (m + 1) d. \\
+\therefore \frac{l - a}{m + 1} &= d.
+\Tag{\llap{Formula (3)}}
+\end{DPalign*}
+\begin{Remark}
+Thus, if it be required to insert six means between $3$~and~$17$,
+the value of~$d$ is found to be $\dfrac{17 - 3}{6 + 1} = 2$; and the series will be $3$,~$5$,
+$7$, $9$, $11$, $13$, $15$,~$17$.
+\end{Remark}
+
+\Exercise{75.}
+
+\Item{1.} Find the 25th~term in the series $3$, $6$, $9$,~$\dots$.
+
+\Item{2.} Find the 13th~term in the series $50$, $49$, $48$,~$\dots$.
+
+\Item{3.} Find the 15th~term in the series $\frac{1}{7}$, $\frac{3}{7}$, $\frac{5}{7}$,~$\dots$.
+
+\Item{4.} Find the 19th~term in the series $\frac{1}{4}$, $-\frac{1}{4}$, $-\frac{3}{4}$,~$\dots$.
+
+\Item{5.} Find the 10th~term in an arithmetical progression
+whose 1st~term is~$5$ and 3d~term~$9$.
+
+\Item{6.} Find the 11th~term in an arithmetical progression
+whose 1st~term is~$10$ and whose 6th~term is~$5$.
+
+\Item{7.} If the 3d~term of an arithmetical progression is~$20$
+and the 13th~term is~$100$, what is the 20th~term?
+
+\Item{8.} Which term of the series $5$, $7$, $9$, $11$,~$\dots$, is~$43$?
+
+\Item{9.} Which term of the series $\frac{4}{3}$, $\frac{3}{2}$, $\frac{5}{3}$,~$\dots$, is~$18$?
+
+\Item{10.} What is the arithmetical mean of $20$~and~$32$?
+
+\Item{11.} What is the arithmetical mean of $a + b$ and $a - b$?
+
+\Item{12.} Insert $8$ arithmetical means between $20$~and~$29$.
+%% -----File: 151.png---Folio 145-------
+
+\Paragraph{171. To Find the Sum of Any Number of Terms of an Arithmetical
+Series.}
+
+If $l$ denote the last term, $a$~the first term, $n$~the number
+of terms, $d$~the common difference, and $s$~the sum of the
+terms, it is evident that the series beginning with the first
+term will be $a$, $a + d$, $a + 2d$,~etc., and beginning with the
+last term will be $l$, $l - d$, $l - 2d$,~etc. Therefore,
+\begin{gather*}
+\begin{array}{r*{12}{c}}
+s &=& a &+& (a + d) &+& (a + 2d) &+& \Add{\dots} &+& (l - d) &+& l, \rlap{\quad\text{or}} \\
+s &=& l &+& (l - d) &+& (l - 2d) &+& \Add{\dots} &+& (a + d) &+& a \\
+\hline
+2s &=& (a + l) &+& (a + l) &+& (a + l) &+& \Add{\dots} &+& (a + l) &+& (a + l) \\
+2s &=& \multicolumn{11}{l}{\text{$(a + l)$ taken as many times as there are \emph{terms},}}
+\end{array} \displaybreak[1] \\
+\begin{aligned}[b]
+2s &= n(a + l), \\
+\text{and } s &= \frac{n}{2}(a + l)\Add{.}
+\end{aligned}
+\Tag{Formula (4)}
+\end{gather*}
+
+Putting for $l$~its value $a + (n - 1)d$, in formula~(4), we
+have
+\begin{align*}
+s &= \frac{n}{2}\bigl\{a + a + (n - 1)d\bigr\} \\
+ &= \frac{n}{2}\bigl\{2a + (n - 1)d\bigr\}
+\Tag{Formula (5)}
+\end{align*}
+
+\Item{1.} Find the sum of the first $16$~terms of the series $5$, $7$,
+$9$,~$11$\DPtypo{,}{.}
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Here}
+a &= 5,\quad d = 2,\quad n = 16\Add{.} \\
+\intertext{\indent Putting these values in formula~(5) we have}
+s &= \tfrac{16}{2}(10 + 15 × 2) \\
+ &= 320
+\end{DPalign*}
+\end{Soln}
+
+\Item{2.} Show that the sum of any number of odd numbers,
+beginning with~$1$, is a square number.
+\begin{Soln}
+The series of odd numbers is $1$, $3$, $5$, $7$,~$\dots$.
+%% -----File: 152.png---Folio 146-------
+\begin{DPalign*}
+\lintertext{\indent Here}
+a &= 1 \quad\text{and}\quad d = 2\Add{.}
+\intertext{\indent Putting these values in formula (5) we have}
+s &= \frac{n}{2} \bigl\{2 + (n - 1)2\bigr\} \\
+ &= \frac{n}{2} × 2n \\
+ &= n^{2}\Add{.}
+\end{DPalign*}
+
+Therefore the sum of the first $5$~odd numbers is~$5^{2}$ or~$25$\Add{,} of the first
+$8$ odd numbers is~$8^{2}$ or~$64$, and so on.
+\end{Soln}
+
+\Item{3.} The sum of $20$~terms of an arithmetical progression
+is~$420$, and the first term is~$2$. Find the common difference.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Here}
+s &= 420,\quad n = 20, \quad\text{and}\quad a = 2\Add{.} \\
+\intertext{\indent Putting these values in formula~(5), we have}
+420 &= \tfrac{20}{2}(4 + 19d) \\
+ &= 40 + 190d \\
+190d &= 380 \\
+\Add{\therefore} d &= 2\Add{.}
+\end{DPalign*}
+
+Therefore the common difference is~$2$.
+\end{Soln}
+
+\Exercise{76.}
+
+\Item{1.} Find the sum of $3$, $5$, $7$, $\dots$, to $20$~terms.
+
+\Item{2.} Find the sum of $14$, $14\frac{1}{2}$, $15$, $\dots$, to $12$~terms.
+
+\Item{3.} Find the sum of $\frac{7}{6}$, $1$, $\frac{5}{6}$, $\dots$, to $10$~terms.
+
+\Item{4.} Find the sum of $-7$, $-5$, $-3$, $\dots$, to $16$~terms.
+
+\Item{5.} Find the sum of $12$, $9$, $6$, $\dots$, to $21$~terms.
+
+\Item{6.} Find the sum of $-10\frac{1}{2}$, $-9$, $-7\frac{1}{2}$, $\dots$, to $25$~terms.
+
+\Item{7.} The sum of three numbers in arithmetical progression
+is~$9$, and the sum of their squares is~$35$. Find the numbers.
+
+\begin{Remark}[Hint.] Let $x - y$, $x$, $x + y$, stand for the numbers.
+\end{Remark}
+%% -----File: 153.png---Folio 147-------
+
+\Item{8.} A common clock strikes the hours from $1$ to~$12$.
+How many times does it strike every $24$~hours?
+
+\Item{9.} The Greenwich clock strikes the hours from $1$ to~$24$.
+How many times does it strike in $24$~hours?
+
+\Item{10.} In a potato race each man picked up $50$~potatoes
+placed in line a yard apart, and the first potato one yard
+from the basket, picking up one potato at a time and bringing
+it to the basket. How many yards did each man run,
+the start being made from the basket?
+
+\Item{11.} A heavy body falling from a height falls $16.1$~feet
+the first second, and in each succeeding second $32.2$~feet
+more than in the second next preceding. How far will a
+body fall in $19$~seconds?
+
+\Item{12.} A stone dropped from a bridge reached the water in
+just $3$~seconds. Find the height of the bridge. (See Ex.~11.)
+
+\Item{13.} The arithmetical mean between two numbers is~$13$,
+and the mean between the double of the first and the triple
+of the second is~$33\frac{1}{2}$. Find the numbers.
+
+\Item{14.} Find three numbers of an arithmetical series whose
+sum shall be~$27$, and the sum of the first and second shall
+be~$frac{4}{5}$ of the sum of the second and third.
+
+\Item{15.} A travels uniformly $20$~miles a day; B~travels $8$~miles
+the first day, $12$~the second, and so on, in arithmetical
+progression. If they start Monday morning from the same
+place and travel in the same direction, how far apart will
+they be Saturday night?
+
+\Item{16.} The sum of three terms of an arithmetical progression
+is~$36$, and the square of the mean exceeds the product of
+the other two terms by~$49$. Find the numbers.
+%% -----File: 154.png---Folio 148-------
+
+
+\Chapter{XIV.}{Geometrical Progression.}
+
+\Paragraph{172.} A series of numbers is said to be in \Defn{Geometrical Progression}
+when the quotient of any term divided by the
+preceding term is the same throughout the series.
+
+\begin{Remark}
+Thus $a$, $b$, $c$, $d$, etc., are in geometrical progression if $\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}$,~etc.
+\end{Remark}
+
+\Paragraph{173.} This quotient is called the \Defn{common ratio}, and is represented
+by~$r$.
+
+State the common ratio of the following series:
+\[
+\begin{array}{r*{4}{>{\quad}r}}
+1, & 3, & \Neg9, &27, & \dots \\
+2, & 4, & 8, &16, & \dots \\
+16,& 8, & 4, &2, & \dots \\
+\frac{2}{3}, & 1, & \frac{3}{2}, & \frac{9}{4}, & \dots \\
+4, & -2, & 1, & -\frac{1}{2}, & \dots \\
+\end{array}
+\]
+
+\Paragraph{174.} If the first term of a geometrical progression is represented
+by~$a$, and the common ratio by~$r$, then
+\begin{align*}
+&\text{the \emph{second} term will be~$ar$,} \\
+&\text{the \emph{third} term will be~$ar^{2}$,} \\
+&\text{the \emph{fourth} term will be~$ar^{3}$,}
+\end{align*}
+and so on, the index of~$r$ being always less by~$1$ than the
+\emph{number of the term in the series}.
+
+Hence the $n$th~term will be~$ar^{n - 1}$.
+%% -----File: 155.png---Folio 149-------
+
+If we denote the $n$th~term by~$l$, we have
+\[
+l = ar^{n - 1}.
+\Tag{Formula (1)}
+\]
+
+\Paragraph{175.} If the first term and common ratio are given, or if
+any \emph{two terms} are given, we can find the series.
+
+\Item{1.} Find the 5th~term of a geometrical progression if the
+first is~$3$ and the common ratio~$2$.
+\begin{Soln}
+In formula~(1), put $5$~for~$n$, $3$~for~$a$, and $2$~for~$r$.
+\begin{DPalign*}
+\lintertext{\indent Then}
+l &= 3 × 2^{4} = 48.
+\end{DPalign*}
+
+Therefore the 5th~term is~$48$.
+\end{Soln}
+
+\Item{2.} Find the geometrical series if the 5th~term is~$48$ and
+the 7th~term is~$192$.
+\begin{Soln}
+The 5th and 7th~terms are $ar^{4}$~and~$ar^{6}$, respectively.
+\begin{DPalign*}
+\lintertext{\indent Whence}
+ar^{4} &= 48,
+\Tag{(1)} \\
+\lintertext{and}
+ar^{6} &= 192.
+\Tag{(2)} \\
+\lintertext{\indent Divide (2) by~(1),}
+r^{2} &= 4. \\
+\therefore r &= ±2. \\
+\lintertext{\indent From~(1),}
+a = \tfrac{48}{16} &= 3.
+\end{DPalign*}
+
+Therefore the series is $3$, $±6$, $12$, $±24$,~$\dots$.
+\end{Soln}
+
+\Paragraph{176. Geometrical Mean.} If three numbers are in geometrical
+progression, the middle number is called the \emph{geometrical
+mean} of the other two numbers. Hence, if
+$a$,~$G$,~$b$ are in geometrical progression, $G$~is the geometrical
+mean of $a$~and~$b$.
+
+By the definition of a geometrical progression,
+\begin{DPalign*}
+\frac{G}{a} &= \frac{b}{G}. \\
+\therefore G^{2} &= ab, \\
+\lintertext{and}
+G &= ± \sqrt{ab}.
+\Tag{Formula (2)}
+\end{DPalign*}
+\begin{Theorem}[Hence], the geometrical mean of any two numbers is the
+square root of their product.
+\end{Theorem}
+%% -----File: 156.png---Folio 150-------
+
+\PrintBreak
+\Paragraph{177. To Find the Sum of Any Number of Terms of a Geometrical
+Progression.}
+
+If $l$~denote the last term, $a$~the first term, $n$~the number
+of terms, $r$~the common ratio, and $s$~the sum of the $n$~terms,
+then
+\begin{DPalign*}
+s &= a + ar + ar^{2} + ar^{3} + \dots+ ar^{n - 1}. \\
+\lintertext{\indent Multiply by~$r$,}
+rs &= ar + ar^{2} + ar^{3} + \dots + ar^{n - 1} + ar^{n}.
+\end{DPalign*}
+
+Therefore, by subtracting the first equation from the
+second,
+\begin{DPalign*}
+rs - s &= ar^{n} - a, \\
+\lintertext{or}
+(r - 1)s &= a(r^{n} - 1). \\
+\therefore s &= \frac{a(r^{n} - 1)}{r - 1}.
+\Tag{Formula (3)}
+\end{DPalign*}
+
+\Paragraph{178.} When $r$~is $< 1$, this formula will be more convenient
+if written
+\[
+s = \frac{a(1 - r^{n})}{1 - r}.
+\]
+
+\Item{1.} Find the sum of $8$~terms of the series
+\[
+1,\quad 2,\quad 4,\quad \dots\Add{.}
+\]
+\begin{DPalign*}
+\lintertext{\indent Here}
+a &= 1,\quad r = 2,\quad n = 8. \\
+\lintertext{\indent From formula~(3),}
+s &= 1(2^{8} - 1) = 255.
+\end{DPalign*}
+
+\Item{2.} Find the sum of $6$~terms of the series
+\[
+2,\quad 3,\quad \tfrac{9}{2},\quad \dots\Add{.}
+\]
+\begin{DPalign*}
+\lintertext{\indent Here}
+a &= 2,\quad r = \tfrac{3}{2},\quad n = 6. \\
+\lintertext{\indent From formula~(3),}
+s &= \frac{2\bigl\{(\frac{3}{2})^{6} - 1\bigr\}}{\frac{3}{2} - 1} \\
+ &= \frac{2\bigl\{\frac{729}{64} - 1\bigr\}}{\frac{1}{2}} \\
+ &= \frac{4\{729 - 64\}}{64} \\
+ &= 41\tfrac{9}{16}.
+\end{DPalign*}
+%% -----File: 157.png---Folio 151-------
+
+\Exercise{77.}
+
+\Item{1.} Find the 5th~term of $3$, $9$, $27$\Add{,}~$\dots$.
+
+\Item{2.} Find the 7th~term of $3$, $6$, $12$\Add{,}~$\dots$.
+
+\Item{3.} Find the 8th~term of $6$, $3$, $\frac{3}{2}$\Add{,}~$\dots$.
+
+\Item{4.} Find the 9th~term of $1$, $-2$, $4$\Add{,}~$\dots$.
+
+\Item{5.} Find the geometrical mean between $2$~and~$8$.
+
+\Item{6.} Find the common ratio if the 1st~and 3d~terms are
+$2$~and~$32$.
+
+Find the sum of the series:
+
+\Item{7.} $3$, $9$, $27$, $\dots$ to $6$~terms.
+
+\Item{8.} $3$, $6$, $12$, $\dots$ to $8$~terms.
+
+\Item{9.} $6$, $3$, $\frac{3}{2}$, $\dots$ to $7$~terms.
+
+\Item{10.} $8$, $4$, $2$, $\dots$ to $8$~terms.
+
+\Item{11.} $64$, $32$, $16$, $\dots$ to $9$~terms.
+
+\Item{12.} $64$, $-32$, $16$, $\dots$ to $5$~terms.
+
+\Item{13.} $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{9}$, $\dots$ to $4$~terms.
+
+\Item{14.} If a blacksmith uses seven nails in putting a shoe on
+a horse's foot, and receives $1$~cent for the first nail, $2$~cents
+for the second nail, and so on, what does he receive for
+putting on the shoe?
+
+\Item{15.} If a boy receives $2$~cents for his first day's work,
+$4$~cents for his second day, $8$~cents for the third day, and
+so on for $12$~days, what will his wages amount to?
+
+\Item{16.} If the population of a city is $10,000$, and increases
+$10$\%~a year for four years, what will be its population at
+the end of the four years? (Here $l = ar^{4}$.)
+%% -----File: 158.png---Folio 152-------
+
+
+\Chapter{XV.}{Square and Cube Roots.}
+
+\Section{Square Roots of Compound Expressions.}
+
+\Paragraph{179.} Since the square of $a + b$ is $a^{2} + 2ab + b^{2}$, the square
+root of $a^{2} + 2ab + b^{2}$ is $a + b$.
+
+It is required to find a method of extracting the root
+$a + b$ when $a^{2} + 2ab + b^{2}$ is given.
+\begin{Soln}
+Ex. The first term,~$a$, of the root is obviously the square root of
+the first term,~$a^{2}$, in the expression.
+\[
+\begin{array}{r*{3}{cr}l}
+ & & a^{2} &+& 2ab &+& \TbBar{b^{2}} & a + b \\
+\cline{8-8}
+ & & a^{2} \\
+\cline{3-3}
+2a &+& \TbBar{b} & & 2ab &+& b^{2} \\
+ & & \TbBar{ } & & 2ab &+& b^{2} \\
+\cline{4-7}
+\end{array}
+\]
+
+If the $a^{2}$ is subtracted from the given
+expression, the remainder is $2ab + b^{2}$\Add{.}
+Therefore the second term,~$b$, of the root
+is obtained when the first term of this
+remainder is divided by~$2a$; that is, by
+\emph{double the part of the root already found}. Also, since
+\[
+2ab + b^{2} = (2a + b)b,
+\]
+the divisor is \emph{completed by adding to the trial-divisor the new term of
+the root}\Add{.}
+\end{Soln}
+
+\ScreenBreak
+Ex. Find the square root of $25x^{2} - 20x^{3}y + 4x^{4}y^{2}$.
+\begin{Soln}
+\[
+\begin{array}{rcccrll}
+& && & 25x^{2} & \TbBar{-20 x^{3}y + 4x^{4}y^{2}} & 5x - 2x^{2}y \\
+\cline{7-7}
+\text{Here $a^{2}$}
+ &=& (5x)^{2} &=& 25x^{2} \\
+\cline{5-5}
+2a + b &=& 10x &-& \TbBar{2x^{2}y} & -20x^{3}y + 4x^{4}y^{2} \\
+ & & & & \TbBar{ } & -20x^{3}y + 4x^{4}y^{2} \\
+\cline{6-6}
+\end{array}
+\]
+
+The expression is \emph{arranged} according to the ascending powers of~$x$\Add{.}
+
+The square root of the first term is~$5x$, hence $5x$~is the first term
+of the root. $(5x)^{2}$ or $25x^{2}$ is subtracted, and the remainder is
+\[
+-20x^{3}y + 4x^{4}y^{2}.
+\]
+
+The second term of the root, $-2x^{2}y$, is obtained by dividing
+$-20x^{3}y$ by~$10x$, the double of~$5x$, and this new term of the root is
+also annexed to the divisor,~$10x$, to complete the divisor.
+\end{Soln}
+%% -----File: 159.png---Folio 153-------
+
+\Paragraph{180.} The same method will apply to longer expressions,
+if care be taken to obtain the \emph{trial-divisor} at each stage of
+the process, \emph{by doubling the part of the root already found},
+and to obtain the \emph{complete divisor by annexing the new term
+of the root to the trial-divisor}.
+
+\ScreenBreak
+Ex. Find the square root of
+\[
+1 + 10x^{2} + 25x^{4} + 16x^{6} - 24x^{5} - 20x^{3} - 4x.
+\]
+\begin{Soln}
+\[
+%[** TN: Spacing hack]
+\qquad\makebox[0pt][c]{$\begin{array}{r*{2}{cr}lll}
+16x^{6} &-& 24x^{5} &+& 25x^{4} &-20x^{3} + 10x^{2} &\TbBar{- 4x + 1} & 4x^{3} - 3x^{2} + 2x - 1 \\
+\cline{8-8}
+16x^{6} \\
+\cline{1-1}
+\TbBar{\llap{$8x^{3} - 3x^{2}$}}
+ &-& 24x^{5} &+& 25x^{4} \\
+\TbBar{}&-& 24x^{5} &+& 9x^{4} \\
+\cline{2-5}
+\multicolumn{4}{r|}{8x^{3} - 6x^{2} + 2x} &
+ 16x^{4} &-20x^{3} + 10x^{2} \\
+ & & & \TbBar{ }& 16x^{4} &-12x^{3} + \Z4x^{2} \\
+\cline{5-6}
+\multicolumn{5}{r|}{8x^{3} - 6x^{2} + 4x - 1}
+ &-\Z8x^{3} + \Z6x^{2} & -4x + 1 \\
+ & & & & \TbBar{}&-\Z8x^{3} + \Z6x^{2} & -4x + 1 \\
+\cline{6-7}
+\end{array}$}
+\]
+
+The expression is arranged according to the descending powers of~$x$.
+
+It will be noticed that each successive trial-divisor may be obtained
+by taking the preceding complete divisor with its \emph{last term doubled}.
+\end{Soln}
+
+\Exercise{78.}
+
+Find the square root of:
+\Item{1.} $a^{2} + 2ab + 2ac + b^{2} + 2bc + c^{2}$.
+
+\Item{2.} $x^{4} + 2x^{3} + 3x^{2} + 2x + 1$.
+
+\Item{3.} $x^{4} - 4x^{3}y + 6x^{2}y^{2} - 4xy^{3} + y^{4}$.
+
+\Item{4.} $4a^{4} - 12a^{3}b + 29a^{2}b^{2} - 30ab^{3} + 25b^{4}$.
+
+\Item{5.} $16x^{6} + 24x^{5}y + 9x^{4}y^{2} - 16x^{3}y^{3} - 12x^{2}y^{4} + 4y^{6}$.
+
+\Item{6.} $4x^{6} - 4x^{4}y^{2} + 12x^{3}y^{3} + x^{2}y^{4} - 6xy^{5} + 9y^{6}$.
+
+\Paragraph{181. Arithmetical Square Roots.} In the general method
+of extracting the square root of a number expressed by
+figures, the first step is to mark off the figures into \emph{groups}.
+%% -----File: 160.png---Folio 154-------
+
+Since $1 = 1^{2}$, $100 = 10^{2}$, $10,000 = 100^{2}$, and so on, it is
+evident that the square root of a number between $1$~and
+$100$ lies between $1$~and~$10$; of a number between $100$ and
+$10,000$ lies between $10$~and~$100$. In other words, the
+square root of a number expressed by \emph{one} or \emph{two} figures is
+a number of \emph{one} figure, of a number expressed by \emph{three} or
+\emph{four} figures is a number of \emph{two} figures, and so on.
+
+If, therefore, an integral square number is divided into
+groups of two figures each, from the right to the left, the
+number of figures in the root will be equal to the number
+of groups of figures. The last group to the left may have
+only one figure.
+
+Ex. Find the square root of~$3249$.
+%[** TN: Tabulated calculation inset in the original]
+\begin{Soln}
+\[
+\begin{array}{rc@{}ll}
+ &3&249&(57 \\
+ &2&5 \\
+\cline{2-3}
+107\,\rlap{)}&&749 \\
+ &&749 \\
+\cline{3-3}
+\end{array}
+\]
+
+In this case, $a$~in the typical form $a^{2} + 2ab + b^{2}$
+represents $5$~tens, that is,~$50$, and $b$~represents~$7$\Add{.} The
+$25$ subtracted is really~$2500$, that is,~$a^{2}$, and the complete
+divisor $2a + b$ is $2 × 50 + 7 = 107$.
+\end{Soln}
+
+\Paragraph{182.} The same method will apply to numbers of more
+than two groups of figures by considering $a$~in the typical
+form to represent at each step \emph{the part of the root already
+found}.
+
+It must be observed that \emph{$a$~represents so many tens with
+respect to the next figure of the root}.
+
+Ex. Find the square root of~$94,249$.
+\begin{Soln}
+\[
+\begin{array}{r*{3}{c@{\,}}l}
+ &9& 42&49&(307 \\
+ &9 \\
+\cline{2-4}
+607\rlap{)} & & \multicolumn{2}{l}{4249} \\
+ & & \multicolumn{2}{l}{4249} \\
+\cline{3-4}
+\end{array}
+\]
+\end{Soln}
+
+\begin{Remark}[Note.] Since the first trial divisor,~$60$, is not contained in~$42$, we
+put a zero in the root, and bring down the next group,~$49$.
+\end{Remark}
+%% -----File: 161.png---Folio 155-------
+
+\Paragraph{183.} If the square root of a number has decimal places,
+the number itself will have \emph{twice} as many. Thus, if $0.21$
+is the square root of some number, this number will be
+$(0.21)^{2} = 0.21 × 0.21 = 0.0441$, and if $0.111$ be the root,
+the number will be $(0.111)^{2} = 0.111 x 0.111 = 0.012321$.
+
+Therefore, the number of \emph{decimal} places in every square
+decimal will be \emph{even}, and the number of decimal places in
+the root will be \emph{half} as many as in the given number itself.
+
+Hence, if a given number contain a decimal, we divide
+it into groups of two figures each, by beginning at the
+decimal point and marking toward the left for the integral
+number, and toward the right for the decimal. We must
+have the last group on the right of the decimal point contain
+\emph{two} figures, annexing a cipher when necessary.
+
+Ex. Find the square roots of $41.2164$ and $965.9664$.
+\begin{Soln}
+\[
+\begin{array}{r@{}r@{}l@{\,}ll}
+ & 41&.21&64& (6.42 \\
+ & 36 \\
+\cline{2-3}
+124\rlap{)} & 5&21 \\
+ & 4&96 \\
+\cline{3-4}
+\multicolumn{2}{r}{1282\rlap{)}}&\multicolumn{2}{l}{2564} \\
+ & &\multicolumn{2}{l}{2564} \\
+\cline{3-4}
+\end{array}\qquad\qquad\qquad
+\begin{array}{rl@{}l@{\,}ll}
+ 9&65&.96& 64&(31.08 \\
+ 9 \\
+\cline{2-2}
+ 61\rlap{)}&65 \\
+ &61 \\
+\cline{2-3}
+6208\rlap{)}&49&664 \\
+ &49&664 \\
+\cline{2-3}
+\end{array}
+\]
+\end{Soln}
+
+\Paragraph{184.} If a number contain an \emph{odd} number of decimal
+places, or if any number give a \emph{remainder} when as many
+figures in the root have been obtained as the given number
+has groups, then its exact square root cannot be found. We
+may, however, approximate to its exact root as near as we
+please by annexing ciphers and continuing the operation.
+
+The square root of a common fraction whose denominator
+is not a perfect square can be found approximately by
+reducing the fraction to a decimal and then extracting the
+root; or by reducing the fraction to an equivalent fraction
+whose denominator is a perfect square, and extracting the
+square root of both terms of the fraction.
+%% -----File: 162.png---Folio 156-------
+
+%[** Force page break in both print and screen layout]
+\newpage
+\Item{1.} Find the square roots of $3$ and $357.357$.
+\begin{Soln}
+\[
+\begin{array}{rcccl}
+ &3.&\multicolumn{3}{l}{(\rlap{$1.732\dots$}} \\
+ &1 \\
+\cline{2-3}
+27\rlap{)}
+ &2&00 \\
+ &1&89 \\
+\cline{3-4}
+\multicolumn{2}{r}{343\rlap{)}}
+ &11&00 \\
+ &&10&29 \\
+\cline{4-5}
+\multicolumn{3}{r}{3462\rlap{)}}
+ &71&00 \\
+&& &69&24 \\
+\cline{4-5}
+\end{array}\qquad\qquad\qquad
+\begin{array}{rcclll}
+ &3&57.&35&70&\rlap{$(18.903\dots$} \\
+ &1 \\
+\cline{2-3}
+28\rlap{)}
+ &2&57 \\
+ &2&24 \\
+\cline{3-4}
+\multicolumn{2}{r}{369\rlap{)}}
+ &33&35 \\
+& &33&21 \\
+\cline{4-6}
+\multicolumn{3}{r}{37803\rlap{)}}
+ &14&70&00 \\
+&& &11&34&09 \\
+\cline{4-6}
+\end{array}
+\]
+\end{Soln}
+
+\Item{2.} Find the square root of~$\frac{5}{8}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Since}
+\frac{5}{8} &= 0.625, \\
+\lintertext{the square root of}
+\frac{5}{8} &= \sqrt{0.625} \\
+ &= 0.79057. \displaybreak[1] \\
+\lintertext{\indent Or,}
+\frac{5}{8} &= \frac{10}{16}, \\
+\lintertext{and the square root of}
+\frac{5}{8} &= \frac{\sqrt{10}}{\sqrt{16}} = \tfrac{1}{4}\sqrt{10} \\
+ &= \tfrac{1}{4}(3.16227) \\
+ &= 0.79057.
+\end{DPalign*}
+\end{Soln}
+
+\ScreenBreak
+\Exercise{79.}
+
+Find the square root of:
+\begin{multicols}{3}
+\Item{1.} $324$.
+
+\Item{2.} $441$.
+
+\Item{3.} $529$.
+
+\Item{4.} $961$.
+
+\Item{5.} $10.24$.
+
+\Item{6.} $53.29$.
+
+\Item{7.} $53,824$.
+
+\Item{8.} $616,225$.
+
+\Item{9.} $1,500,625$.
+
+\Item{10.} $346,921$.
+
+\Item{11.} $31,371,201$.
+
+\Item{12.} $1,522,756$.
+\end{multicols}
+
+\PrintBreak
+Find to four decimal places the square root of:
+\begin{multicols}{5}
+\Item{13.} $2$.
+
+\Item{14.} $3$.
+
+\Item{15.} $5$.
+
+\Item{16.} $6$.
+
+\Item{17.} $0.5$.
+
+\Item{18.} $0.9$.
+
+\Item{19.} $\frac{2}{3}$.
+
+\Item{20.} $\frac{3}{4}$.
+
+\Item{21.} $\frac{4}{5}$.
+
+\Item{22.} $\frac{5}{8}$.
+\end{multicols}
+%% -----File: 163.png---Folio 157-------
+
+
+\Section{Cube Roots of Compound Expressions.}
+
+\Paragraph{185.} Since the cube of $a + b$ is $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$,
+the cube root of a$^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ is $a + b$.
+
+It is required to devise a method for extracting the cube
+root $a + b$ when $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ is given.
+
+\Item{1.} Find the cube root of $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$.
+\begin{Soln}
+\[
+\begin{array}{rl<{\quad}rcll}
+ & & a^{3} &+& \TbBar{3a^{2}b + 3ab^{2} + b^{3}} & a + b \\
+\cline{6-6}
+3a^{2} & & a^{3} \\
+\cline{3-3}
+ &+ 3ab + b^{2} &\TbBar{}& & 3a^{2}b + 3ab^{2} + b^{3} \\
+\cline{1-3}
+3a^{2} &+ 3ab + b^{2} &\TbBar{}& & 3a^{2}b + 3ab^{2} + b^{3} \\
+\cline{4-5}
+\end{array}
+\]
+
+The first term $a$ of the root is obviously the cube root of the first
+term~$a^{3}$ of the given expression.
+
+If $a^{3}$ be subtracted, the remainder is $3a^{2}b + 3ab^{2} + b^{3}$; therefore,
+the second term~$b$ of the root is obtained by dividing the first term of
+this remainder by \emph{three times the square of~$a$}.
+
+Also, since $3a^{2}b + 3ab^{2} + b^{3} = (3a^{2} + 3ab + b^{2})b$, the \emph{complete
+divisor} is obtained by adding $3ab + b^{2}$ to the \emph{trial divisor~$3a^{2}$}.
+\end{Soln}
+
+\Item{2.} Find the cube root of $8x^{3} + 36x^{2}y + 54xy^{2} + 27y^{3}$.
+\begin{Soln}
+\[
+\begin{array}{rlrlcll}
+ & & & 8x^{3} &+& \TbBar{36x^{2}y + 54xy^{2} + 27y^{3}} & 2x + 3y \\
+\cline{7-7}
+ & 12x^{2} & & 8x^{3} \\
+\cline{4-4}
+(6x + 3y)3y =& & 18xy +& \TbBar{9y^{2}} & & 36x^{2}y + 54xy^{2} + 27y^{3} \\
+\cline{2-4}
+ & 12x^{2} &+ 18xy +& \TbBar{9y^{2}} & & 36x^{2}y + 54xy^{2} + 27y^{3} \\
+\cline{5-6}
+\end{array}
+\]
+
+The cube root of the first term is~$2x$, and this is therefore the first
+term of the root. $8x^{3}$,~the cube of~$2x$, is subtracted.
+
+The second term of the root,~$3y$, is obtained by dividing $36x^{2}y$ by
+$3(2x)^{2} = 12x^{2}$, which corresponds to $3a^{2}$ in the typical form, and the
+divisor is completed by annexing to~$12x^{2}$ the expression
+\[
+\bigl\{3(2x) + 3y\bigr\}3y = 18xy + 9y^{2},
+\]
+which corresponds to $3ab + b^{2}$ in the typical form.
+\end{Soln}
+%% -----File: 164.png---Folio 158-------
+
+\Paragraph{186.} The same method may be applied to longer expressions
+by considering~$a$ in the typical form $3a^{2} + 3ab + b^{2}$
+to represent at each stage of the process \emph{the part of the root
+already found}. Thus, if the part of the root already found
+is $x + y$, then $3a^{2}$~of the typical form will be represented
+by $3(x + y)^{2}$; and if the third term of the root be~$+z$, \DPtypo{the}{then}
+$3ab + b^{2}$ will be represented by $3(x + y)z + z^{2}$. So that
+the complete divisor, $3a^{2} + 3ab + b^{2}$, will be represented
+by $3(x + y)^{2} + 3(x + y)z + z^{2}$.
+
+Ex. Find the cube root of $x^{6} - 3x^{5} + 5x^{3} - 3x - 1$.
+\begin{Soln}
+%[** TN: Special spacing]
+\ifthenelse{\not\boolean{ForPrinting}}{\footnotesize}{}
+\[
+\ifthenelse{\not\boolean{ForPrinting}}{\quad}{}
+\begin{array}{*{2}{r}@{}*{3}{r}*{4}{l}}
+ & & & \TbBar{}& x^{2}& \multicolumn{3}{@{}l}{{} - x - 1} \\
+\cline{5-6}
+ & & & & x^{6}& {} - 3x^{5} &\multicolumn{2}{@{}l}{\phantom{{}+ 3x^{4}} + 5x^{3} - 3x - 1} \\
+ & 3x^{4}& & & x^{6} \\
+\cline{5-5}
+ (3x^{2} - x)(-x) =& &{} - 3x^{3}&+& \TbBar{x^{2}}&{} - 3x^{5}&\phantom{{}+ 3x^{4}} + 5x^{3} \\
+\cline{3-5}
+ & 3x^{4}&{} - 3x^{3}&+& \TbBar{x^{2}}&{} - 3x^{5}&{} + 3x^{4} - \Z x^{3} \\
+\cline{6-7}
+ & & & & &\TbBar{} &{} - 3x^{4} + 6x^{3} - 3x - 1 \\
+ 3(x^{2} - x)^{2} =& 3x^{4}&{} - 6x^{3}&+& 3x^{2}&\TbBar{} \\
+\llap{$(3x^{2} - 3x - 1)$}(-1) =& & &-& 3x^{2}& \multicolumn{1}{l|}{{}+ 3x + 1} \\
+\cline{2-6}
+ & 3x^{4}&{} - 6x^{3}& & & \multicolumn{1}{l|}{{}+ 3x + 1}&{} - 3x^{4} + 6x^{3} - 3x - 1 \\
+\cline{7-7}
+\end{array}
+\]
+\end{Soln}
+
+\begin{Remark}[Note.] The root is placed \emph{above} the given expression because
+there is no room for it on the page at the right of the expression.
+
+The first term of the root,~$x^{2}$, is obtained by taking the cube root
+of the first term of the given expression; and the first trial-divisor,~$3x^{4}$,
+is obtained by taking three times the square of this term.
+
+The next term of the root is found by dividing~$-3x^{5}$, the first term
+of the remainder after~$x^{6}$ is subtracted, by~$3x^{4}$, and the first complete
+divisor, $3x^{4} - 3x^{3} + x^{2}$, is found by annexing to the trial divisor
+$(3x^{2} - x)(-x)$, which expression corresponds to $(3a + b)b$ in the
+typical form.
+
+\emph{The part of the root already found}~($a$) is now represented by $x^{2} - x$,
+therefore $3a^{2}$~is represented by $3(x^{2} - x)^{2} = 3x^{4} - 6x^{3} + 3x^{2}$, the
+second trial divisor\Add{,} and $(3a + b)b$ by $(3x^{2} - 3x - 1)(-1)$, since $b$~in
+this case is found to be~$-1$, therefore, in the second complete
+divisor, $3a^{2} + (3a + b)b$ is represented by
+\[
+(3x^{4} - 6x^{3} + 3x^{2}) + (3x^{2} - 3x - 1)(-1) = 3x^{4} - 6x^{3} + 3x + 1.
+\]
+\end{Remark}
+%% -----File: 165.png---Folio 159-------
+
+\Exercise{80.}
+
+Find the cube root of
+
+\Item{1.} $x^{3} + 3x^{2} y + 3xy^{2} + y^{3}$\Add{.}
+
+\Item{2.} $8x^{3} - 12x^{2} + 6x - 1$.
+
+\Item{3.} $8x^{3} - 36x^{2} y + 54xy^{2} - 27y^{3}$.
+
+\Item{4.} $64a^{3} - 144a^{2} x + 108ax^{2} - 27x^{3}$\Add{.}
+
+\Item{5.} $1 + 3x + 6x^{2} + 7x^{3} + 6x^{4} + 3x^{5} + x^{6}$.
+
+\Item{6.} $x^{6} - 3x^{5} + 6x^{4} - 7x^{3} + 6x^{2} - 3x + 1$.
+
+\ScreenBreak
+\Paragraph{187. Arithmetical Cube Roots.} In extracting the cube root
+of a number expressed by figures, the first step is to mark
+it off into groups\Add{.}
+
+Since $1 = 1^{3}$, $1000 = 10^{3}$, $1,000,000 = 100^{3}$, and so on, it
+follows that the cube root of any number between $1$~and
+$1000$, that is, of any number which has \emph{one}, \emph{two}, or \emph{three}
+figures, is a number of \emph{one} figure, and that the cube root
+of any number between $1000$ and $1,000,000$, that is, of any
+number which has \emph{four}, \emph{five}, or \emph{six} figures, is a number of
+\emph{two} figures, and so on.
+
+If, therefore, an integral cube number be divided into
+groups of three figures each, from right to left, the number
+of figures in the root will be equal to the number of groups\Add{.}
+The last group to the left may consist of one, two, or three
+figures.
+
+\Paragraph{188.} If the cube root of a number have decimal places,
+the number itself will have \emph{three times} as many. Thus, if
+$0.11$ be the cube root of a number\Add{,} the number is $0.11 × 0.11
+x 0.11 = 0.001331$. Hence\Add{,} if a given number contain a
+decimal, we divide the figures of the number into groups
+of three figures each, by beginning at the decimal point
+and marking toward the left for the integral number, and
+%% -----File: 166.png---Folio 160-------
+toward the right for the decimal. We must be careful to
+have the last group on the right of the decimal point contain
+\emph{three} figures, annexing ciphers when necessary.
+
+\ScreenBreak
+Extract the cube root of~$42875$.
+\begin{Soln}
+\[
+\begin{array}{rrrlll}
+ & & & 42&875&(35 \\
+ & & a^{3} =& 27 \\
+\cline{4-5}
+3a^{2} =& 3 × 30^{2} =& \TbBar{2700} & 15&875 \\
+ 3ab =& 3 × (30 × 5) =& \TbBar{450} \\
+ b^{2} =& 5^{2} =& \TbBar{25} \\
+\cline{3-3}
+ & & \TbBar{3175} & 15&875 \\
+\cline{4-5}
+\end{array}
+\]
+
+Since $42875$ has two groups, the root will have two figures.
+
+The first group, $42$, contains the cube of the tens of the root.
+
+The greatest cube in~$42$ is~$27$, and the cube root of~$27$ is~$3$. Hence
+$3$~is the tens' figure of the root.
+
+We subtract $27$ from~$42$, and bring down the next group,~$875$.
+Since $a$~is $3$~tens or~$30$, $3a^{2} = 3 × 30^{2}$, or~$2700$. This trial-divisor is
+contained $5$~times in~$15875$. The trial-divisor is completed by adding
+$3ab + b^{2}$; that is, $450 + 25$, to the trial-divisor.
+\end{Soln}
+
+\Paragraph{189.} The same method will apply to numbers of more
+than two groups of figures, by considering in each case~$a$,
+the part of the root already found, as so many tens with
+respect to the next figure of the root.
+
+\PrintStretch{12pt}
+Extract the cube root of~$57512456$.
+\begin{Soln}
+\[
+\begin{array}{*{3}{r}*{4}{l}}
+ & & & 57&512&456&(386 \\
+ & & a^{3} =& 27 \\
+\cline{4-5}
+3a^{2} =& 3 × 30^{2} =& \TbBar{2700} & 30&512 \\
+ 3ab =& 3 × (30 × 8) =& \TbBar{720} \\
+ b^{2} =& 8^{2} =& \TbBar{64} \\
+\cline{3-3}
+ & & \TbBar{3484} & 27&872 \\
+\cline{4-6}
+ & & \TbBar{} & \Z2&640&456 \\
+3a^{2} =& 3 × 380^{2} =& \TbBar{433200} \\
+ 3ab =& 3 × (380 × 6) =& \TbBar{6840} \\
+ b^{2} =& 6^{2} =& \TbBar{36} \\
+\cline{3-3}
+ & & \TbBar{440076} & \Z2&640&456 \\
+\cline{4-6}
+\end{array}
+\]
+\end{Soln}
+%% -----File: 167.png---Folio 161-------
+
+Extract the cube root of~$187.149248$.
+\begin{Soln}
+\[
+\begin{array}{*{3}{r}@{}*{4}{r}l}
+ & & & \multicolumn{2}{r}{187\rlap{.}}&149&248&(5.72 \\
+ & & a^{3} =& \multicolumn{2}{r}{125} \\
+\cline{4-6}
+3a^{2} =& 3 × 50^{2} =& \TbBar{7500}&& 62&149 \\
+ 3ab =& 3 × (50 × 7) =& \TbBar{1050} \\
+ b^{2} =& 7^{2} =& \TbBar{49} \\
+\cline{3-3}
+ & & \TbBar{8599}&& 60&193 \\
+\cline{4-7}
+ & & & \TbBar{}& 1&956&248 \\
+3a^{2} =& 3 × 570^{2} =& 9747&\TbBar{00} \\
+ 3ab =& 3 × (570 × 2) =& 34&\TbBar{20} \\
+ b^{2} =& 2^{2} =& & \TbBar{4} \\
+\cline{3-4}
+ & & 9781&\TbBar{24}& 1&956&248 \\
+\cline{5-7}
+\end{array}
+\]
+
+It will be seen from the groups of figures that the root will have
+one integral and two decimal places.
+\end{Soln}
+
+\Paragraph{190.} If the given number is not a perfect cube, ciphers
+may be annexed, and a value of the root may be found as
+near to the \emph{true} value as we please.
+
+Extract the cube root of~$1250.6894$.
+\begin{Soln}
+\[
+\begin{array}{rrrcclll}
+ & & & &1&\multicolumn{3}{l}{\rlap{250.689\,400\,(10.77}} \\
+ & & a^{3} &=&1 \\
+\cline{4-6}
+3a^{2} =& \PadTo{3 × (1070 × 7)}{3 × 10^{2}} =& \TbBar{\Z\Z300}& && 250 & \phantom{999} & \phantom{999} \\
+\end{array}
+\]
+Since $300$ is not contained in~$250$, the next figure of the root will
+be~$0$.
+\[
+\begin{array}{rrr@{}ccrll}
+3a^{2} =& 3 × 100^{2} =& \TbBar{30000}& &\Z&250&689 \\
+ 3ab =& 3 × (100 × 7) =& \TbBar{2100} \\
+ b^{2} =& 7^{2} =& \TbBar{49} \\
+\cline{3-3}
+ & & \TbBar{32149}& && 225&043 \\
+\cline{4-8}
+ & & &\TbBar{}&& 25&646&400 \\
+3a^{2} =& 3 × 1070^{2} =& 34347&\TbBar{00} \\
+ 3ab =& 3 × (1070 × 7) =& 224&\TbBar{70} \\
+ b^{2} =& 7^{2} =& &\TbBar{49} \\
+\cline{3-4}
+ & & 34572&\TbBar{19}&& 24&200&533 \\
+\cline{5-8}
+ & & & && 1&445&867 \\
+\end{array}
+\]
+\end{Soln}
+%% -----File: 168.png---Folio 162-------
+
+\Paragraph{191.} Notice that if $a$~denotes the first term, and $b$~the
+second term of the root, the \emph{first complete divisor} is
+\[
+3a^{2} + 3ab + b^{2},
+\]
+and the \emph{second trial-divisor} is $3(a + b)^{2}$, that is,
+\[
+3a^{2} + 6ab + 3b^{2}.
+\]
+
+This expression may be obtained by adding to the preceding
+complete divisor, $3a^{2} + 3ab + b^{2}$, \emph{its second term and
+twice its third term}. Thus:
+\[
+\begin{array}{rr}
+3a^{2} + 3ab + & b^{2} \\
+ 3ab + &2b^{2} \\
+\cline{1-2}
+3a^{2} + 6ab + &3b^{2} \\
+\end{array}
+\]
+
+This method of obtaining \emph{trial-divisors} is of great importance
+for shortening numerical work, as may be seen in the
+following example:
+
+Ex. Extract the cube root of~$5$ to five places of decimals.
+\begin{Soln}
+\[
+\begin{array}{rrr@{}r@{}rcrrl}
+ & & & &&5\rlap{.}&\multicolumn{3}{l}{000\,(1.70997} \\
+ & && \multicolumn{3}{r}{a^{3} = 1} \\
+\cline{4-7}
+3a^{2} =& 3 × 10^{2} =& 300&\TbBar{}&&4&000 \\
+ 3ab =& 3(10 × 7) =& 210&\TbBar{} \\
+ b^{2} =& 7^{2} =& 49&\TbBar{}\\
+\cline{3-3}
+ & & 559&\TbBar{\BB}&&3&913 \\
+\cline{5-9}
+ & & 259& & &\TbBar{}& 87& 000& 000 \\
+\cline{3-5}
+3a^{2} =& 3 × 1700^{2} =& 867&00&00&\TbBar{} \\
+ 3ab =& 3(1700 × 9) =& 4&59&00&\TbBar{} \\
+ b^{2} =& 9^{2} =& & &81&\TbBar{} \\
+\cline{3-5}
+ & & 871&59&81&\TbBar{\BB}& 78& 443& 829 \\
+\cline{7-9}
+ & & 4&59&81&\TbBar{}& 8& 556& 1710 \\
+\cline{3-5}
+3a^{2} =& 3 × 1709^{2} =& 876&20&43&\TbBar{}& 7& 885& 8387 \\
+\cline{7-9}
+ & & & & &\TbBar{}& & 670& 33230 \\
+ & & & & &\TbBar{}& & 613& 34301 \\
+\cline{7-9}
+\end{array}
+\]
+%% -----File: 169.png---Folio 163-------
+
+After the first two figures of the root are found, the next trial-divisor
+is obtained by bringing down~$259$, the sum of the $210$ and $49$
+obtained in completing the preceding divisor, then \emph{adding the three
+lines connected by the brace}, and annexing two ciphers to the result.
+
+This trial divisor is~$86,700$, and if we add $3ab + b^{2}$ to complete the
+divisor, when $b = 1$, the complete divisor will be $86,700 + 511 = 87,211$,
+and this is larger than the dividend~$87,000$. We therefore put $0$ for
+the next figure of the root. We then bring down another group
+and annex two more ciphers to the trial-divisor.
+
+The last two figures of the root are found by division. The rule
+in such cases is, that two less than the number of figures already
+obtained may be found without error by division, the divisor being
+three times the square of the part of the root already found.
+\end{Soln}
+
+\Paragraph{192.} The cube root of a common fraction whose denominator
+is not a perfect cube can be found approximately by
+reducing the fraction to a decimal, and then extracting
+the root.
+
+\Exercise{81.}
+
+Find the cube root of:
+\begin{multicols}{2}
+\Item{1.} $46,656$.
+
+\Item{2.} $42,875$.
+
+\Item{3.} $91,125$.
+
+\Item{4.} $274,625$.
+
+\Item{5.} $110,592$.
+
+\Item{6.} $258,474,853$.
+
+\Item{7.} $109,215,352$.
+
+\Item{8.} $259,694,072$.
+
+\Item{9.} $127,263,527$.
+
+\Item{10.} $385,828,352$.
+
+\Item{11.} $1879.080904$.
+
+\Item{12.} $1838.265625$.
+\end{multicols}
+
+Find to four decimal places the cube root of:
+\begin{multicols}{4}
+\Item{13.} $0.01$.
+
+\Item{14.} $0.05$.
+
+\Item{15.} $0.2$.
+
+\Item{16.} $4$.
+
+\Item{17.} $10$.
+
+\Item{18.} $87$.
+
+\Item{19.} $2.5$.
+
+\Item{20.} $2.05$.
+
+\Item{21.} $3.02$.
+
+\Item{22.} $\frac{2}{3}$.
+
+\Item{23.} $\frac{3}{4}$.
+
+\Item{24.} $\frac{9}{11}$.
+\end{multicols}
+%% -----File: 170.png---Folio 164-------
+%[Blank Page]
+%% -----File: 171.png---Folio 165-------
+
+
+\Answers
+
+\AnsTo[7]{Exercise}{1.} % Page 10.
+
+\Item{1.} $14$.
+
+\Item{2.} $10$.
+
+\Item{3.} $13$.
+
+\Item{4.} $11$.
+
+\Item{5.} $13$.
+
+\Item{6.} $7$.
+
+\Item{7.} $9$.
+
+\Item{8.} $7$.
+
+\Item{9.} $6$.
+
+\Item{10.} $2$.
+
+\Item{11.} $3$.
+
+\Item{12.} $6$.
+
+\Item{13.} $2$.
+
+\Item{14.} $8$.
+
+\Item{15.} $4$.
+
+\Item{16.} $3$.
+
+\Item{17.} $1$.
+
+\Item{18.} $1$.
+
+\Item{19.} $3$.
+
+\Item{20.} $4$.
+
+\Item{21.} $10$.
+
+
+\AnsTo[7]{Exercise}{2.} % Page 12.
+
+\Item{1.} $91$.
+
+\Item{2.} $21$.
+
+\Item{3.} $60$.
+
+\Item{4.} $24$.
+
+\Item{5.} $96$.
+
+\Item{6.} $16$.
+
+\Item{7.} $36$.
+
+\ResetCols[3]
+\Item{8.} $4a + 4b$.
+
+\Item{9.} $4a - 4b$.
+
+\Item{10.} $2a^{2} + 2b^{2}$.
+
+\Item{11.} $2a^{2} - 2b^{2}$.
+
+\Item{12.} $3ab + 3c$.
+
+\Item{13.} $3ab - 3c$.
+
+\Item{14.} $3c - 3ab$.
+
+\Item{15.} $ab + ac$.
+
+\Item{16.} $ab - ac$.
+
+\Item{17.} $3ab + 3ac$.
+
+\Item{18.} $3ab - 3ac$.
+
+\Item{19.} $5ab^{2} + 5ac$.
+
+\Item{20.} $5ab^{2} - 5ac^{2}$.
+
+\Item{21.} $5a^{2}b^{2} - 5a^{2}c$.
+
+
+\AnsTo[5]{Exercise}{3.} % Page 12.
+
+\Item{1.} $63$.
+
+\Item{2.} $280$.
+
+\Item{3.} $300$.
+
+\Item{4.} $98$.
+
+\Item{5.} $81$.
+
+\Item{6.} $1250$.
+
+\Item{7.} $105$.
+
+\Item{8.} $105$.
+
+\Item{9.} $315$.
+
+\Item{10.} $35$.
+
+\Item{11.} $105$.
+
+\Item{12.} $105$.
+
+\Item{13.} $0$.
+
+\Item{14.} $135$.
+
+\Item{15.} $120$.
+
+\Item{16.} $0$.
+
+\Item{17.} $1800$.
+
+\Item{18.} $540$.
+
+\Item{19.} $0$.
+
+\Item{20.} $270$.
+
+\Item{21.} $540$.
+
+
+\AnsTo[6]{Exercise}{4.} % Page 13.
+
+\Item{1.} $21$.
+
+\Item{2.} $26$.
+
+\Item{3.} $72$.
+
+\Item{4.} $85$.
+
+\Item{5.} $30$.
+
+\Item{6.} $17$.
+
+\Item{7.} $8$.
+
+\Item{8.} $50$.
+
+\Item{9.} $24$.
+
+\Item{10.} $0$.
+
+\Item{11.} $12$.
+
+\Item{12.} $100$.
+
+\Item{13.} $80$.
+
+\Item{14.} $71$.
+
+\Item{15.} $139$.
+
+\Item{16.} $17$.
+
+\Item{17.} $8$.
+
+\Item{18.} $5$.
+
+\Item{19.} $3$.
+
+\Item{20.} $6$.
+
+\Item{21.} $5$.
+
+\Item{22.} $1$.
+
+\Item{23.} $2$.
+
+\Item{24.} $2$.
+
+
+\AnsTo{Exercise}{5.} % Page 14.
+
+\Item{1.} $a$~plus~$b$; $a$~minus~$b$; $a$~times~$b$; $a$~divided by~$b$.
+
+\Item{3.} $a + b$.
+
+\Item{5.} $a - b$.
+
+\Item{7.} $x - y$.
+
+\Item{9.} $4x$; $x^{4}$.
+
+\Item{11.} $35 - x$.
+
+\Item{12.} $x - a$.
+
+\Item{14.} $14 - x$.
+
+\Item{15.} $a - x$.
+
+\Item{17.} $xy$.
+
+\Item{18.} $\dfrac{x}{y}$.
+%% -----File: 172.png---Folio 166-------
+
+
+\AnsTo[2]{Exercise}{6.} % Page 15.
+
+\Item{2.} $\dfrac{a}{b}$.
+
+\Item{4.} $(x - 3)$~yr.; $(x + 7)$~yr.
+
+\Item{6.} $7(2x - y)$.
+
+\Item{8.} $x + 1$; $x - 1$.
+
+\Item{9.} $20 - d$.
+
+\Item{11.} $x + 8$.
+
+\Item{13.} $x - 10$.
+
+\Item{14.} $10$.
+
+
+\AnsTo[2]{Exercise}{7.} % Page 16.
+
+\Item{1.} $(40 - x)$~yr.
+
+\Item{2.} $(a + y)$~yr.
+
+\Item{3.} $4$.
+
+\Item{5.} $ab$.
+
+\Item{6.} $5x - 3x$.
+
+\Item{8.} $2x - 3 - (x + 1)$.
+
+\Item{9.} $40$.
+
+\Item{10.} $12$.
+
+\Item{11.} $100a + 25b + 10c$.
+
+\Item{12.} $100 - x - y$.
+
+\Item{14.} $xy + c$.
+
+
+\AnsTo[2]{Exercise}{8.} % Page 17.
+
+\Item{2.} $xy - a^{2}$.
+
+\Item{3.} $\dfrac{ph}{gk}$.
+
+\Item{4.} $6m^{2} + 5c(d + b - a)$.
+
+\Item{5.} $5(2n + 1) - 6(c - a + b)$.
+
+\Item{6.} \$$100 - \text{\$}(a + b + 2c)$.
+
+\Item{8.} $\dfrac{1}{x}$.
+
+\Item{9.} $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}$.
+
+\ResetCols[1]
+\Item{10.} $n + (n + 1) + (n + 2)$; $n(n + 1)(n + 2)$.
+
+\ResetCols[4]
+\Item{11.} $\dfrac{36}{x}$.
+
+\Item{12.} $qd$.
+
+\Item{13.} $qd + r$.
+
+\Item{14.} $2x$.
+
+\Item{15.} $\dfrac{10x}{12}$.
+
+\Item{16.} $\dfrac{6a}{b}$.
+
+\Item{17.} $4m$.
+
+\Item{18.} $x + 17$.
+
+\Item{19.} $x + y + c$.
+
+\Item{20.} $36x$.
+
+\Item{21.} $\dfrac{c}{4}$.
+
+\Item{22.} $x - 1$, $x$, $x + 1$.
+
+\Item{23.} $2n + 3$.
+
+
+\AnsTo[5]{Exercise}{9.} % Page 24.
+
+\Item{1.} $4$.
+
+\Item{2.} $5$.
+
+\Item{3.} $3$.
+
+\Item{4.} $1$.
+
+\Item{5.} $13$.
+
+\Item{6.} $0$.
+
+\Item{7.} $5$.
+
+\Item{8.} $5$.
+
+\Item{9.} $7$.
+
+\Item{10.} $4$.
+
+\Item{11.} $4$.
+
+\Item{12.} $1$.
+
+\Item{13.} $25$.
+
+\Item{14.} $32\frac{1}{2}$.
+
+\Item{15.} $6$.
+
+\Item{16.} $10$.
+
+\Item{17.} $3$.
+
+\Item{18.} $1$.
+
+\Item{19.} $7$.
+
+\Item{20.} $13$.
+
+\Item{21.} $12$.
+
+\Item{22.} $14$.
+
+\Item{23.} $7$.
+
+\Item{24.} $5$.
+
+\Item{25.} $0$.
+
+\Item{26.} $15$.
+
+\Item{27.} $10\frac{1}{2}$.
+
+\Item{28.} $4$.
+
+\Item{29.} $3$.
+
+\Item{30.} $4$.
+
+\Item{31.} $\frac{2}{5}$.
+
+\Item{32.} $6$.
+
+\Item{33.} $9$.
+
+\Item{34.} $7$.
+
+\Item{35.} $5$.
+
+\Item{36.} $6$.
+
+\Item{37.} $6$.
+
+
+\AnsTo[2]{Exercise}{10.} % Page 27.
+
+\Item{1.} $30$.
+
+\Item{2.} Son, $10$~yr.; father, $50$~yr.
+
+\Item{3.} $78$, $13$.
+
+\Item{4.} $80$~ft.\ broken off; $10$~ft.\ standing.
+
+\Item{5.} $23$, $30$.
+
+\Item{6.} $36$, $48$.
+
+\Item{7.} $15$, $20$.
+
+\Item{8.} $20$.
+
+\Item{9.} $12$.
+
+\Item{10.} $10$, $40$.
+
+\Item{11.} $26$, $10$.
+
+\Item{12.} $25$, $15$.
+
+\Item{13.} $10$, $20$.
+
+\Item{14.} $7$, $20$.
+
+\Item{15.} $12$, $20$.
+%% -----File: 173.png---Folio 167-------
+
+
+\AnsTo{Exercise}{11.} % Page 29.
+
+\Item{1.} Cow, \$$42$; horse, \$$168$.
+
+\Item{2.} $81$.
+
+\Item{3.} $2$.
+
+\Item{4.} $30$, $40$.
+
+\Item{5.} $25$, $26$, $27$.
+
+\Item{6.} $5$, $6$, $7$, $8$, $9$.
+
+\Item{7.} A, $30$~yr.; B, $10$~yr.
+
+\Item{8.} Father, $40$~yr., son, $10$~yr.
+
+\Item{9.} $40$.
+
+\Item{10.} $10$.
+
+\Item{11.} \$$40$.
+
+\Item{12.} $9$.
+
+
+\AnsTo[2]{Exercise}{12.} % Page 30.
+
+\Item{1.} $15$~men; $30$~women; $45$~children.
+
+\Item{2.} $50$.
+
+\Item{3.} $16$.
+
+\Item{4.} $7$.
+
+\Item{5.} $35$.
+
+\Item{6.} $24$.
+
+\Item{7.} $24$.
+
+\Item{8.} $20$.
+
+\Item{9.} $970$; $1074$.
+
+
+\AnsTo[2]{Exercise}{13.} % Page 31.
+
+\Item{1.} $24$.
+
+\Item{2.} A, \$$60$; B, \$$30$.
+
+\Item{3.} \$$3$~quarters; $6$~bills.
+
+\Item{4.} $14$.
+
+\Item{5.} \$$4$~quarters; $20$~half-dollars.
+
+\Item{6.} \$$7$~ten-dollar bills; $21$~one-dollar bills.
+
+\Item{7.} Father, $32$~yr.; son, $8$~yr.
+
+\Item{8.} $20$.
+
+
+\AnsTo[2]{Exercise}{14.} % Page 32.
+
+\Item{1.} $9$~miles.
+
+\Item{2.} \$$60$.
+
+\Item{3.} \$$20$~lb.\ at $65$~cts.;
+ $60$~lb.\ at $45$~cts.
+
+\Item{4.} $40$.
+
+\Item{5.} $15,000$.
+
+\Item{6.} $15$~in.; $21$~in.
+
+\Item{7.} \$$2$~doz.\ at $25$~cts.;
+ $5$~doz.\ at $20$~cts.
+
+\Item{8.} \$$6$~quarters, $18$~ten-cent pieces.
+
+
+\AnsTo[4]{Exercise}{15.} % Page 39.
+
+\Item{1.} $40c$.
+
+\Item{2.} $24a$.
+
+\Item{3.} $39x$.
+
+\Item{4.} $51y$.
+
+\Item{5.} $-26a$.
+
+\Item{6.} $-40x$.
+
+\Item{7.} $-17b$.
+
+\Item{8.} $-66z$.
+
+\Item{9.} $-20m$.
+
+\Item{10.} $2d$.
+
+\Item{11.} $0$.
+
+\Item{12.} $-18g$.
+
+\Item{13.} $a^{2}$.
+
+\Item{14.} $-21x^{3}$.
+
+\Item{15.} $0$.
+
+\Item{16.} $3mn$.
+
+\Item{17.} $0$.
+
+\Item{18.} $-3a^{3}b^{3}c^{3}$.
+
+\Item{19.} $-9abcd$.
+
+\Item{20.} $1$.
+
+\Item{21.} $12$.
+
+\Item{22.} $4$.
+
+\Item{23.} $-18$.
+
+\Item{24.} $10$.
+%% -----File: 174.png---Folio 168-------
+
+
+\AnsTo{Exercise}{16.} % Page 42.
+
+\Item{1.} $30a^{5}$.
+
+\Item{2.} $40a^{4}b^{3}$.
+
+\Item{3.} $63x^{2}y^{2}$.
+
+\Item{4.} $2a^{5}b^{5}c^{2}$.
+
+\Item{5.} $9a^{7}b^{9}c^{9}$.
+
+\Item{6.} $-10a^{2}$.
+
+\Item{7.} $12ab$.
+
+\Item{8.} $-a^{4}b^{3}$.
+
+\Item{9.} $10a^{5}b^{5}c$.
+
+\Item{10.} $12x^{7}y^{5}z^{2}$.
+
+\Item{11.} $105a^{7}b^{5}$.
+
+\Item{12.} $6a^{6}b^{5}c^{7}$.
+
+\Item{13.} $-12a^{5}b^{5}c^{5}x^{5}$.
+
+\Item{14.} $24a^{7}b^{6}c^{5}$.
+
+\Item{15.} $-42a^{6}m^{5}x^{7}$.
+
+\Item{16.} $30x^{8}y^{4}z^{6}$.
+
+\Item{17.} $-46$.
+
+\Item{18.} $-3$.
+
+\Item{19.} $-8$.
+
+\Item{20.} $-17$.
+
+\Item{21.} $9$.
+
+\Item{22.} $12$.
+
+\Item{23.} $-102$.
+
+\Item{24.} $-41$.
+
+\Item{25.} $174$.
+
+\Item{26.} $6$.
+
+\Item{27.} $30$.
+
+\Item{28.} $372$.
+
+
+\AnsTo[4]{Exercise}{17.} % Page 45.
+
+\Item{1.} $x^{2}$.
+
+\Item{2.} $3x^{2}$.
+
+\Item{3.} $-7$.
+
+\Item{4.} $-7$.
+
+\Item{5.} $7x^{4}$.
+
+\Item{6.} $9x$.
+
+\Item{7.} $-4a$.
+
+\Item{8.} $4x^{2}y^{2}$.
+
+\Item{9.} $-9x$.
+
+\Item{10.} $5x$.
+
+\Item{11.} $3y^{2}$.
+
+\Item{12.} $-4ab^{2}$.
+
+\Item{13.} $12xy^{4}$.
+
+\Item{14.} $\dfrac{3x^{3}y^{3}}{5}$.
+
+\Item{15.} $-\dfrac{3a}{2}$.
+
+\Item{16.} $-bd$.
+
+\Item{17.} $acd^{2}$.
+
+\Item{18.} $-\dfrac{2xy}{3}$.
+
+\Item{19.} $5ab$.
+
+\Item{20.} $4mn$.
+
+\Item{21.} $\dfrac{yz^{3}}{3}$.
+
+\Item{22.} $-17cd$.
+
+\Item{23.} $2n^{2}p$.
+
+\Item{24.} $\dfrac{3r^{2}}{p}$.
+
+\Item{25.} $-13agt$.
+
+\Item{26.} $\dfrac{1}{abc}$.
+
+\Item{27.} $\dfrac{3}{2xy^{2}z^{3}}$.
+
+\Item{28.} $\dfrac{2}{mnp}$.
+
+\Item{29.} $-\dfrac{a}{3b^{2}}$.
+
+\Item{30.} $-\dfrac{g}{3mt}$.
+
+
+\AnsTo[2]{Exercise}{18.} % Page 48.
+
+\Item{1.} $2a^{2} + 2b^{2}$.
+
+\Item{2.} $9a^{2} - 2a + 6$.
+
+\Item{3.} $0$.
+
+\Item{4.} $4x + 4y + 4z$.
+
+\Item{5.} $2b + 2c$.
+
+\Item{6.} $4a + 4b + 4c$.
+
+\Item{7.} $3a^{2} + 5a - 2$.
+
+\Item{8.} $8ab + 3ac$.
+
+\Item{9.} $6x^{3}$.
+
+\Item{10.} $5x^{2} + 3xy - 2y^{2}$.
+
+\Item{11.} $a^{2} - 2b^{2}$.
+
+\Item{12.} $4a^{3} + 6a + 2$.
+
+\Item{13.} $3m^{3} + 7m^{2} + 2$.
+
+\Item{14.} $2x^{3} - 2x^{2} + 4x + y$.
+
+\Item{15.} $7x^{3} + 7x^{2} + 2$.
+
+\Item{16.} $a^{3} + 3a^{2}b - 5ab^{2} - b^{3}$.
+
+\Item{17.} $-a^{3} - a^{2}b - 2ab^{2} - 2b^{3}$.
+
+\Item{18.} $2x^{3} + 2x^{2}y - xy^{2} + 6y^{3}$.
+%% -----File: 175.png---Folio 169-------
+
+
+\AnsTo[2]{Exercise}{19.} % Page 50.
+
+\Item{1.} $a - b + c$.
+
+\Item{2.} $2a - 2b + 6c$.
+
+\Item{3.} $2a + 3y -8z$.
+
+\Item{4.} $x + 4y + 5z$.
+
+\Item{5.} $2ac + 2bc$.
+
+\Item{6.} $2ab - 3ac + 4bc$.
+
+\Item{7.} $x^{3} + 3x^{2} + 2x - 8$.
+
+\Item{8.} $x^{3} - 7x^{2} + 4x$.
+
+\Item{9.} $2b^{3} + 18abc - 15c^{3}$.
+
+\Item{10.} $2 - x - 2x^{2} + 2x^{3}$.
+
+\Item{11.} $-3b^{3} - 4c^{3} + 6abc$.
+
+\Item{12.} $-x^{4} - 2x^{3} + 4x^{2} - 7x + 5$.
+
+\Item{13.} $2x + x^{2} + x^{3} + x^{5}$.
+
+\Item{14.} $2b^{3} - 4a^{2}b + 2ab^{2}$.
+
+\Item{15.} $2b^{4} - 2a^{3}b^{3} - ab^{2}$.
+
+\Item{16.} $4x^{3} - 3x^{2}y - 4xy^{2} + 7y^{3}$.
+
+
+\AnsTo{Exercise}{20.} % Page 52.
+
+\Item{1.} $c$.
+
+\Item{2.} $y - b$.
+
+\Item{3.} $x - 3y - 7c$.
+
+\Item{4.} $7a + 2b-2$.
+
+\Item{5.} $2a + x$.
+
+\Item{6.} $13x - 15y + 13z$.
+
+\Item{7.} $2a - 2b + 2c$.
+
+\Item{8.} $5a + b - 4c$.
+
+\Item{9.} $4x - 5y + 2z$.
+
+\Item{10.} $3a - b$.
+
+\Item{11.} $2x + 3y + z$.
+
+\Item{12.} $-8x + y$.
+
+\Item{13.} $6z - 2y-z$.
+\ResetCols
+
+\Item{15.} $(a + c)x - (a - b)y + (a - c)z$.
+
+\Item{16.} $(2a + 5c)x - (3a + 4b)y - (6b + 7c)z$.
+
+\Item{17.} $(ac - an)x - (bm + cn)y + (a + 3c)z$.
+
+\Item{18.} $(mn - 1)x - (mn + 1)y + (mn + 1)z$.
+
+
+\AnsTo[2]{Exercise}{21.} % Page 53.
+
+\Item{1.} $x^{2} + 7x$.
+
+\Item{2.} $8x^{2} - 12xy$.
+
+\Item{3.} $14xy - 21y^{2}$.
+
+\Item{4.} $2ax - 4a^{2}$.
+
+\Item{5.} $bx - 3b^{2}$.
+
+\Item{6.} $-6a^{3} + 9a^{2}b$.
+
+\Item{7.} $10x^{2}z + 15xz^{2}$.
+
+\Item{8.} $5a^{3}b - 25a^{2}b^{2}$.
+
+\Item{9.} $-x^{2}y^{2} + 3xy^{3}$.
+
+\Item{10.} $4x^{5} - 6x^{4}$.
+
+\Item{11.} $4x^{2}y - 12y^{3}$.
+
+\Item{12.} $-x^{4} + 3x^{2}y^{2}$.
+
+\Item{13.} $-a^{3}b^{3} + a^{5}b^{2}$.
+
+\Item{14.} $a^{4}b^{2} + a^{5}$.
+
+\Item{15.} $4x^{5} - 6x^{4} + 2x^{3}$.
+
+\Item{16.} $5a^{3}b - 25a^{2}b^{2} - 5ab^{3}$.
+
+\Item{17.} $a^{5} + 2a^{4}b + 2a^{3}b^{2}$.
+
+\Item{18.} $a^{3}b^{3} + 2a^{2}b^{4} + 2ab^{5}$.
+
+\Item{19.} $8x^{3} - 12x^{2}y - 18xy^{2}$.
+
+\Item{20.} $x^{2}y + 2xy^{2} - y^{3}$.
+
+\Item{21.} $a^{5} + a^{4}b^{2} + a^{2}b^{3}$.
+
+\Item{22.} $x^{2}y^{2} - 2xy^{3} + y^{4}$.
+
+\Item{23.} $15a^{4}b^{4} - 20a^{3}b^{5} + 5a^{5}b^{3}$.
+
+\Item{24.} $3a^{2}x^{2}y^{2} - 9a^{2}xy^{4} + 3a^{2}y^{6}$.
+
+\Item{25.} $x^{15}y^{2} - x^{13}y^{5} - x^{6}y^{12}$.
+
+\Item{26.} $4x^{5}y^{3} - 6x^{4}y^{5} + 4x^{3}y^{6}$.
+
+\Item{27.} $a^{10}x^{5}y^{10} - a^{9}x^{4}y^{9} - a^{8}x^{3}y^{8}$.
+
+\Item{28.} $15a^{4}b^{5} - 10a^{3}b^{6} + 25a^{5}b^{4}$.
+%% -----File: 176.png---Folio 170-------
+
+
+\AnsTo[2]{Exercise}{22.} % Page 56.
+
+\Item{1.} $x^{2} + 13x + 42$.
+
+\Item{2.} $x^{2} - x - 42$.
+
+\Item{3.} $x^{2} + x - 42$.
+
+\Item{4.} $x^{2} - 13x + 42$.
+
+\Item{5.} $x^{2} + 3x - 40$.
+
+\Item{6.} $4x^{2} + 12x + 9$.
+
+\Item{7.} $4x^{2} - 12x + 9$.
+
+\Item{8.} $4x^{2} - 9$.
+
+\Item{9.} $-9x^{2} + 12x - 4$.
+
+\Item{10.} $20x^{2} - 47x + 21$.
+
+\Item{11.} $a^{2} + ab - 6b^{2}$.
+
+\Item{12.} $a^{2} - 12ab + 35b^{2}$.
+
+\Item{13.} $25x^{2} - 30xy + 9y^{2}$.
+
+\Item{14.} $x^{2} - bx - cx + bc$.
+
+\Item{15.} $8m^{2} - 10mp + 3p^{2}$.
+
+\Item{16.} $a^{2} + ab - bc - c^{2}$.
+
+\Item{17.} $a^{4} - a^{3}b + 2a^{2}b^{2} - ab^{3} + b^{4}$.
+
+\Item{18.} $x^{5} - 3x^{4} - x^{3} + 16x^{2} - 21$.
+
+\Item{19.} $a^{3} - b^{3}$.
+
+\Item{20.} $a^{3} + b^{3}$.
+
+\Item{21.} $2x^{4} + 13x^{3} - 9x^{2} - 50x + 40$.
+
+\Item{22.} $9x^{5} - 7x^{3} + 6x^{2} - 2x$.
+
+\Item{23.} $x^{5} - 4x^{2}y^{3} + 3xy^{4}$.
+
+\Item{24.} $-a^{4} + 4a^{3}b - 7ab^{3} - 2b^{4}$.
+\ResetCols[1]
+
+\Item{25.} $-25a^{5}b^{3} + 20a^{4}b^{4} + 12a^{3}b^{5} - 5a^{2}b^{6} - 2ab^{7}$.
+
+\Item{26.} $a^{4} - 2a^{2}b^{2} + b^{4}$.
+
+\Item{27.} $a^{2}b^{2} + 2abcd - a^{2}c^{2} + c^{2}d^{2}$.
+
+\Item{28.} $-2x^{5}y^{3} + x^{4}y^{4} + 10x^{3}y^{5} - 8x^{2}y^{6} - 3xy^{7}$.
+
+\Item{29.} $x^{4} - 4x^{2}y^{2} + 4xy^{3} - y^{4}$.
+
+\Item{30.} $3x^{4} - 5x^{3}y - 12x^{2}y^{2} - xy^{3} + 3y^{4}$.
+
+\Item{31.} $-a^{4} + 6a^{2}b^{2} - b^{4}$.
+
+\Item{32.} $a^{4} - a^{3}c + ab^{2}c - b^{4} - 2b^{2}c^{2} + ac^{3} - c^{4}$.
+
+\Item{33.} $a^{4} - 16a^{2}b^{2}x^{2} + 32a^{3}b^{3}x^{3} - 16a^{4}b^{4}x^{4}$.
+
+\Item{34.} $6a^{4} + 5a^{3}bx - 10a^{2}b^{2}x^{2} + 7ab^{3}x^{3} - 2b^{4}x^{4}$.
+
+\Item{35.} $10x^{6}y^{2} + 14x^{5}y^{3} - 48x^{4}y^{4} + 32x^{3}y^{5} - 16x^{2}y^{6}$.
+
+
+\AnsTo{Exercise}{23.} % Page 58.
+
+\Item{1.} $2a^{2} - a$.
+
+\Item{2.} $7a^{4} - a$.
+
+\Item{3.} $7x^{2} + 1$.
+
+\Item{4.} $5m^{4} - p^{2}$.
+
+\Item{5.} $3x^{3} - 5x^{2}$.
+
+\Item{6.} $-3x^{3} + 1$.
+
+\Item{7.} $2x^{2} - 3x$.
+
+\Item{8.} $-x^{2} + 2$.
+
+\Item{9.} $a + 2c$.
+
+\Item{10.} $5x - y$.
+
+\Item{11.} $ax - 1$.
+
+\Item{12.} $x + xy$.
+
+\Item{13.} $-3a + 4b - 2c$.
+
+\Item{14.} $ab - b^{4} - a^{2}b$.
+
+\Item{15.} $x^{2} - 2xy - 3y^{2}$.
+
+\Item{16.} $xy - x^{2} - y^{2}$.
+
+\Item{17.} $-a^{2} + ab + b^{2}$.
+
+\Item{18.} $-a + 1 - b$.
+
+\Item{19.} $-1 + xy - x^{2}y^{2}$.
+
+\Item{20.} $x^{2} + 2x + 1$.
+
+\Item{21.} $a - b - c$.
+
+\Item{22.} $x^{3} - x^{2}y - y^{2}$.
+
+\Item{23.} $ab - 2 - 3b^{2}$.
+
+\Item{24.} $a^{2}c^{2} + a - c$.
+%% -----File: 177.png---Folio 171-------
+
+
+\AnsTo{Exercise}{24.} % Page 62.
+
+\Item{1.} $x + 8$.
+
+\Item{2.} $x - 8$.
+
+\Item{3.} $x + 8$.
+
+\Item{4.} $x - 8$.
+
+\Item{5.} $a + 5$.
+
+\Item{6.} $3a + 1$.
+
+\Item{7.} $a + 5$.
+
+\Item{8.} $-3a - 2$.
+
+\Item{9.} $x^{2} - x + 1$.
+
+\Item{10.} $x^{4} + x^{2} + 1$.
+
+\Item{11.} $1 + ab + a^{2}b^{2}$.
+
+\Item{12.} $x^{2} + 3x + 1$.
+
+\Item{13.} $a - b + c$.
+
+\Item{14.} $a + b - c$.
+
+\Item{15.} $x + y - z$.
+
+\Item{16.} $c^{2} + c + 2$.
+
+\Item{17.} $x - 2y - z$.
+
+\Item{18.} $x - a$.
+
+\Item{19.} $a - 2b + 3c$.
+
+\Item{20.} $a^{2} + 5a + 6$.
+
+\Item{21.} $q^{2} + 3q + 2$.
+
+\Item{22.} $9a^{2} + 6ab + 4b^{2}$.
+
+\Item{23.} $-65$.
+
+\Item{24.} $10$.
+
+\Item{25.} $7a - 45$.
+
+\Item{26.} $2x^{4}$.
+
+
+\AnsTo[1]{Exercise}{25.} % Page 63.
+
+\Item{1.} $2a^{2}$.
+
+\Item{2.} $-3a^{4} + 2a^{3}b - 2ab^{3} + 4b^{4}$.
+
+\Item{3.} $x$.
+
+\Item{4.} $a^{4} + 2a^{2}b^{2} + b^{4} - c^{4} + 2c^{2}d^{2} - d^{4}$.
+
+\Item{5.} $10y^{4} + 8y^{3} + 6y^{2} + 4y + 2$.
+
+\Item{6.} $0$.
+
+\Item{7.} $2z - 7y$.
+
+\Item{8.} $a^{3} - 3abc + b^{3} + c^{3}$.
+
+\Item{9.} $4y^{2} - 3xy + 2x^{2}$.
+
+\Item{10.} $5a^{3}b - b^{4}$.
+
+\Item{11.} $3x^{3} - 2x^{2} + 1$.
+
+\Item{12.} $3c^{2} + 24c - 12$.
+
+\Item{13.} $2b^{4}$.
+
+\Item{14.} $10 - 16x - 39x^{2} + 2x^{3} + 15x^{4}$.
+
+\Item{15.} $a^{4} - ax^{3} + x^{4}$.
+
+\Item{16.} $(a - b)x^{3} + (b + c)x^{2} - (c + 1)x$.
+
+\Item{17.} $(a + b)x^{4} - (a - b)x^{3} - (c + 2)x$.
+
+\Item{18.} $(a + 1)x^{3} - (b + c)x^{2} + (b - c)x$.
+
+
+\AnsTo[2]{Exercise}{26.} % Page 65.
+
+\Item{1.} $m^{2} + 2mn + n^{2}$.
+
+\Item{2.} $c^{2} - 2ac + a^{2}$.
+
+\Item{3.} $a^{2} + 4ac + 4c^{2}$
+
+\Item{4.} $9a^{2} - 12ab + 4b^{2}$.
+
+\Item{5.} $4a^{2} + 12ab + 9b^{2}$.
+
+\Item{6.} $a^{2} - 6ab + 9b^{2}$.
+
+\Item{7.} $4x^{2} - 4xy + y^{2}$.
+
+\Item{8.} $y^{2} - 4xy + 4x^{2}$.
+
+\Item{9.} $a^{2} + 10ab + 25b^{2}$.
+
+\Item{10.} $4a2 - 20ac + 25c^{2}$.
+
+\Item{11.} $x^{2} - y^{2}$.
+
+\Item{12.} $16a^{2} - b^{2}$.
+
+\Item{13.} $4b^{2} - 9c^{2}$.
+
+\Item{14.} $x^{2} + 10bx + 25b^{2}$.
+
+\Item{15.} $y^{2} - 4yz + 4z^{2}$.
+
+\Item{16.} $y^{2} - 9z^{2}$.
+
+\Item{17.} $4a^{2} - 9b^{2}$.
+
+\Item{18.} $4a^{2} - 12ab + 9b^{2}$.
+
+\Item{19.} $4a^{2} + 12ab + 9b^{2}$.
+
+\Item{20.} $25x^{2} - 9a^{2}$.
+%% -----File: 178.png---Folio 172-------
+
+
+\AnsTo[2]{Exercise}{27.} % Page 67.
+
+\Item{1.} $x^{2} + 11x + 28$.
+
+\Item{2.} $x^{2} + 4x - 21$.
+
+\Item{3.} $x^{2} - 6x + 8$.
+
+\Item{4.} $x^{2} - 16x + 60$.
+
+\Item{5.} $x^{2} + 3x - 28$.
+
+\Item{6.} $x^{2} - ax - 2a^{2}$.
+
+\Item{7.} $x^{2} + 2ax - 3a^{2}$.
+
+\Item{8.} $a^{2} + 6ac + 9c^{2}$.
+
+\Item{9.} $a^{2} - 2ax - 8x^{2}$.
+
+\Item{10.} $a^{2} - 7ab + 12b^{2}$.
+
+\Item{11.} $a^{4} + a^{2}c - 2c^{2}$.
+
+\Item{12.} $x^{2} - 20x + 51$.
+
+\Item{13.} $x^{2} + xy - 30y^{2}$.
+
+\Item{14.} $9 + 3x - 2x^{2}$.
+
+\Item{15.} $5 - 8x - 4x^{2}$.
+
+\Item{16.} $a^{2} + ab - 6b^{2}$.
+
+\Item{17.} $a^{4}b^{4} - 6a^{2}b^{2}x^{2} + 5x^{4}$.
+
+\Item{18.} $a^{6}b^{2} + 4a^{4}b^{4} - 5a^{2}b^{6}$.
+
+\Item{19.} $x^{4}y^{2} - 4x^{3}y^{3} + 3x^{2}y^{4}$.
+
+\Item{20.} $x^{4}y^{2} + 2x^{3}y^{3} + x^{2}y^{4}$.
+
+\Item{21.} $x^{2} + (a + b)x + ab$.
+
+\Item{22.} $x^{2} + (a - b)x - ab$.
+
+\Item{23.} $x^{2} - (a - b)x - ab$.
+
+\Item{24.} $x^{2} - (a + b)x + ab$.
+
+\Item{25.} $x^{2} + (2a + 2b)x + 4ab$.
+
+\Item{26.} $x^{2} - (2a - 2b)x - 4ab$.
+
+\Item{27.} $x^{2} + (2a - 2b)x - 4ab$.
+
+\Item{28.} $x^{2} - (2a + 2b)x + 4ab$.
+
+\Item{29.} $x^{2} + 2ax - 3a^{2}$.
+
+\Item{30.} $x^{2} + ax - 6a^{2}$.
+
+
+\AnsTo{Exercise}{28.} % Page 68.
+
+\Item{1.} $x + 2$.
+
+\Item{2.} $x - 2$.
+
+\Item{3.} $a + 3$.
+
+\Item{4.} $a - 3$.
+
+\Item{5.} $c + 5$.
+
+\Item{6.} $c - 5$.
+
+\Item{7.} $7x + y$.
+
+\Item{8.} $7x - y$.
+
+\Item{9.} $3b + 1$.
+
+\Item{10.} $3b - 1$.
+
+\Item{11.} $4x^{2} + 5a$.
+
+\Item{12.} $4x^{2} - 5a$.
+
+\Item{13.} $3x + 5y$.
+
+\Item{14.} $a + b - c$.
+
+\Item{15.} $a - b + c$.
+
+\Item{16.} $a + 2b - c$.
+
+\Item{17.} $5a - 7b + 1$.
+
+\Item{18.} $5a - 7b - 1$.
+
+\Item{19.} $z + x - y$.
+
+\Item{20.} $z - x + y$.
+
+\Item{21.} $a - 2b + c$.
+
+\Item{22.} $x + 3y + z$.
+
+\Item{23.} $x + 3y - z$.
+
+\Item{24.} $a + 2b + 2c$.
+
+\Item{25.} $a + 2b - 2c$.
+
+\Item{26.} $1 - 3x + 2y$.
+
+
+\AnsTo[2]{Exercise}{29.} % Page 69.
+
+\Item{1.} $1 + x + x^{2}$.
+
+\Item{2.} $1 + 2a + 4a^{2}$.
+
+\Item{3.} $1 + 3c + 9c^{2}$.
+
+\Item{4.} $4a^{2} + 2ab + b^{2}$.
+
+\Item{5.} $16b^{2} + 12bc + 9c^{2}$.
+
+\Item{6.} $9x^{2} + 6xy + 4y^{2}$.
+
+\Item{7.} $x^{2}y^{2} + xyz + z^{2}$.
+
+\Item{8.} $a^{2}b^{2} + 2ab + 4$.
+
+\Item{9.} $25a^{2} + 5ab + b^{2}$.
+
+\Item{10.} $a^{2} + 2ab + 4b^{2}$.
+
+\Item{11.} $a^{2} + 4a + 16$.
+
+\Item{12.} $a^{6} + 3a^{3} + 9$.
+
+\Item{13.} $a^{8} + a^{4}x^{2}y^{2} + x^{4}y^{4}$.
+
+\Item{14.} $x^{10} + x^{5}a^{3}b^{3} + a^{6}b^{6}$.
+
+\Item{15.} $9x^{2}y^{2} + 3xyz^{4} + z^{8}$.
+
+\Item{16.} $x^{2}y^{2}z^{2} + xyz + 1$.
+
+\Item{17.} $4a^{2}b^{2}c^{2} - 6abc + 9$.
+
+\Item{18.} $1 + 4xyz + 16x^{2}y^{2}z^{2}$.
+%% -----File: 179.png---Folio 173-------
+
+
+\AnsTo[2]{Exercise}{30.} % Page 70.
+
+\Item{1.} $1 - x + x^{2}$.
+
+\Item{2.} $1 - 2a + 4a^{2}$.
+
+\Item{3.} $1 - 3c + 9c^{2}$.
+
+\Item{4.} $4a^{2} - 2ab + b^{2}$.
+
+\Item{5.} $16b^{2} - 12bc + 9c^{2}$.
+
+\Item{6.} $9x^{2} - 6xy + 4y^{2}$.
+
+\Item{7.} $4x^{2} - 10xy + 25y^{2}$.
+
+\Item{8.} $x^{2}y^{2} - xyz + z^{2}$.
+
+\Item{9.} $a^{2}b^{2} - 2ab + 4$.
+
+\Item{10.} $25a^{2} - 5ab + b^{2}$.
+
+\Item{11.} $a^{2} - 2ab + 4b^{2}$.
+
+\Item{12.} $a^{4} - 4a^{2} + 16$.
+
+\Item{13.} $a^{6} - 3a^{3} + 9$.
+
+\Item{14.} $4a^{4} - 2a^{2}b + b^{2}$.
+
+\Item{15.} $a^{8} - a^{4}x^{2}y^{2} + x^{4}y^{4}$.
+
+\Item{16.} $x^{10} - x^{5}a^{3}b^{3} + a^{6}b^{6}$.
+
+\Item{17.} $9x^{2}y^{2} - 3xyz^{4} + z^{8}$.
+
+\Item{18.} $x^{2}y^{2}z^{2} - xyz + 1$.
+
+\Item{19.} $4a^{2}b^{2}c^{2} - 6abc + 9$.
+
+\Item{20.} $1 - 4xyz + 16x^{2}y^{2}z^{2}$.
+
+\Item{21.} $1 - 3a^{2}bc + 9a^{4}b^{2}c^{2}$.
+
+\Item{22.} $x^{3} + x^{2}y + xy^{2} + y^{3}$.
+
+\Item{23.} $x^{3} - x^{2}y + xy^{2} - y^{3}$.
+
+\Item{24.} $x^{4} + x^{3}y + x^{2}y^{2} + xy^{3} + y^{4}$.
+
+\Item{25.} $x^{4} - x^{3}y + x^{2}y^{2} - xy^{3} + y^{4}$.
+
+\Item{26.} $x^{5} + x^{4}y + x^{3}y^{2} + x^{2}y^{3} + xy^{4} + y^{5}$.
+
+\Item{27.} $x^{5} - x^{4}y + x^{3}y^{2} - x^{2}y^{3} + xy^{4} - y^{5}$.
+
+
+\AnsTo[2]{Exercise}{31.} % Page 72.
+
+\Item{1.} $2x(x - 2)$.
+
+\Item{2.} $3a(a^{2} - 2)$.
+
+\Item{3.} $5a^{2}b^{2}(1 - 2ab)$.
+
+\Item{4.} $xy(3x + 4y)$.
+
+\Item{5.} $4a^{2}b^{2}(2a + b)$.
+
+\Item{6.} $3a^{2}(a^{2} - 4 - 2a)$.
+
+\Item{7.} $4x^{2}(1 - 2x^{2} - 3x^{3})$.
+
+\Item{8.} $5(1 - 2x^{2}y^{2} + 3x^{2}y)$.
+
+\Item{9.} $7a(a + 2 - 3a^{2})$.
+
+\Item{10.} $3x^{2}y^{2}(xy - 2x^{2}y^{2} - 3)$.
+
+
+\AnsTo{Exercise}{32.} % Page 73.
+
+\Item{1.} $(x^{2} + 1)(x + 1)$.
+
+\Item{2.} $(x^{2} + 1)(x - 1)$.
+
+\Item{3.} $(x + y)(x + z)$.
+
+\Item{4.} $(x - y)(a - b)$.
+
+\Item{5.} $(a + b)(a - c)$.
+
+\Item{6.} $(x + 3)(x - b)$.
+
+\Item{7.} $(x^{2} + 2)(2x - 1)$.
+
+\Item{8.} $(a - b)(a - 3)$.
+
+\Item{9.} $(2a - c)(3a + b)$.
+
+\Item{10.} $(xy + c)(ab + c)$.
+
+\Item{11.} $(a - b - c)(x - y)$.
+
+\Item{12.} $(a - b - 2c)(a - b)$.
+
+
+\AnsTo[2]{Exercise}{33.} % Page 74.
+
+\Item{1.} $(2 + x)(2 - x)$.
+
+\Item{2.} $(3 + x)(3 - x)$.
+
+\Item{3.} $(3a + x)(3a - x)$.
+
+\Item{4.} $(5 + x)(5 - x)$.
+
+\Item{5.} $(5x + a)(5x - a)$.
+
+\Item{6.} $(4a^{2} + 11)(4a^{2} - 11)$.
+
+\Item{7.} $(11a^{2} + 4)(11a^{2} - 4)$.
+
+\Item{8.} $(2ab + cd)(2ab - cd)$.
+
+\Item{9.} $(1 + xy)(1 - xy)$.
+
+\Item{10.} $(9xy + 1)(9xy - 1)$.
+
+\Item{11.} $(7ab + 2)(7ab - 2)$.
+
+\Item{12.} $(5a^{2}b^{2} + 3)(5a^{2}b^{2} - 3)$.
+
+\Item{13.} $(3a^{4}b^{3} + 4x^{5})(3a^{4}b^{3} - 4x^{5})$.
+
+\Item{14.} $(12xy + 1)(12xy - 1)$.
+
+\Item{15.} $(10x^{3}yz^{2} + 1)(10x^{3}yz^{2} - 1)$.
+
+\Item{16.} $(1 + 11a^{2}b^{4}c^{6})(1 - 11a^{2}b^{4}c^{6})$.
+
+\Item{17.} $(5a + 8x^{3}y^{3})(5a - 8x^{3}y^{3})$.
+
+\Item{18.} $(4x^{8} + 5y^{9})(4x^{8} - 5y^{9})$.
+
+\Item{19.} $90,000$.
+
+\Item{20.} $22,760$.
+
+\Item{21.} $732,200$.
+
+\Item{22.} $400$.
+
+\Item{23.} $28,972$.
+
+\Item{24.} $14,248,000$.
+%% -----File: 180.png---Folio 174-------
+
+
+\AnsTo[2]{Exercise}{34.} % Page 75.
+
+\Item{1.} $(x + y + z)(x + y - z)$.
+
+\Item{2.} $(x - y + z)(x - y - z)$.
+
+\Item{3.} $(z + x + y)(z - x - y)$.
+
+\Item{4.} $(z + x - y)(z - x + y)$.
+
+\Item{5.} $(x + y + 2z)(x + y - 2z)$.
+
+\Item{6.} $(2z + x - y)(2z - x + y)$.
+
+\Item{7.} $(a + 2b + c)(a + 2b - c)$.
+
+\Item{8.} $(a - 2b + c)(a - 2b - c)$.
+
+\Item{9.} $(c + a - 2b)(c - a + 2b)$.
+
+\Item{10.} $(2a + 5c + 1)(2a + 5c - 1)$.
+
+\Item{11.} $(1 + 2a - 5c)(1 - 2a + 5c)$.
+
+\Item{12.} $(a + 3b + 4c)(a + 3b - 4c)$.
+
+\Item{13.} $(a - 5b + 3c)(a - 5b - 3c)$.
+
+\Item{14.} $(4c + a - 5b)(4c - a + 5b)$.
+
+\Item{15.} $(2a + x + y)(2a - x - y)$.
+
+\Item{16.} $(b + a - 2x)(b - a + 2x)$.
+
+\Item{17.} $(2z + x + 3y)(2z - x - 3y)$.
+
+\Item{18.} $(3 + 3a - 7b)(3 - 3a + 7b)$.
+
+\Item{19.} $(4a + 2b + 5c)(4a - 2b - 5c)$.
+
+\Item{20.} $(5c + 3a - 2x)(4c - 3a + 2x)$.
+
+\Item{21.} $(3a + 3b -5c)(3a - 3b + 5c)$.
+
+\Item{22.} $(4y + a - 3c)(4y - a + 3c)$.
+
+\Item{23.} $(7m + p + 2q)(7m - p - 2q)$.
+
+\Item{24.} $(6n + d - 2c)(6n - d + 2c)$.
+
+\Item{25.} $(x + y + a + b)(x + y - a - b)$.
+
+\Item{26.} $(x - y + a - b)(x - y - a + b)$.
+
+\Item{27.} $(2x + 3 + 2a + b)(2x + 3 - 2a - b)$.
+
+\Item{28.} $(b - c + a - 2x)(b - c - a + 2x)$.
+
+\Item{29.} $(3x - y + 2a - b)(3x - y - 2a + b)$.
+
+\Item{30.} $(x - 3y + a + 2b)(x - 3y - a - 2b)$.
+
+\Item{31.} $(x + 2y + a + 3b)(x + 2y - a - 3b)$.
+
+\Item{32.} $(x + y + a - z)(x + y - a + z)$.
+
+
+\AnsTo[2]{Exercise}{35.} % Page 77.
+
+\Item{1.} $(2x - y)(4x^{2} + 2xy + y^{2})$.
+
+\Item{2.} $(x - 1)(x^{2} + x + 1)$.
+
+\Item{3.} $(xy - z)(x^{2}y^{2} + xyz + z^{2})$.
+
+\Item{4.} $(x - 4)(x^{2} + 4x + 16)$.
+
+\Item{5.} $(5a - b)(25a^{2} + 5ab + b^{2})$.
+
+\Item{6.} $(a - 7)(a^{2} + 7a + 49)$.
+
+\Item{7.} $(ab - 3c)(a^{2}b^{2} + 3abc + 9c^{2})$.
+
+\Item{8.} $(xyz - 2)(x^{2}y^{2}z^{2} + 2xyz + 4)$.
+
+\Item{9.} $(2ab - 3y^{2})(4a^{2}b^{2} + 6aby^{2} + 9y^{4})$.
+
+\Item{10.} $(4x - y^{3})(16x^{2} + 4xy^{3} + y^{6})$.
+
+\Item{11.} $(3a - 4c^{2})(9a^{2} + 12ac^{2} + 16c^{4})$.
+
+\Item{12.} $(xy - 6z)(x^{2}y^{2} + 6xyz + 36z^{2})$.
+
+\Item{13.} $(4x - 9y)(16x^{2} + 36xy + 81y^{2})$.
+
+\Item{14.} $(3a - 8c)(9a^{2} + 24ac + 64c^{2})$.
+
+\Item{15.} $(2x^{2} - 5y)(4x^{4} + 10x^{2}y + 25y^{2})$.
+
+\Item{16.} $(4x^{2} - 3y^{5})(16x^{8} + 12x^{4}y^{5} + 9y^{10})$.
+
+\Item{17.} $(6 - 2a)(36 + 12a + 4a^{2})$.
+
+\Item{18.} $(7 - 3y)(49 + 21y + 9y^{2})$.
+%% -----File: 181.png---Folio 175-------
+
+
+\AnsTo[2]{Exercise}{36.} % Page 78.
+
+\Item{1.} $(x + 1)(a^{2} - x + 1)$.
+
+\Item{2.} $(2x + y)(4x^{2} - 2xy + y^{2})$.
+
+\Item{3.} $(x + 5)(x^{2} - 5x + 25)$.
+
+\Item{4.} $(4a + 3)(16a^{2} - 12a + 9)$.
+
+\Item{5.} $(xy + z)(x^{2}y^{2} - xyz + z^{2})$.
+
+\Item{6.} $(a + 4)(a^{2} - 4a + 16)$.
+
+\Item{7.} $(2a^{2} + b)(4a^{4} - 2a^{2}b + b^{2})$.
+
+\Item{8.} $(x + 7)(x^{2} - 7x + 49)$.
+
+\Item{9.} $(2 + xyz)(4 - 2xyz + x^{2}y^{2}z^{2})$.
+
+\Item{10.} $(y^{3} + 4x)(y^{6} - 4y^{3}x + 16x^{2})$.
+
+\Item{11.} $(ab + 3x)(a^{2}b^{2} - 3abx + 9x^{2})$.
+
+\Item{12.} $(2yz + x^{2})(4y^{2}z^{2} - 2yzx^{2} + x^{4})$.
+
+\Item{13.} $(y^{3} + 4x^{2})(y^{6} - 4y^{3}x^{2} + 16x^{4})$.
+
+\Item{14.} $(4a^{4} + x^{5})(16a^{8} - 4a^{4}x^{5} + x^{10})$.
+
+\Item{15.} $(3x^{5} + 2a^{2})(9x^{10} - 6x^{5}a^{2} + 4a^{4})$.
+
+\Item{16.} $(3x^{3} + 8)(9x^{6} - 24x^{3} + 64)$.
+
+\Item{17.} $(7 + 4x)(49 - 28x + 16x^{2})$.
+
+\Item{18.} $(5 + 3y)(25 - 15y + 9y^{2})$.
+
+
+\AnsTo{Exercise}{37.} % Page 80.
+
+\Item{1.} $(2x + y)(2x + y)$.
+
+\Item{2.} $(x + 3y)(x + 3y)$.
+
+\Item{3.} $(x + 8)(x + 8)$.
+
+\Item{4.} $(x + 5a)(x + 5a)$.
+
+\Item{5.} $(a - 8)(a - 8)$.
+
+\Item{6.} $(a - 5b)(a - 5b)$.
+
+\Item{7.} $(c - 3d)(c - 3d)$.
+
+\Item{8.} $(2x - 1)(2x - 1)$.
+
+\Item{9.} $(2a - 3b)(2a - 3b)$.
+
+\Item{10.} $(3a - 4b)(3a - 4b)$.
+
+\Item{11.} $(x + 4y)(x + 4y)$.
+
+\Item{12.} $(x - 4y)(x - 4y)$.
+
+\Item{13.} $(2x - 5y)(2x - 5y)$.
+
+\Item{14.} $(1 + 10a)(1 + 10a)$.
+
+\Item{15.} $(7a - 2)(7a - 2)$.
+
+\Item{16.} $(6a + 5b)(6a + 5b)$.
+
+\Item{17.} $(9x - 2b)(9x - 2b)$.
+
+\Item{18.} $(mn + 7x^{2})(mn + 7x^{2})$.
+
+
+\AnsTo{Exercise}{38.} % Page 82.
+
+\Item{1.} $(a + 2)(a + 3)$.
+
+\Item{2.} $(a - 2)(a - 3)$.
+
+\Item{3.} $(a + 1)(a + 5)$.
+
+\Item{4.} $(a - 1)(a - 5)$.
+
+\Item{5.} $(a - 1)(a + 5)$.
+
+\Item{6.} $(a + 1)(a - 5)$.
+
+\Item{7.} $(c - 3)(c - 6)$.
+
+\Item{8.} $(c + 3)(c + 6)$.
+
+\Item{9.} $(c - 3)(c + 6)$.
+
+\Item{10.} $(c + 3)(c - 6)$.
+
+\Item{11.} $(x + 2)(x + 7)$.
+
+\Item{12.} $(x - 2)(x - 7)$.
+
+\Item{13.} $(x + 2)(x - 7)$.
+
+\Item{14.} $(x - 4)(x - 5)$.
+
+\Item{15.} $(x + 4)(x - 5)$.
+
+\Item{16.} $(x - 4)(x + 5)$.
+
+\Item{17.} $(x - 3)(x - 7)$.
+
+\Item{18.} $(x + 3)(x - 7)$.
+
+\Item{19.} $(x - 3)(x + 7)$.
+
+\Item{20.} $(x - 7)(x - 8)$.
+
+\Item{21.} $(x + 7)(x - 8)$.
+
+\Item{22.} $(x - 1)(x - 9)$.
+
+\Item{23.} $(x + 3)(x + 10)$.
+
+\Item{24.} $(x - 3)(x + 10)$.
+
+\Item{25.} $(x + 3)(x - 10)$.
+
+\Item{26.} $(a - 2b)(a + 3b)$.
+
+\Item{27.} $(a + 2b)(a - 3b)$.
+
+\Item{28.} $(a - b)(a + 4b)$.
+
+\Item{29.} $(a + b)(a - 4b)$.
+
+\Item{30.} $(ax + 7)(ax - 9)$.
+
+\Item{31.} $(a - 7x)(a + 9x)$.
+
+\ResetCols[2]
+\Item{32.} $(a - 4b)(a - 5b)$.
+
+\Item{33.} $(xy - 3z)(xy - 16z)$.
+
+\Item{34.} $(ab + 4c)(ab + 11c)$.
+
+\Item{35.} $(x - 4y)(x - 9y)$.
+
+\Item{36.} $(x + 7y)(x + 12y)$.
+
+\Item{37.} $(ax - 6y)(ax - 17y)$.
+
+\Item{38.} $(x + 2y)(x - 2y)(x^{2} - 5y^{2})$.
+
+\Item{39.} $(a^{2}x^{2} - 11y^{2})(a^{2}x^{2} - 13y^{2})$.
+
+\Item{40.} $(a^{3}b^{3} - 11c^{2})(a^{3}b^{3} - 12c^{2})$.
+
+\Item{41.} $(a + 4bc)(a - 24bc)$.
+
+\Item{42.} $(a + 8bc)(a - 12bc)$.
+
+\Item{43.} $(a + 6bc)(a - 16bc)$.
+
+\Item{44.} $(a - 3bc)(a + 32bc)$.
+
+\Item{45.} $(a + 2bc)(a - 48bc)$.
+
+\Item{46.} $(a + bc)(a + 48bc)$.
+
+\Item{47.} $(x + 9yz)(x - 27yz)$.
+
+\Item{48.} $(xy + 13z)(xy - 14z)$.
+%% -----File: 182.png---Folio 176-------
+
+
+\AnsTo[2]{Exercise}{39.} % Page 83.
+
+\Item{1.} $a(a^{2} - 7)$.
+
+\Item{2.} $ab(3ab - 2a^{2} + 3b^{2})$.
+
+\Item{3.} $(a - b + 1)(a - b)$.
+
+\Item{4.} $(a + b + 1)(a + b - 1)$.
+
+\Item{5.} $(a + 2b)(a^{2} - 2ab + 4b^{2})$.
+
+\Item{6.} $(x + 2y + 1)(x - 2y)$.
+
+\Item{7.} $(a - b)(a^{2} + ab + b^{2} + 1)$.
+
+\Item{8.} $(a - 3b)(a - 3b)$.
+
+\Item{9.} $(x + 1)(x - 2)$.
+
+\Item{10.} $(x + 1)(x - 3)$.
+
+\Item{11.} $(x - 3)(x + 7)$.
+
+\Item{12.} $(a + 2)(a - 13)$.
+
+\Item{13.} $(x^{2} + 3)(a + b)$.
+
+\Item{14.} $(x - 3)(x - y)$.
+
+\Item{15.} $(x - 3)(x - 4)$.
+
+\Item{16.} $(a + 2b)(a + 3b)$.
+
+\Item{17.} $(x^{2} + 5)(x^{2} + 5)$.
+
+\Item{18.} $(x - 9)(x - 9)$.
+
+\Item{19.} $(x - 10)(x - 11)$.
+
+\Item{20.} $(x + 8)(x + 11)$.
+
+\Item{21.} $(x - 8)(x + 11)$.
+
+\Item{22.} $(x^{2} + 1)(x - 1)$.
+
+\Item{23.} $x^{2}(3x + 1)(3x - 1)$.
+
+\Item{24.} $(1 + a - b)(1 - a + b)$.
+
+\Item{25.} $(a + b)(a^{2} - ab + b^{2} + 1)$.
+
+\Item{26.} $(m + n)(m - n)(x + y)$.
+
+\Item{27.} $(x - y + z)(x - y - z)$.
+
+\Item{28.} $(z + x - y)(z - x + y)$.
+
+\Item{29.} $(2a^{2} + 3a - 1)(2a^{2} - 3a + 1)$.
+
+\Item{30.} $(2x - y)(4x^{2} + 2xy + y^{2})$.
+
+\Item{31.} $x^{2}(x - 3y)$.
+
+\Item{32.} $(x - 3y)(x^{2} + 3xy + 9y^{2})$.
+
+\Item{33.} $(x - 5)(x + 8)$.
+
+\Item{34.} $(x - 2y)(x + 5y)$.
+
+\Item{35.} $(1 + 4x)(1 - 4x)$.
+
+\Item{36.} $a^{2}(a^{2} + 3b^{2})(a^{2} - 3b^{2})$.
+
+\Item{37.} $x(x + y)(x + 2y)$.
+
+\Item{38.} $x^{2}(x + y)(x + 3y)$.
+
+\Item{39.} $(x - 2y^{2})(x - 2y^{2})$.
+
+\Item{40.} $(4x^{2} + 1)(4x^{2} + 1)$.
+
+\Item{41.} $a^{2}(3a + 2c)(3a - 2c)$.
+
+\Item{42.} $ab(a + b)(a - 2b)$.
+
+\Item{43.} $(x + 2)(x^{2} - 2x + 4)(x - 1)$.
+
+\Item{44.} $(a + y)(a^{2} - ay + y^{2})(a - x)$.
+
+
+\AnsTo{Exercise}{40.} % Page 86.
+
+\Item{1.} $6$.
+
+\Item{2.} $5x^{3}$.
+
+\Item{3.} $6ax$.
+
+\Item{4.} $7ab^{2}$.
+
+\Item{5.} $7$.
+
+\Item{6.} $2a^{2}b^{2}$.
+
+\Item{7.} $x + 3y$.
+
+\Item{8.} $x + 3$.
+
+\Item{9.} $2a + 1$.
+
+\Item{10.} $x + y$.
+
+\Item{11.} $a + x$.
+
+\Item{12.} $a + 2b$.
+
+\Item{13.} $x - 1$.
+
+\Item{14.} $x + 3$.
+
+\Item{15.} $x - 6$.
+
+\Item{16.} $x^{2} - x + 1$.
+
+\Item{17.} $x - 1$.
+
+\Item{18.} $x - y$.
+
+\Item{19.} $x - 5$.
+
+\Item{20.} $a - b - c$.
+
+\Item{21.} $x + 2y$.
+
+\Item{22.} $x + 4y$.
+
+\Item{23.} $x^{2} + 2xy + 4y^{2}$.
+
+\Item{24.} $x - 2$.
+
+\Item{25.} $1 - 3a$.
+
+\Item{26.} $x - 7y$.
+
+\Item{27.} $2a + b$.
+
+\Item{28.} $x + y - z$.
+
+
+\AnsTo[2]{Exercise}{41.} % Page 88.
+
+\Item{1.} $18x^{2}y^{3}$.
+
+\Item{2.} $6a^{2}bc^{3}$.
+
+\Item{3.} $20a^{3}b^{3}$.
+
+\Item{4.} $30a^{3}b^{4}$.
+
+\Item{5.} $189x^{3}y^{5}$.
+
+\Item{6.} $x^{2}y^{3}z^{3}$.
+
+\Item{7.} $a^{2}(a + 1)$.
+
+\Item{8.} $x^{2}(x - 3)$.
+
+\Item{9.} $x(x + 1)(x - 1)$.
+
+\Item{10.} $x(x + 1)(x - 1)$.
+
+\Item{11.} $xy(x + y)$.
+
+\Item{12.} $x(x + 2)^{2}$.
+%% -----File: 183.png---Folio 177-------
+
+\Item{13.} $(a + 2)(a + 2)(a + 3)$.
+
+\Item{14.} $(c - 4)(c + 5)(c - 6)$.
+
+\Item{15.} $(b - 5)(b - 6)(b + 7)$.
+
+\Item{16.} $(y - 4)(y + 5)(y - 6)$.
+
+\Item{17.} $(z - 5)(z - 6)(z + 7)$.
+
+\Item{18.} $(x - 4)(x + 8)(x - 8)(x^{2} + 4x + 16)$.
+
+\Item{19.} $(a + b)(a + b)(a - b)(a - b)$.
+
+\Item{20.} $4a^{2}b(a + b)(a + b)(a - b)$.
+
+\Item{21.} $(y + 2)(y + 3)(y + 4)$.
+
+\Item{22.} $(x + 1)(x - 1)(x^{2} + 1)$.
+
+\Item{23.} $(1 + x)(1 - x)(1 + x + x^{2})$.
+
+\Item{24.} $(x + y)(x + y)(x - y)(x - y)$.
+
+\Item{25.} $x(x - 3)(x + 5)(x^{2} + 3x + 9)$.
+
+\Item{26.} $(a + b + c)(a + b + c)(a + b - c)$.
+
+\Item{27.} $(x - a)(x - b)(x - c)$.
+
+\Item{28.} $a(a + b + c)(a + b - c)$.
+
+
+\AnsTo[4]{Exercise}{42.} % Page 90.
+
+\Item{1.} $\dfrac{1}{3b}$.
+
+\Item{2.} $\dfrac{4m}{5n}$.
+
+\Item{3.} $\dfrac{3m}{4p^{2}}$.
+
+\Item{4.} $\dfrac{x^{2}}{2yz}$.
+
+\Item{5.} $\dfrac{a^{3}b^{3}}{3c^{2}}$.
+
+\Item{6.} $\dfrac{2xy}{3}$.
+
+\Item{7.} $\dfrac{2m}{3p}$.
+
+\Item{8.} $\dfrac{3b^{2}c}{4a^{3}}$.
+
+\Item{9.} $\dfrac{2y^{2}z^{4}}{3}$.
+
+\Item{10.} $\dfrac{b}{c}$.
+
+\Item{11.} $\dfrac{2a - 3b}{2a}$.
+
+\Item{12.} $\dfrac{3a}{a + 2}$.
+
+\Item{13.} $\dfrac{x}{x - 1}$.
+
+\Item{14.} $\dfrac{y}{x^{2} + 3xy + 9y^{2}}$.
+
+\Item{15.} $\dfrac{x + 1}{x - 5}$.
+
+\Item{16.} $\dfrac{x + 1}{x - 2}$.
+
+\Item{17.} $\dfrac{a + b + c}{a}$.
+
+\Item{18.} $\dfrac{x + 5}{x + 3}$.
+
+\Item{19.} $\dfrac{x + 1}{x + 3}$.
+
+
+\AnsTo[2]{Exercise}{43.} % Page 91.
+
+\Item{1.} $a + b + \dfrac{2}{a - b}$.
+
+\Item{2.} $a - b - \dfrac{2}{a + b}$.
+
+\Item{3.} $a - 1 + \dfrac{2a}{a^{2} - a - 1}$.
+
+\Item{4.} $2x - 4 + \dfrac{5}{x + 1}$.
+
+\Item{5.} $4x^{2} - 2x + 1 - \dfrac{1}{2x + 1}$.
+
+\Item{6.} $5x + 4 + \dfrac{x + 7}{x^{2} + x - 1}$.
+
+\Item{7.} $a + \dfrac{5a - 2}{a^{2} + a + 2}$.
+
+\Item{8.} $y^{2} - yx + x^{2}$.
+
+\Item{9.} $x^{2} - 4x + 3 + \dfrac{2x - 4}{x^{2} + x + 1}$.
+
+\Item{10.} $x^{3} + x + 1 + \dfrac{2x + 2}{x^{2} - x - 1}$.
+%% -----File: 184.png---Folio 178-------
+
+
+\AnsTo[2]{Exercise}{44.} % Page 92.
+
+\Item{1.} $\dfrac{x^{2} + y^{2}}{x - y}$.
+
+\Item{2.} $\dfrac{x^{2} + y^{2}}{x + y}$.
+
+\Item{3.} $\dfrac{2y}{x + y}$.
+
+\Item{4.} $-\dfrac{2ax}{a - x}$.
+
+\Item{5.} $-\dfrac{x + 2}{x - 3}$.
+
+\Item{6.} $-\dfrac{2x^{2} - 6x + 5}{x - 2}$.
+
+\Item{7.} $\dfrac{x^{3} + x^{2} - 2x + 1}{x + 2}$.
+
+\Item{8.} $\dfrac{2a^{2} - 11a + 6}{a - 3}$.
+
+\Item{9.} $\dfrac{-2a^{3} + a^{2} + 2a-3}{a - 1}$.
+
+\Item{10.} $\dfrac{3a^{4} + 6a^{3} - 14a^{2} - 4}{3a^{2} + 1}$.
+
+
+\AnsTo[1]{Exercise}{45.} % Page 94.
+
+\Item{1.} $\dfrac{x(x + a)}{(x + a)(x - a)}$, $\dfrac{x^{2}}{(x + a)(x - a)}$.
+
+\Item{2.} $\dfrac{a(a - b)}{(a + b)(a - b)}$, $\dfrac{a^{2}}{(a + b)(a - b)}$.
+
+\Item{3.} $\dfrac{1 - 2a}{(1 + 2a)(1 - 2a)}$, $\dfrac{1}{(1 + 2a)(1 - 2a)}$.
+
+\Item{4.} $\dfrac{9}{(4 + x)(4 - x)}$, $\dfrac{(4 - x)^{2}}{(4 + x)(4 - x)}$.
+
+\Item{5.} $\dfrac{a^{2}}{(3 - a)(9 + 3a + a^{2})}$, $\dfrac{a(9 + 3a + a^{2})}{(3 - a)(9 + 3a + a^{2})}$.
+
+\Item{6.} $\dfrac{x + 2}{(x + 2)(x - 2)(x - 3)}$, $\dfrac{x - 2}{(x + 2)(x - 2)(x - 3)}$.
+
+
+\AnsTo{Exercise}{46.} % Page 95.
+
+\Item{1.} $\dfrac{4x + 2}{5}$.
+
+\Item{2.} $\dfrac{13x + 3}{12}$.
+
+\Item{3.} $\dfrac{5(9x - 13)}{42}$.
+
+\Item{4.} $\dfrac{51x + 31}{36}$.
+
+\Item{5.} $\dfrac{x - 5}{3}$.
+
+\Item{6.} $\dfrac{5(x - y)}{8x}$.
+
+\Item{7.} $\dfrac{22x - 97}{30}$.
+
+\Item{8.} $\dfrac{3x - 4}{15x}$.
+
+\Item{9.} $\dfrac{a^{3} - b^{3} + c^{3} - abc}{abc}$.
+
+
+\AnsTo{Exercise}{47.} % Page 96}.
+
+\Item{1.} $\dfrac{2x + 1}{(x + 3)(x - 2)}$.
+
+\Item{2.} $\dfrac{2x}{x^{2} - 1}$.
+
+\Item{3.} $\dfrac{3x + 16}{(x - 8)(x + 2)}$.
+
+\Item{4.} $\dfrac{4ax}{a^{3} - x^{2}}$.
+
+\Item{5.} $\dfrac{ax}{x^{2} - a^{2}}$.
+
+\Item{6.} $-\dfrac{4ab}{4a^{2} - b^{2}}$.
+
+\Item{7.} $\dfrac{1}{9 - a^{2}}$.
+
+\Item{8.} $\dfrac{b}{a^{2} - b^{2}}$.
+
+\Item{9.} $\dfrac{5x + 8}{x^{2} - 4}$.
+
+\Item{10.} $\dfrac{1 + x}{1 - 9x^{2}}$.
+
+\Item{11.} $\dfrac{3(a^{2} + 4a + 1)}{a(a + 1)(a + 3)}$.
+
+\Item{12.} $\dfrac{2}{x^{2} - 1}$.
+
+\Item{13.} $\dfrac{2x^{2}}{(x + 2)(x - 3)}$.
+
+\Item{14.} $0$.
+%% -----File: 185.png---Folio 179-------
+
+
+\AnsTo{Exercise}{48.} % Page 97.
+
+\Item{1.} $0$.
+
+\Item{2.} $\dfrac{2a}{a + b}$.
+
+\Item{3.} $\dfrac{7a}{1 - a^{2}}$.
+
+\Item{4.} $\dfrac{x - 10y}{4x^{2} - 25y^{2}}$.
+
+\Item{5.} $\dfrac{2}{x + 4y}$.
+
+\Item{6.} $\dfrac{2(x + 6)}{4x^{2} - 9}$.
+
+
+\AnsTo{Exercise}{49.} % Page 100.
+
+\Item{1.} $\dfrac{20}{3bc}$.
+
+\Item{2.} $\dfrac{2ay}{3}$.
+
+\Item{3.} $\dfrac{7p^{2}}{4xz}$.
+
+\Item{4.} $\dfrac{2a^{2}cm}{7}$.
+
+\Item{5.} $\dfrac{30}{abc}$.
+
+\Item{6.} $abc$.
+
+\Item{7.} $b^{2}$.
+
+\Item{8.} $\dfrac{x + a}{x - 2a}$.
+
+\Item{9.} $\dfrac{xy}{2c - 1}$.
+
+\Item{10.} $\dfrac{a + 10}{a + 3}$.
+
+\Item{11.} $\dfrac{3x + 2y}{x - 2}$.
+
+\Item{12.} $\dfrac{5a + b}{4a + 3b}$.
+
+\Item{13.} $\dfrac{x - 7}{a + b + c}$.
+
+\Item{14.} $\dfrac{x(x + 1)}{x - 5}$.
+
+\Item{15.} $\dfrac{a + 1}{a + 5}$.
+
+\Item{16.} $1$.
+
+\Item{17.} $\dfrac{x(x + y)}{x + 1}$.
+
+\Item{18.} $\dfrac{b}{a - b}$.
+
+\Item{19.} $abc$.
+
+\Item{20.} $\dfrac{(x + 2y)(x + 1)}{(x + y)(x + 2)}$.
+
+
+\AnsTo{Exercise}{50.} % Page 102.
+
+\Item{1.} $\dfrac{x + y}{z}$.
+
+\Item{2.} $\dfrac{12x + 3y}{12x - 4y}$.
+
+\Item{3.} $\dfrac{abd - 21d^{2}}{21cd - 7ab}$.
+
+\Item{4.} $\dfrac{x^{2} + x - 2}{x^{2} - x - 2}$.
+
+\Item{5.} $1$.
+
+\Item{6.} $\dfrac{x + y}{x^{2} - 2xy + y^{2}}$.
+
+\Item{7.} $\dfrac{a + b}{a - b}$.
+
+\Item{8.} $4(3a + 8)$.
+
+\Item{9.} $\dfrac{y + x}{y - x}$.
+
+\Item{10.} $x$.
+
+\Item{11.} $\dfrac{1}{x}$.
+
+\Item{12.} $\dfrac{x^{2}(x - 3)}{x - 2}$.
+
+\Item{13.} $a - 1$.
+
+\Item{14.} $\dfrac{4a}{a - x}$.
+
+
+\AnsTo[5]{Exercise}{51.} % Page 105.
+
+\Item{1.} $5$.
+
+\Item{2.} $7$.
+
+\Item{3.} $2\frac{1}{2}$.
+
+\Item{4.} $120$.
+
+\Item{5.} $12$.
+
+\Item{6.} $2\frac{1}{3}$.
+
+\Item{7.} $17$.
+
+\Item{8.} $4$.
+
+\Item{9.} $4$.
+
+\Item{10.} $1$.
+
+\Item{11.} $-16$.
+
+\Item{12.} $11$.
+
+\Item{13.} $-4$.
+
+\Item{14.} $-2$.
+
+\Item{15.} $-2$.
+
+\Item{16.} $5$.
+
+\Item{17.} $9$.
+
+\Item{18.} $-1$.
+%% -----File: 186.png---Folio 180-------
+
+
+\AnsTo[5]{Exercise}{52.} % Page 106.
+
+\Item{1.} $2$.
+
+\Item{2.} $2$.
+
+\Item{3.} $-33$.
+
+\Item{4.} $1$.
+
+\Item{5.} $\frac{2}{3}$.
+
+\Item{6.} $1\frac{1}{2}$.
+
+\Item{7.} $2$.
+
+\Item{8.} $8$.
+
+\Item{9.} $5$.
+
+\Item{10.} $\frac{3}{7}$.
+
+\Item{11.} $2$.
+
+\Item{12.} $1$.
+
+\Item{13.} $3$.
+
+
+\AnsTo[6]{Exercise}{53.} % Page 107.
+
+\Item{1.} $33$.
+
+\Item{2.} $2$.
+
+\Item{3.} $3\frac{1}{2}$.
+
+\Item{4.} $1\frac{5}{37}$.
+
+\Item{5.} $7$.
+
+\Item{6.} $3$.
+
+
+\AnsTo{Exercise}{54.} % Page 108.
+
+\Item{1.} $a + b$.
+
+\Item{2.} $\dfrac{a}{2}$.
+
+\Item{3.} $\dfrac{b}{2}$.
+
+\Item{4.} $2a$.
+
+\Item{5.} $b - a$.
+
+\Item{6.} $\dfrac{ab}{a + b + c}$.
+
+\Item{7.} $\dfrac{a^{2} - b^{2}}{2a}$.
+
+\Item{8.} $\dfrac{2b}{a}$.
+
+\Item{9.} $\dfrac{2b^{2} - a^{2}}{4b - 3a}$.
+
+\Item{10.} $1$.
+
+\Item{11.} $3(a - b)$.
+
+
+\AnsTo[4]{Exercise}{55.} % Page 109.
+
+\Item{1.} $35$.
+
+\Item{2.} $70$.
+
+\Item{3.} $36$.
+
+\Item{4.} $57$, $58$.
+
+
+\AnsTo[5]{Exercise}{56.} % Page 110.
+
+\Item{1.} $81$, $19$.
+
+\Item{2.} $100$, $24$.
+
+\Item{3.} $64$, $15$.
+
+\Item{4.} $103$, $12$.
+
+\Item{5.} $295$, $25$.
+
+
+\AnsTo[4]{Exercise}{57.} % Page 111.
+
+\Item{1.} $12$~yr.
+
+\Item{2.} A, $60$~yr.; B, $10$~yr.
+
+\Item{3.} A, $25$~yr.; B, $5$~yr.
+
+\Item{4.} $17\frac{1}{2}$~yr.
+
+\Item{5.} $35$~yr.
+
+\Item{6.} Son, $12$~yr.; father, $36$~yr.
+
+\Item{7.} $25$~yr.
+
+\Item{8.} A, $30$~yr.; B, $15$~yr.
+
+\Item{9.} Son, $12$~yr.; father, $68$~yr.
+
+
+\AnsTo[6]{Exercise}{58.} % Page 112.
+
+\Item{1.} $1\frac{3}{7}$~dy.
+
+\Item{2.} $1\frac{13}{47}$~dy.
+
+\Item{3.} $1\frac{1}{20}$~dy.
+
+\Item{4.} $15$~dy.
+
+\Item{5.} $12$~hr.
+
+\Item{6.} $10$~dy.
+
+
+\AnsTo[5]{Exercise}{59.} % Page 113.
+
+\Item{1.} $7\frac{5}{13}$~hr.
+
+\Item{2.} $2\frac{2}{5}$~hr.
+
+\Item{3.} $\frac{10}{11}$~hr.
+
+\Item{4.} $1\frac{1}{13}$~hr.
+
+\Item{5.} $30$~hr.
+
+
+\AnsTo[4]{Exercise}{60.} % Page 114.
+
+\Item{1.} $36$~mi.
+
+\Item{2.} $26$~hr.
+
+\Item{3.} $8$~mi.
+
+\Item{4.} $240$~mi.
+
+
+\AnsTo{Exercise}{61.} % Page 115.
+
+\Item{1.} $600$.
+
+\Item{2.} $700$.
+
+\Item{3.} Dog, $1440$; rabbit, $1800$.
+%% -----File: 187.png---Folio 181-------
+
+\AnsTo[2]{Exercise}{62.} % Page 116.
+
+\Item{1.} $27\frac{3}{11}$~min.\ past 5~o'clock.
+
+\Item{2.} $27\frac{3}{11}$~min.\ past 2~o'clock.
+
+\Item{3.} $43\frac{7}{11}$~min.\ past 2~o'clock.
+
+\Item{4.} $21\frac{9}{11}$~min.\ past 1~o'clock.
+
+\Item{5.} $38\frac{2}{11}$~min.\ past 1~o'clock.
+
+\Item{6.} $38\frac{2}{11}$~min.\ past 7~o'clock.
+
+
+
+\AnsTo{Exercise}{63.} % Page 117.
+
+\Item{1.} $1764$~sq.~ft.
+
+\Item{2.} $18$~ft.\ by $23$~ft.
+
+\Item{3.} $14$~ft.\ by $20$~ft.
+
+\Item{4.} $12$~ft.\ by $15$~ft.
+
+\Item{5.} $30$~ft.\ by $40$~ft.
+
+
+\AnsTo[4]{Exercise}{64.} % Page 121.
+
+\Item{1.} $90°\,0'\,30''$; $30°\,30'$.
+
+\Item{2.} \$$133\frac{1}{3}$.
+
+\Item{3.} \$$2000$.
+
+\Item{4.} \$$4000$.
+
+\Item{5.} \$$3000$.
+
+\Item{6.} \$$500$.
+
+\Item{7.} $5$\%.
+
+\Item{8.} $6$\%.
+
+\Item{9.} $3$~yr.
+
+\Item{10.} $9\frac{3}{8}$~yr.
+
+\Item{11.} \$$25,000$.
+
+\Item{12.} \$$20,000$.
+
+\Item{13.} \$$6$\%.
+
+\Item{14.} $20$~yr.
+
+
+\AnsTo{Exercise}{65.} % Page 124.
+
+\Item{1.} $x = 2$, $y = 1$.
+
+\Item{2.} $x = 3$, $y = 2$.
+
+\Item{3.} $x = 5$, $y = 1$.
+
+\Item{4.} $x = 2$, $y = 1$.
+
+\Item{5.} $x = 1$, $y = 2$.
+
+\Item{6.} $x = 6$, $y = 1$.
+
+\Item{7.} $x = 3$, $y = 21$.
+
+\Item{8.} $x = 7$, $y = 7$.
+
+\Item{9.} $x = 23$, $y = -1$.
+
+\Item{10.} $x = 2$, $y = 1$.
+
+\Item{11.} $x = 35$, $y = 20$.
+
+\Item{12.} $x = 2$, $y = 1$.
+
+\Item{13.} $x = 1$, $y = 2$.
+
+\Item{14.} $x = 3$, $y = 2$.
+
+\Item{15.} $x = 1$, $y = 2$.
+
+\Item{16.} $x = 4$, $y = 3$.
+
+\Item{17.} $x = 12$, $y = 4$.
+
+\Item{18.} $x = 12$, $y = 21$.
+
+\Item{19.} $x = 5$, $y = 7$.
+
+\Item{20.} $x = 5$, $y = 2$.
+
+\Item{21.} $x = 18$, $y = 6$.
+
+\Item{22.} $x = 3$, $y = 2$.
+
+\Item{23.} $x = 3$, $y = 2$.
+
+\Item{24.} $x = 7$, $y = 8$.
+
+\Item{25.} $x = 8$, $y = -2$.
+
+\Item{26.} $x = \dfrac{a}{(a - b)}$, $y = \dfrac{b}{(a + b)}$.
+
+
+\AnsTo[2]{Exercise}{66.} % Page 127.
+
+\Item{1.} A, \$$520$; B, \$$440$.
+
+\Item{2.} $23$~and~$17$.
+
+\Item{3.} $20$~and~$16$.
+
+\Item{4.} Velvet, \$$6$; silk, \$$3$.
+
+\Item{5.} Wheat, \$$1$; rye, \$$\frac{4}{5}$.
+
+\Item{6.} Tea, \$$\frac{1}{2}$; coffee, \$$\frac{1}{4}$.
+
+\Item{7.} Horse, \$$92$; cow, \$$64$.
+%% -----File: 188.png---Folio 182-------
+
+
+\AnsTo[5]{Exercise}{67.} % Page 128.
+
+\Item{1.} $\frac{3}{7}$.
+
+\Item{2.} $\frac{13}{25}$.
+
+\Item{3.} $\frac{3}{20}$.
+
+\Item{4.} $\frac{5}{21}$.
+
+\Item{5.} $\frac{7}{22}$.
+
+
+\AnsTo[4]{Exercise}{68.} % Page 129.
+
+\Item{1.} $45$.
+
+\Item{2.} $72$.
+
+\Item{3.} $75$~and~$57$.
+
+\Item{4.} $54$.
+
+
+\AnsTo{Exercise}{69.} % Page 130.
+
+\Item{1.} \$$2500$ at $4$\%.
+
+\Item{2.} \$$1600$ at $6$\%.
+
+\Item{3.} \$$6000$ at $4$\%; \$$4000$ at $5$\%.
+
+
+\AnsTo[4]{Exercise}{70.} % Page 131.
+
+\Item{1.} $22$~and~$18$.
+
+\Item{2.} $60$~and~$8$.
+
+\Item{3.} $\frac{14}{17}$.
+
+\Item{4.} Wheat, \$$1$; barley, \$$\frac{4}{5}$.
+
+\Item{5.} A, \$$235$; B, \$$65$.
+
+\Item{6.} A, \$$70$; B, \$$30$.
+
+\Item{7.} Lemon, $2$~cts.; orange, $3$~cts.
+
+\Item{8.} A, $30$~apples; B, $10$~apples.
+
+
+\AnsTo[4]{Exercise}{71.} % Page 134.
+
+\Item{1.} $±2$.
+
+\Item{2.} $±3$.
+
+\Item{3.} $±5$.
+
+\Item{4.} $±8$.
+
+\Item{5.} $±7$.
+
+\Item{6.} $±5$.
+
+\Item{7.} $±5$.
+
+\Item{8.} $±3$.
+
+\Item{9.} $±3$.
+
+\Item{10.} $±3$.
+
+\Item{11.} $12$~and~$16$.
+
+\Item{12.} $12$~oranges at $3$~cts.
+
+\Item{13.} $3$~rods.
+
+\Item{14.} Width, $12$~rd.; length, $48$~rd.
+
+
+\AnsTo{Exercise}{72.} % Page 137.
+
+\Item{1.} $9$~or~$3$.
+
+\Item{2.} $4$~or~$2$.
+
+\Item{3.} $3$~or~$1$.
+
+\Item{4.} $1$~or~$-\frac{1}{5}$.
+
+\Item{5.} $1$~or~$-3$.
+
+\Item{6.} $\frac{4}{3}$~or~$\frac{4}{3}$.
+
+\Item{7.} $1$~or~$-\frac{1}{6}$.
+
+\Item{8.} $3$~or~$-1$.
+
+\Item{9.} $\frac{3}{4}$~or~$\frac{1}{4}$.
+
+\Item{10.} $3$~or~$\frac{1}{3}$.
+
+\Item{11.} $17$~or~$-3$.
+
+\Item{12.} $25$~or~$9$.
+
+\Item{13.} $4$~or~$-5$.
+
+\Item{14.} $4$~or~$-3$.
+
+\Item{15.} $5$~or~$1$.
+
+\Item{16.} $2$~or~$-6$.
+
+\Item{17.} $2$~or~$2$.
+
+\Item{18.} $5$~or~$-11$.
+
+\Item{19.} $2$~or~$-5\frac{1}{3}$.
+
+\Item{20.} $4\frac{1}{3}$~or~$-3\frac{2}{3}$.
+
+\Item{21.} $2$~or~$\frac{1}{3}$.
+
+\Item{22.} $4$~or~$-\frac{2}{5}$.
+
+\Item{23.} $2$~or~$-3$.
+
+\Item{24.} $10$~or~$2$.
+
+\Item{25.} $3$~or~$-2\frac{1}{3}$.
+
+\Item{26.} $2$~or~$2$.
+
+\Item{27.} $\frac{1}{2}$~or~$-3$.
+
+\Item{28.} $5$~or~$\frac{1}{2}$.
+
+\Item{29.} $7$~or~$2$.
+
+\Item{30.} $4$~or~$-\frac{2}{3}$.
+
+\Item{31.} $8$~or~$2$.
+
+\Item{32.} $4$~or~$-7$.
+
+\Item{33.} $0$~or~$3$.
+
+\Item{34.} $0$~or~$7$.
+
+\Item{35.} $5$~or~$2$.
+
+\Item{36.} $4$~or~$-1$.
+%% -----File: 189.png---Folio 183-------
+
+
+\AnsTo{Exercise}{73.} % Page 140.
+
+\Item{1.} $6$~and~$5$.
+
+\Item{2.} $5$~and~$15$.
+
+\Item{3.} Son, $8$~yr.; father, $40$~yr.
+
+\Item{4.} $9$.
+
+\Item{6.} $5$~rd.\ by $7$~rd.
+
+\Item{7.} $12$~ft.
+
+\Item{8.} $20$~ft.\ by $18$~ft.
+
+\Item{9.} $10$~rd.\ by $12$~rd.
+
+\Item{10.} Son, $10$~yr.; father, $54$~yr.
+
+
+\AnsTo{Exercise}{74.} % Page 141.
+
+\Item{1.} $6$~miles an hour.
+
+\Item{2.} $7$.
+
+\Item{3.} $5$.
+
+\Item{4.} $8$.
+
+\Item{5.} $36$.
+
+
+\AnsTo[4]{Exercise}{75.} % Page 144.
+
+\Item{1.} $75$.
+
+\Item{2.} $38$.
+
+\Item{3.} $4\frac{1}{7}$.
+
+\Item{4.} $-8\frac{3}{4}$.
+
+\Item{5.} $23$.
+
+\Item{6.} $0$.
+
+\Item{7.} $156$.
+
+\Item{8.} $20$th.
+
+\Item{9.} $101$st.
+
+\Item{10.} $26$.
+
+\Item{11.} $a$.
+
+\Item{12.} $21$, $22$,~etc.
+
+
+\AnsTo[4]{Exercise}{76.} % Page 146.
+
+\Item{1.} $440$.
+
+\Item{2.} $201$.
+
+\Item{3.} $4frac{1}{6}$.
+
+\Item{4.} $128$.
+
+\Item{5.} $-378$.
+
+\Item{6.} $187\frac{1}{2}$.
+
+\Item{7.} $1$, $3$, $5$.
+
+\Item{8.} $156$.
+
+\Item{9.} $300$.
+
+\Item{10.} $2550$~yd.
+
+\Item{11.} $5812.1$~ft.
+
+\Item{12.} $144.9$~ft.
+
+\Item{13.} $11$, $15$.
+
+\Item{14.} $7$, $9$, $11$.
+
+\Item{15.} $12$~miles.
+
+\Item{16.} $5$, $12$, $19$.
+
+
+\AnsTo[4]{Exercise}{77.} % Page 151.
+
+\Item{1.} $243$.
+
+\Item{2.} $192$.
+
+\Item{3.} $\frac{3}{64}$.
+
+\Item{4.} $256$.
+
+\Item{5.} $±4$.
+
+\Item{6.} $±4$.
+
+\Item{7.} $1092$.
+
+\Item{8.} $765$.
+
+\Item{9.} $11\frac{29}{32}$.
+
+\Item{10.} $15\frac{15}{16}$.
+
+\Item{11.} $127\frac{3}{4}$.
+
+\Item{12.} $44$.
+
+\Item{13.} $1\frac{11}{54}$.
+
+\Item{14.} \$$1.27$.
+
+\Item{15.} \$$81.90$.
+
+\Item{16.} $14,641$.
+
+
+\AnsTo{Exercise}{78.} % Page 153.
+
+\Item{1.} $a + b + c$.
+
+\Item{2.} $x^{2} + x + 1$.
+
+\Item{3.} $x^{2} - 2xy + y^{2}$.
+
+\Item{4.} $2a^{2} - 3ab + 5b^{2}$.
+
+\Item{5.} $4x^{3} + 3x^{2}y - 2y^{3}$.
+
+\Item{6.} $2x^{3} - xy^{2} + 3y^{3}$.
+
+
+\AnsTo[4]{Exercise}{79.} % Page 156.
+
+\Item{1.} $18$.
+
+\Item{2.} $21$.
+
+\Item{3.} $23$.
+
+\Item{4.} $31$.
+
+\Item{5.} $3.2$.
+
+\Item{6.} $7.3$.
+
+\Item{7.} $232$.
+
+\Item{8.} $785$.
+
+\Item{9.} $1225$.
+
+\Item{10.} $589$.
+
+\Item{11.} $5601$.
+
+\Item{12.} $1234$.
+
+\Item{13.} $1.4142\dots$
+
+\Item{14.} $1.7320\dots$
+
+\Item{15.} $2.2360\dots$
+
+\Item{16.} $2.4494\dots$
+
+\Item{17.} $0.7071\dots$
+
+\Item{18.} $0.9486\dots$
+
+\Item{19.} $0.8164\dots$
+
+\Item{20.} $0.8660\dots$
+
+\Item{21.} $0.8944\dots$
+
+\Item{22.} $0.7905\dots$
+%% -----File: 190.png---Folio 184-------
+
+
+\AnsTo{Exercise}{80.} % Page 159.
+
+\Item{1.} $x + y$.
+
+\Item{2.} $2x - 1$.
+
+\Item{3.} $2x - 3y$.
+
+\Item{4.} $4a - 3x$.
+
+\Item{5.} $1 + x + x^{2}$.
+
+\Item{6.} $x^{2} - x + 1$.
+
+
+\AnsTo[4]{Exercise}{81.} % Page 163.
+
+\Item{1.} $36$.
+
+\Item{2.} $35$.
+
+\Item{3.} $45$.
+
+\Item{4.} $65$.
+
+\Item{5.} $48$.
+
+\Item{6.} $637$.
+
+\Item{7.} $478$.
+
+\Item{8.} $638$.
+
+\Item{9.} $503$.
+
+\Item{10.} $728$.
+
+\Item{11.} $12.34$.
+
+\Item{12.} $12.25$.
+
+\Item{13.} $0.2154\dots$
+
+\Item{14.} $0.3684\dots$
+
+\Item{15.} $0.5848\dots$
+
+\Item{16.} $1.5874\dots$
+
+\Item{17.} $2.1544\dots$
+
+\Item{18.} $4.4310\dots$
+
+\Item{19.} $1.3572\dots$
+
+\Item{20.} $1.2703\dots$
+
+\Item{21.} $1.4454\dots$
+
+\Item{22.} $0.8735\dots$
+
+\Item{23.} $0.9085\dots$
+
+\Item{24.} $0.9352\dots$
+%[** TN: Environment opened by \AnsTo]
+\end{multicols}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%% GUTENBERG LICENSE %%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\BackMatter
+\begin{PGtext}
+End of the Project Gutenberg EBook of The First Steps in Algebra, by
+G. A. (George Albert) Wentworth
+
+*** END OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA ***
+
+***** This file should be named 36670-t.tex or 36670-t.zip *****
+This and all associated files of various formats will be found in:
+ http://www.gutenberg.org/3/6/6/7/36670/
+
+Produced by Andrew D. Hwang, Peter Vachuska, Chuck Greif
+and the Online Distributed Proofreading Team at
+http://www.pgdp.net.
+
+
+Updated editions will replace the previous one--the old editions
+will be renamed.
+
+Creating the works from public domain print editions means that no
+one owns a United States copyright in these works, so the Foundation
+(and you!) can copy and distribute it in the United States without
+permission and without paying copyright royalties. Special rules,
+set forth in the General Terms of Use part of this license, apply to
+copying and distributing Project Gutenberg-tm electronic works to
+protect the PROJECT GUTENBERG-tm concept and trademark. Project
+Gutenberg is a registered trademark, and may not be used if you
+charge for the eBooks, unless you receive specific permission. If you
+do not charge anything for copies of this eBook, complying with the
+rules is very easy. You may use this eBook for nearly any purpose
+such as creation of derivative works, reports, performances and
+research. They may be modified and printed and given away--you may do
+practically ANYTHING with public domain eBooks. Redistribution is
+subject to the trademark license, especially commercial
+redistribution.
+
+
+
+*** START: FULL LICENSE ***
+
+THE FULL PROJECT GUTENBERG LICENSE
+PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
+
+To protect the Project Gutenberg-tm mission of promoting the free
+distribution of electronic works, by using or distributing this work
+(or any other work associated in any way with the phrase "Project
+Gutenberg"), you agree to comply with all the terms of the Full Project
+Gutenberg-tm License (available with this file or online at
+http://gutenberg.net/license).
+
+
+Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
+electronic works
+
+1.A. By reading or using any part of this Project Gutenberg-tm
+electronic work, you indicate that you have read, understand, agree to
+and accept all the terms of this license and intellectual property
+(trademark/copyright) agreement. If you do not agree to abide by all
+the terms of this agreement, you must cease using and return or destroy
+all copies of Project Gutenberg-tm electronic works in your possession.
+If you paid a fee for obtaining a copy of or access to a Project
+Gutenberg-tm electronic work and you do not agree to be bound by the
+terms of this agreement, you may obtain a refund from the person or
+entity to whom you paid the fee as set forth in paragraph 1.E.8.
+
+1.B. "Project Gutenberg" is a registered trademark. It may only be
+used on or associated in any way with an electronic work by people who
+agree to be bound by the terms of this agreement. There are a few
+things that you can do with most Project Gutenberg-tm electronic works
+even without complying with the full terms of this agreement. See
+paragraph 1.C below. There are a lot of things you can do with Project
+Gutenberg-tm electronic works if you follow the terms of this agreement
+and help preserve free future access to Project Gutenberg-tm electronic
+works. See paragraph 1.E below.
+
+1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
+or PGLAF), owns a compilation copyright in the collection of Project
+Gutenberg-tm electronic works. Nearly all the individual works in the
+collection are in the public domain in the United States. If an
+individual work is in the public domain in the United States and you are
+located in the United States, we do not claim a right to prevent you from
+copying, distributing, performing, displaying or creating derivative
+works based on the work as long as all references to Project Gutenberg
+are removed. Of course, we hope that you will support the Project
+Gutenberg-tm mission of promoting free access to electronic works by
+freely sharing Project Gutenberg-tm works in compliance with the terms of
+this agreement for keeping the Project Gutenberg-tm name associated with
+the work. You can easily comply with the terms of this agreement by
+keeping this work in the same format with its attached full Project
+Gutenberg-tm License when you share it without charge with others.
+
+1.D. The copyright laws of the place where you are located also govern
+what you can do with this work. Copyright laws in most countries are in
+a constant state of change. If you are outside the United States, check
+the laws of your country in addition to the terms of this agreement
+before downloading, copying, displaying, performing, distributing or
+creating derivative works based on this work or any other Project
+Gutenberg-tm work. The Foundation makes no representations concerning
+the copyright status of any work in any country outside the United
+States.
+
+1.E. Unless you have removed all references to Project Gutenberg:
+
+1.E.1. The following sentence, with active links to, or other immediate
+access to, the full Project Gutenberg-tm License must appear prominently
+whenever any copy of a Project Gutenberg-tm work (any work on which the
+phrase "Project Gutenberg" appears, or with which the phrase "Project
+Gutenberg" is associated) is accessed, displayed, performed, viewed,
+copied or distributed:
+
+This eBook is for the use of anyone anywhere at no cost and with
+almost no restrictions whatsoever. You may copy it, give it away or
+re-use it under the terms of the Project Gutenberg License included
+with this eBook or online at www.gutenberg.net
+
+1.E.2. If an individual Project Gutenberg-tm electronic work is derived
+from the public domain (does not contain a notice indicating that it is
+posted with permission of the copyright holder), the work can be copied
+and distributed to anyone in the United States without paying any fees
+or charges. If you are redistributing or providing access to a work
+with the phrase "Project Gutenberg" associated with or appearing on the
+work, you must comply either with the requirements of paragraphs 1.E.1
+through 1.E.7 or obtain permission for the use of the work and the
+Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
+1.E.9.
+
+1.E.3. If an individual Project Gutenberg-tm electronic work is posted
+with the permission of the copyright holder, your use and distribution
+must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
+terms imposed by the copyright holder. Additional terms will be linked
+to the Project Gutenberg-tm License for all works posted with the
+permission of the copyright holder found at the beginning of this work.
+
+1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
+License terms from this work, or any files containing a part of this
+work or any other work associated with Project Gutenberg-tm.
+
+1.E.5. Do not copy, display, perform, distribute or redistribute this
+electronic work, or any part of this electronic work, without
+prominently displaying the sentence set forth in paragraph 1.E.1 with
+active links or immediate access to the full terms of the Project
+Gutenberg-tm License.
+
+1.E.6. You may convert to and distribute this work in any binary,
+compressed, marked up, nonproprietary or proprietary form, including any
+word processing or hypertext form. However, if you provide access to or
+distribute copies of a Project Gutenberg-tm work in a format other than
+"Plain Vanilla ASCII" or other format used in the official version
+posted on the official Project Gutenberg-tm web site (www.gutenberg.net),
+you must, at no additional cost, fee or expense to the user, provide a
+copy, a means of exporting a copy, or a means of obtaining a copy upon
+request, of the work in its original "Plain Vanilla ASCII" or other
+form. Any alternate format must include the full Project Gutenberg-tm
+License as specified in paragraph 1.E.1.
+
+1.E.7. Do not charge a fee for access to, viewing, displaying,
+performing, copying or distributing any Project Gutenberg-tm works
+unless you comply with paragraph 1.E.8 or 1.E.9.
+
+1.E.8. You may charge a reasonable fee for copies of or providing
+access to or distributing Project Gutenberg-tm electronic works provided
+that
+
+- You pay a royalty fee of 20% of the gross profits you derive from
+ the use of Project Gutenberg-tm works calculated using the method
+ you already use to calculate your applicable taxes. The fee is
+ owed to the owner of the Project Gutenberg-tm trademark, but he
+ has agreed to donate royalties under this paragraph to the
+ Project Gutenberg Literary Archive Foundation. Royalty payments
+ must be paid within 60 days following each date on which you
+ prepare (or are legally required to prepare) your periodic tax
+ returns. Royalty payments should be clearly marked as such and
+ sent to the Project Gutenberg Literary Archive Foundation at the
+ address specified in Section 4, "Information about donations to
+ the Project Gutenberg Literary Archive Foundation."
+
+- You provide a full refund of any money paid by a user who notifies
+ you in writing (or by e-mail) within 30 days of receipt that s/he
+ does not agree to the terms of the full Project Gutenberg-tm
+ License. You must require such a user to return or
+ destroy all copies of the works possessed in a physical medium
+ and discontinue all use of and all access to other copies of
+ Project Gutenberg-tm works.
+
+- You provide, in accordance with paragraph 1.F.3, a full refund of any
+ money paid for a work or a replacement copy, if a defect in the
+ electronic work is discovered and reported to you within 90 days
+ of receipt of the work.
+
+- You comply with all other terms of this agreement for free
+ distribution of Project Gutenberg-tm works.
+
+1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
+electronic work or group of works on different terms than are set
+forth in this agreement, you must obtain permission in writing from
+both the Project Gutenberg Literary Archive Foundation and Michael
+Hart, the owner of the Project Gutenberg-tm trademark. Contact the
+Foundation as set forth in Section 3 below.
+
+1.F.
+
+1.F.1. Project Gutenberg volunteers and employees expend considerable
+effort to identify, do copyright research on, transcribe and proofread
+public domain works in creating the Project Gutenberg-tm
+collection. Despite these efforts, Project Gutenberg-tm electronic
+works, and the medium on which they may be stored, may contain
+"Defects," such as, but not limited to, incomplete, inaccurate or
+corrupt data, transcription errors, a copyright or other intellectual
+property infringement, a defective or damaged disk or other medium, a
+computer virus, or computer codes that damage or cannot be read by
+your equipment.
+
+1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
+of Replacement or Refund" described in paragraph 1.F.3, the Project
+Gutenberg Literary Archive Foundation, the owner of the Project
+Gutenberg-tm trademark, and any other party distributing a Project
+Gutenberg-tm electronic work under this agreement, disclaim all
+liability to you for damages, costs and expenses, including legal
+fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
+LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
+PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
+TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
+LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
+INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
+DAMAGE.
+
+1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
+defect in this electronic work within 90 days of receiving it, you can
+receive a refund of the money (if any) you paid for it by sending a
+written explanation to the person you received the work from. If you
+received the work on a physical medium, you must return the medium with
+your written explanation. The person or entity that provided you with
+the defective work may elect to provide a replacement copy in lieu of a
+refund. If you received the work electronically, the person or entity
+providing it to you may choose to give you a second opportunity to
+receive the work electronically in lieu of a refund. If the second copy
+is also defective, you may demand a refund in writing without further
+opportunities to fix the problem.
+
+1.F.4. Except for the limited right of replacement or refund set forth
+in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER
+WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.
+
+1.F.5. Some states do not allow disclaimers of certain implied
+warranties or the exclusion or limitation of certain types of damages.
+If any disclaimer or limitation set forth in this agreement violates the
+law of the state applicable to this agreement, the agreement shall be
+interpreted to make the maximum disclaimer or limitation permitted by
+the applicable state law. The invalidity or unenforceability of any
+provision of this agreement shall not void the remaining provisions.
+
+1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
+trademark owner, any agent or employee of the Foundation, anyone
+providing copies of Project Gutenberg-tm electronic works in accordance
+with this agreement, and any volunteers associated with the production,
+promotion and distribution of Project Gutenberg-tm electronic works,
+harmless from all liability, costs and expenses, including legal fees,
+that arise directly or indirectly from any of the following which you do
+or cause to occur: (a) distribution of this or any Project Gutenberg-tm
+work, (b) alteration, modification, or additions or deletions to any
+Project Gutenberg-tm work, and (c) any Defect you cause.
+
+
+Section 2. Information about the Mission of Project Gutenberg-tm
+
+Project Gutenberg-tm is synonymous with the free distribution of
+electronic works in formats readable by the widest variety of computers
+including obsolete, old, middle-aged and new computers. It exists
+because of the efforts of hundreds of volunteers and donations from
+people in all walks of life.
+
+Volunteers and financial support to provide volunteers with the
+assistance they need are critical to reaching Project Gutenberg-tm's
+goals and ensuring that the Project Gutenberg-tm collection will
+remain freely available for generations to come. In 2001, the Project
+Gutenberg Literary Archive Foundation was created to provide a secure
+and permanent future for Project Gutenberg-tm and future generations.
+To learn more about the Project Gutenberg Literary Archive Foundation
+and how your efforts and donations can help, see Sections 3 and 4
+and the Foundation web page at http://www.pglaf.org.
+
+
+Section 3. Information about the Project Gutenberg Literary Archive
+Foundation
+
+The Project Gutenberg Literary Archive Foundation is a non profit
+501(c)(3) educational corporation organized under the laws of the
+state of Mississippi and granted tax exempt status by the Internal
+Revenue Service. The Foundation's EIN or federal tax identification
+number is 64-6221541. Its 501(c)(3) letter is posted at
+http://pglaf.org/fundraising. Contributions to the Project Gutenberg
+Literary Archive Foundation are tax deductible to the full extent
+permitted by U.S. federal laws and your state's laws.
+
+The Foundation's principal office is located at 4557 Melan Dr. S.
+Fairbanks, AK, 99712., but its volunteers and employees are scattered
+throughout numerous locations. Its business office is located at
+809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
+business@pglaf.org. Email contact links and up to date contact
+information can be found at the Foundation's web site and official
+page at http://pglaf.org
+
+For additional contact information:
+ Dr. Gregory B. Newby
+ Chief Executive and Director
+ gbnewby@pglaf.org
+
+
+Section 4. Information about Donations to the Project Gutenberg
+Literary Archive Foundation
+
+Project Gutenberg-tm depends upon and cannot survive without wide
+spread public support and donations to carry out its mission of
+increasing the number of public domain and licensed works that can be
+freely distributed in machine readable form accessible by the widest
+array of equipment including outdated equipment. Many small donations
+($1 to $5,000) are particularly important to maintaining tax exempt
+status with the IRS.
+
+The Foundation is committed to complying with the laws regulating
+charities and charitable donations in all 50 states of the United
+States. Compliance requirements are not uniform and it takes a
+considerable effort, much paperwork and many fees to meet and keep up
+with these requirements. We do not solicit donations in locations
+where we have not received written confirmation of compliance. To
+SEND DONATIONS or determine the status of compliance for any
+particular state visit http://pglaf.org
+
+While we cannot and do not solicit contributions from states where we
+have not met the solicitation requirements, we know of no prohibition
+against accepting unsolicited donations from donors in such states who
+approach us with offers to donate.
+
+International donations are gratefully accepted, but we cannot make
+any statements concerning tax treatment of donations received from
+outside the United States. U.S. laws alone swamp our small staff.
+
+Please check the Project Gutenberg Web pages for current donation
+methods and addresses. Donations are accepted in a number of other
+ways including including checks, online payments and credit card
+donations. To donate, please visit: http://pglaf.org/donate
+
+
+Section 5. General Information About Project Gutenberg-tm electronic
+works.
+
+Professor Michael S. Hart is the originator of the Project Gutenberg-tm
+concept of a library of electronic works that could be freely shared
+with anyone. For thirty years, he produced and distributed Project
+Gutenberg-tm eBooks with only a loose network of volunteer support.
+
+
+Project Gutenberg-tm eBooks are often created from several printed
+editions, all of which are confirmed as Public Domain in the U.S.
+unless a copyright notice is included. Thus, we do not necessarily
+keep eBooks in compliance with any particular paper edition.
+
+
+Most people start at our Web site which has the main PG search facility:
+
+ http://www.gutenberg.net
+
+This Web site includes information about Project Gutenberg-tm,
+including how to make donations to the Project Gutenberg Literary
+Archive Foundation, how to help produce our new eBooks, and how to
+subscribe to our email newsletter to hear about new eBooks.
+\end{PGtext}
+
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+% %
+% End of the Project Gutenberg EBook of The First Steps in Algebra, by %
+% G. A. (George Albert) Wentworth %
+% %
+% *** END OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA *** %
+% %
+% ***** This file should be named 36670-t.tex or 36670-t.zip ***** %
+% This and all associated files of various formats will be found in: %
+% http://www.gutenberg.org/3/6/6/7/36670/ %
+% %
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+
+\end{document}
+###
+@ControlwordReplace = (
+ ['\\Answers', 'Answers.'],
+ ['\\Preface', 'Preface.'],
+ ['\\end{Remark}', ''],
+ ['\\end{Soln}', ''],
+ ['\\end{Theorem}', ''],
+ ['\\HCF', 'H.C.F.'],
+ ['\\LCD', 'L.C.D.'],
+ ['\\LCM', 'L.C.M.'],
+ ['\\end{multicols}', '']
+ );
+
+@MathEnvironments = (
+ ['\\begin{DPalign*}','\\end{DPalign*}','<DPALIGN>'],
+ ['\\begin{DPgather*}','\\end{DPgather*}','<DPGATHER>']
+ );
+
+@ControlwordArguments = (
+ ['\\BookMark', 1, 0, '', '', 1, 0, '', ''],
+ ['\\Chapter', 1, 1, 'Chapter ', ' ', 1, 1, '', ''],
+ ['\\Section', 1, 1, '', ''],
+ ['\\Exercise', 0, 0, '', '', 1, 1, 'Exercise ', ''],
+ ['\\AnsTo', 0, 0, '', '', 1, 1, '', ' ', 1, 1, '', ''],
+ ['\\Paragraph', 1, 1, '', ''],
+ ['\\Signature', 1, 1, '', ' ', 1, 1, '', ''],
+ ['\\begin{Remark}', 0, 1, '', ''],
+ ['\\begin{Soln}', 0, 1, '', ''],
+ ['\\begin{Theorem}', 0, 1, '', ''],
+ ['\\Graphic', 1, 0, '<GRAPHIC>', ''],
+ ['\\Item', 0, 0, '', '', 1, 1, '', ''],
+ ['\\Ans', 1, 1, '', ' Ans.'],
+ ['\\First', 1, 1, '', ''],
+ ['\\tb', 0, 0, '', ''],
+ ['\\Defn', 1, 1, '', ''],
+ ['\\Dictum', 1, 1, '', ''],
+ ['\\DPtypo', 1, 0, '', '', 1, 1, '', ''],
+ ['\\Add', 1, 1, '', ''],
+ ['\\ResetCols', 0, 0, '', ''],
+ ['\\begin{multicols}', 1, 0, '', '']
+ );
+###
+This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) (format=pdflatex 2010.5.6) 8 JUL 2011 19:42
+entering extended mode
+ %&-line parsing enabled.
+**36670-t.tex
+(./36670-t.tex
+LaTeX2e <2005/12/01>
+Babel <v3.8h> and hyphenation patterns for english, usenglishmax, dumylang, noh
+yphenation, arabic, farsi, croatian, ukrainian, russian, bulgarian, czech, slov
+ak, danish, dutch, finnish, basque, french, german, ngerman, ibycus, greek, mon
+ogreek, ancientgreek, hungarian, italian, latin, mongolian, norsk, icelandic, i
+nterlingua, turkish, coptic, romanian, welsh, serbian, slovenian, estonian, esp
+eranto, uppersorbian, indonesian, polish, portuguese, spanish, catalan, galicia
+n, swedish, ukenglish, pinyin, loaded.
+(/usr/share/texmf-texlive/tex/latex/base/book.cls
+Document Class: book 2005/09/16 v1.4f Standard LaTeX document class
+(/usr/share/texmf-texlive/tex/latex/base/bk12.clo
+File: bk12.clo 2005/09/16 v1.4f Standard LaTeX file (size option)
+)
+\c@part=\count79
+\c@chapter=\count80
+\c@section=\count81
+\c@subsection=\count82
+\c@subsubsection=\count83
+\c@paragraph=\count84
+\c@subparagraph=\count85
+\c@figure=\count86
+\c@table=\count87
+\abovecaptionskip=\skip41
+\belowcaptionskip=\skip42
+\bibindent=\dimen102
+) (/usr/share/texmf-texlive/tex/latex/base/inputenc.sty
+Package: inputenc 2006/05/05 v1.1b Input encoding file
+\inpenc@prehook=\toks14
+\inpenc@posthook=\toks15
+(/usr/share/texmf-texlive/tex/latex/base/latin1.def
+File: latin1.def 2006/05/05 v1.1b Input encoding file
+)) (/usr/share/texmf-texlive/tex/latex/base/ifthen.sty
+Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)
+) (/usr/share/texmf-texlive/tex/latex/amsmath/amsmath.sty
+Package: amsmath 2000/07/18 v2.13 AMS math features
+\@mathmargin=\skip43
+For additional information on amsmath, use the `?' option.
+(/usr/share/texmf-texlive/tex/latex/amsmath/amstext.sty
+Package: amstext 2000/06/29 v2.01
+(/usr/share/texmf-texlive/tex/latex/amsmath/amsgen.sty
+File: amsgen.sty 1999/11/30 v2.0
+\@emptytoks=\toks16
+\ex@=\dimen103
+)) (/usr/share/texmf-texlive/tex/latex/amsmath/amsbsy.sty
+Package: amsbsy 1999/11/29 v1.2d
+\pmbraise@=\dimen104
+) (/usr/share/texmf-texlive/tex/latex/amsmath/amsopn.sty
+Package: amsopn 1999/12/14 v2.01 operator names
+)
+\inf@bad=\count88
+LaTeX Info: Redefining \frac on input line 211.
+\uproot@=\count89
+\leftroot@=\count90
+LaTeX Info: Redefining \overline on input line 307.
+\classnum@=\count91
+\DOTSCASE@=\count92
+LaTeX Info: Redefining \ldots on input line 379.
+LaTeX Info: Redefining \dots on input line 382.
+LaTeX Info: Redefining \cdots on input line 467.
+\Mathstrutbox@=\box26
+\strutbox@=\box27
+\big@size=\dimen105
+LaTeX Font Info: Redeclaring font encoding OML on input line 567.
+LaTeX Font Info: Redeclaring font encoding OMS on input line 568.
+\macc@depth=\count93
+\c@MaxMatrixCols=\count94
+\dotsspace@=\muskip10
+\c@parentequation=\count95
+\dspbrk@lvl=\count96
+\tag@help=\toks17
+\row@=\count97
+\column@=\count98
+\maxfields@=\count99
+\andhelp@=\toks18
+\eqnshift@=\dimen106
+\alignsep@=\dimen107
+\tagshift@=\dimen108
+\tagwidth@=\dimen109
+\totwidth@=\dimen110
+\lineht@=\dimen111
+\@envbody=\toks19
+\multlinegap=\skip44
+\multlinetaggap=\skip45
+\mathdisplay@stack=\toks20
+LaTeX Info: Redefining \[ on input line 2666.
+LaTeX Info: Redefining \] on input line 2667.
+) (/usr/share/texmf-texlive/tex/latex/amsfonts/amssymb.sty
+Package: amssymb 2002/01/22 v2.2d
+(/usr/share/texmf-texlive/tex/latex/amsfonts/amsfonts.sty
+Package: amsfonts 2001/10/25 v2.2f
+\symAMSa=\mathgroup4
+\symAMSb=\mathgroup5
+LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
+(Font) U/euf/m/n --> U/euf/b/n on input line 132.
+)) (/usr/share/texmf-texlive/tex/latex/base/alltt.sty
+Package: alltt 1997/06/16 v2.0g defines alltt environment
+) (/usr/share/texmf-texlive/tex/latex/tools/array.sty
+Package: array 2005/08/23 v2.4b Tabular extension package (FMi)
+\col@sep=\dimen112
+\extrarowheight=\dimen113
+\NC@list=\toks21
+\extratabsurround=\skip46
+\backup@length=\skip47
+) (/usr/share/texmf-texlive/tex/latex/tools/multicol.sty
+Package: multicol 2006/05/18 v1.6g multicolumn formatting (FMi)
+\c@tracingmulticols=\count100
+\mult@box=\box28
+\multicol@leftmargin=\dimen114
+\c@unbalance=\count101
+\c@collectmore=\count102
+\doublecol@number=\count103
+\multicoltolerance=\count104
+\multicolpretolerance=\count105
+\full@width=\dimen115
+\page@free=\dimen116
+\premulticols=\dimen117
+\postmulticols=\dimen118
+\multicolsep=\skip48
+\multicolbaselineskip=\skip49
+\partial@page=\box29
+\last@line=\box30
+\mult@rightbox=\box31
+\mult@grightbox=\box32
+\mult@gfirstbox=\box33
+\mult@firstbox=\box34
+\@tempa=\box35
+\@tempa=\box36
+\@tempa=\box37
+\@tempa=\box38
+\@tempa=\box39
+\@tempa=\box40
+\@tempa=\box41
+\@tempa=\box42
+\@tempa=\box43
+\@tempa=\box44
+\@tempa=\box45
+\@tempa=\box46
+\@tempa=\box47
+\@tempa=\box48
+\@tempa=\box49
+\@tempa=\box50
+\@tempa=\box51
+\c@columnbadness=\count106
+\c@finalcolumnbadness=\count107
+\last@try=\dimen119
+\multicolovershoot=\dimen120
+\multicolundershoot=\dimen121
+\mult@nat@firstbox=\box52
+\colbreak@box=\box53
+) (/usr/share/texmf-texlive/tex/latex/graphics/graphicx.sty
+Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
+(/usr/share/texmf-texlive/tex/latex/graphics/keyval.sty
+Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
+\KV@toks@=\toks22
+) (/usr/share/texmf-texlive/tex/latex/graphics/graphics.sty
+Package: graphics 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR)
+(/usr/share/texmf-texlive/tex/latex/graphics/trig.sty
+Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
+) (/etc/texmf/tex/latex/config/graphics.cfg
+File: graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive
+)
+Package graphics Info: Driver file: pdftex.def on input line 90.
+(/usr/share/texmf-texlive/tex/latex/pdftex-def/pdftex.def
+File: pdftex.def 2007/01/08 v0.04d Graphics/color for pdfTeX
+\Gread@gobject=\count108
+))
+\Gin@req@height=\dimen122
+\Gin@req@width=\dimen123
+) (/usr/share/texmf-texlive/tex/latex/tools/indentfirst.sty
+Package: indentfirst 1995/11/23 v1.03 Indent first paragraph (DPC)
+) (/usr/share/texmf-texlive/tex/latex/textcase/textcase.sty
+Package: textcase 2004/10/07 v0.07 Text only upper/lower case changing (DPC)
+) (/usr/share/texmf-texlive/tex/latex/tools/calc.sty
+Package: calc 2005/08/06 v4.2 Infix arithmetic (KKT,FJ)
+\calc@Acount=\count109
+\calc@Bcount=\count110
+\calc@Adimen=\dimen124
+\calc@Bdimen=\dimen125
+\calc@Askip=\skip50
+\calc@Bskip=\skip51
+LaTeX Info: Redefining \setlength on input line 75.
+LaTeX Info: Redefining \addtolength on input line 76.
+\calc@Ccount=\count111
+\calc@Cskip=\skip52
+) (/usr/share/texmf-texlive/tex/latex/fancyhdr/fancyhdr.sty
+\fancy@headwidth=\skip53
+\f@ncyO@elh=\skip54
+\f@ncyO@erh=\skip55
+\f@ncyO@olh=\skip56
+\f@ncyO@orh=\skip57
+\f@ncyO@elf=\skip58
+\f@ncyO@erf=\skip59
+\f@ncyO@olf=\skip60
+\f@ncyO@orf=\skip61
+) (/usr/share/texmf-texlive/tex/latex/geometry/geometry.sty
+Package: geometry 2002/07/08 v3.2 Page Geometry
+\Gm@cnth=\count112
+\Gm@cntv=\count113
+\c@Gm@tempcnt=\count114
+\Gm@bindingoffset=\dimen126
+\Gm@wd@mp=\dimen127
+\Gm@odd@mp=\dimen128
+\Gm@even@mp=\dimen129
+\Gm@dimlist=\toks23
+(/usr/share/texmf-texlive/tex/xelatex/xetexconfig/geometry.cfg)) (/usr/share/te
+xmf-texlive/tex/latex/hyperref/hyperref.sty
+Package: hyperref 2007/02/07 v6.75r Hypertext links for LaTeX
+\@linkdim=\dimen130
+\Hy@linkcounter=\count115
+\Hy@pagecounter=\count116
+(/usr/share/texmf-texlive/tex/latex/hyperref/pd1enc.def
+File: pd1enc.def 2007/02/07 v6.75r Hyperref: PDFDocEncoding definition (HO)
+) (/etc/texmf/tex/latex/config/hyperref.cfg
+File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
+) (/usr/share/texmf-texlive/tex/latex/oberdiek/kvoptions.sty
+Package: kvoptions 2006/08/22 v2.4 Connects package keyval with LaTeX options (
+HO)
+)
+Package hyperref Info: Option `hyperfootnotes' set `false' on input line 2238.
+Package hyperref Info: Option `bookmarks' set `true' on input line 2238.
+Package hyperref Info: Option `linktocpage' set `false' on input line 2238.
+Package hyperref Info: Option `pdfdisplaydoctitle' set `true' on input line 223
+8.
+Package hyperref Info: Option `pdfpagelabels' set `true' on input line 2238.
+Package hyperref Info: Option `bookmarksopen' set `true' on input line 2238.
+Package hyperref Info: Option `colorlinks' set `true' on input line 2238.
+Package hyperref Info: Hyper figures OFF on input line 2288.
+Package hyperref Info: Link nesting OFF on input line 2293.
+Package hyperref Info: Hyper index ON on input line 2296.
+Package hyperref Info: Plain pages OFF on input line 2303.
+Package hyperref Info: Backreferencing OFF on input line 2308.
+Implicit mode ON; LaTeX internals redefined
+Package hyperref Info: Bookmarks ON on input line 2444.
+(/usr/share/texmf-texlive/tex/latex/ltxmisc/url.sty
+\Urlmuskip=\muskip11
+Package: url 2005/06/27 ver 3.2 Verb mode for urls, etc.
+)
+LaTeX Info: Redefining \url on input line 2599.
+\Fld@menulength=\count117
+\Field@Width=\dimen131
+\Fld@charsize=\dimen132
+\Choice@toks=\toks24
+\Field@toks=\toks25
+Package hyperref Info: Hyper figures OFF on input line 3102.
+Package hyperref Info: Link nesting OFF on input line 3107.
+Package hyperref Info: Hyper index ON on input line 3110.
+Package hyperref Info: backreferencing OFF on input line 3117.
+Package hyperref Info: Link coloring ON on input line 3120.
+\Hy@abspage=\count118
+\c@Item=\count119
+)
+*hyperref using driver hpdftex*
+(/usr/share/texmf-texlive/tex/latex/hyperref/hpdftex.def
+File: hpdftex.def 2007/02/07 v6.75r Hyperref driver for pdfTeX
+\Fld@listcount=\count120
+)
+\TmpLen=\skip62
+\DP@lign@no=\count121
+\DP@lignb@dy=\toks26
+(./36670-t.aux)
+\openout1 = `36670-t.aux'.
+
+LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+(/usr/share/texmf/tex/context/base/supp-pdf.tex
+[Loading MPS to PDF converter (version 2006.09.02).]
+\scratchcounter=\count122
+\scratchdimen=\dimen133
+\scratchbox=\box54
+\nofMPsegments=\count123
+\nofMParguments=\count124
+\everyMPshowfont=\toks27
+\MPscratchCnt=\count125
+\MPscratchDim=\dimen134
+\MPnumerator=\count126
+\everyMPtoPDFconversion=\toks28
+)
+-------------------- Geometry parameters
+paper: class default
+landscape: --
+twocolumn: --
+twoside: true
+asymmetric: --
+h-parts: 9.03374pt, 325.215pt, 9.03375pt
+v-parts: 4.15848pt, 495.49379pt, 6.23773pt
+hmarginratio: 1:1
+vmarginratio: 2:3
+lines: --
+heightrounded: --
+bindingoffset: 0.0pt
+truedimen: --
+includehead: true
+includefoot: true
+includemp: --
+driver: pdftex
+-------------------- Page layout dimensions and switches
+\paperwidth 343.28249pt
+\paperheight 505.89pt
+\textwidth 325.215pt
+\textheight 433.62pt
+\oddsidemargin -63.23625pt
+\evensidemargin -63.23624pt
+\topmargin -68.11151pt
+\headheight 12.0pt
+\headsep 19.8738pt
+\footskip 30.0pt
+\marginparwidth 98.0pt
+\marginparsep 7.0pt
+\columnsep 10.0pt
+\skip\footins 10.8pt plus 4.0pt minus 2.0pt
+\hoffset 0.0pt
+\voffset 0.0pt
+\mag 1000
+\@twosidetrue \@mparswitchtrue
+(1in=72.27pt, 1cm=28.45pt)
+-----------------------
+(/usr/share/texmf-texlive/tex/latex/graphics/color.sty
+Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC)
+(/etc/texmf/tex/latex/config/color.cfg
+File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
+)
+Package color Info: Driver file: pdftex.def on input line 130.
+)
+Package hyperref Info: Link coloring ON on input line 603.
+(/usr/share/texmf-texlive/tex/latex/hyperref/nameref.sty
+Package: nameref 2006/12/27 v2.28 Cross-referencing by name of section
+(/usr/share/texmf-texlive/tex/latex/oberdiek/refcount.sty
+Package: refcount 2006/02/20 v3.0 Data extraction from references (HO)
+)
+\c@section@level=\count127
+)
+LaTeX Info: Redefining \ref on input line 603.
+LaTeX Info: Redefining \pageref on input line 603.
+(./36670-t.out) (./36670-t.out)
+\@outlinefile=\write3
+\openout3 = `36670-t.out'.
+
+LaTeX Font Info: Try loading font information for U+msa on input line 632.
+(/usr/share/texmf-texlive/tex/latex/amsfonts/umsa.fd
+File: umsa.fd 2002/01/19 v2.2g AMS font definitions
+)
+LaTeX Font Info: Try loading font information for U+msb on input line 632.
+(/usr/share/texmf-texlive/tex/latex/amsfonts/umsb.fd
+File: umsb.fd 2002/01/19 v2.2g AMS font definitions
+) [1
+
+{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] [2
+
+] [1
+
+
+] [2] [3
+
+
+] [4] [5] (./36670-t.toc)
+\tf@toc=\write4
+\openout4 = `36670-t.toc'.
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 1--789
+
+ []
+
+[6
+
+] [1
+
+
+
+
+] [2] [3] [4] [5] [6] [7] [8] [9]
+Overfull \hbox (1.72365pt too wide) in paragraph at lines 1227--1230
+[]\OT1/cmr/m/it/12 If an ex-pres-sion within a paren-the-sis is pre-ceded by th
+e sign $\OT1/cmr/m/n/12 +$\OT1/cmr/m/it/12 ,
+ []
+
+[10]
+Overfull \hbox (1.91821pt too wide) in paragraph at lines 1272--1276
+[]\OT1/cmr/m/it/12 If an ex-pres-sion within a paren-the-sis is pre-ceded by th
+e sign $\OMS/cmsy/m/n/12 ^^@$\OT1/cmr/m/it/12 ,
+ []
+
+[11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24
+
+] [25]
+Underfull \hbox (badness 10000) in paragraph at lines 1954--1961
+
+ []
+
+[26]
+LaTeX Font Info: Try loading font information for OMS+cmr on input line 1964
+.
+(/usr/share/texmf-texlive/tex/latex/base/omscmr.fd
+File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
+)
+LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available
+(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 1964.
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 1966--1973
+
+ []
+
+[27]
+Overfull \hbox (2.96944pt too wide) in paragraph at lines 2013--2013
+[]
+ []
+
+[28]
+Underfull \hbox (badness 10000) in paragraph at lines 2054--2065
+
+ []
+
+
+Overfull \hbox (10.01392pt too wide) in paragraph at lines 2065--2065
+[]
+ []
+
+[29]
+Overfull \hbox (36.58296pt too wide) in paragraph at lines 2093--2093
+[]
+ []
+
+[30] [31]
+Overfull \hbox (11.34335pt too wide) in paragraph at lines 2206--2206
+[]
+ []
+
+[32]
+Overfull \hbox (11.61705pt too wide) in paragraph at lines 2241--2241
+[]
+ []
+
+[33] [34] [35] [36] [37] [38]
+Overfull \hbox (1.94836pt too wide) in paragraph at lines 2459--2462
+[][] \OT1/cmr/m/n/12 I have $$12\OML/cmm/m/it/12 :\OT1/cmr/m/n/12 75$ in two-do
+llar bills and twenty-five cent pieces,
+ []
+
+[39] [40] [41] <./images/fig1.pdf, id=408, 361.35pt x 26.0975pt>
+File: ./images/fig1.pdf Graphic file (type pdf)
+<use ./images/fig1.pdf> [42
+
+ <./images/fig1.pdf>] <./images/fig2.pdf, id=423, 439.6425pt x 24.09pt>
+File: ./images/fig2.pdf Graphic file (type pdf)
+<use ./images/fig2.pdf> [43 <./images/fig2.pdf>] [44] <./images/fig3.pdf, id=44
+1, 427.5975pt x 24.09pt>
+File: ./images/fig3.pdf Graphic file (type pdf)
+<use ./images/fig3.pdf> [45 <./images/fig3.pdf>] [46] [47] [48] [49] [50]
+Overfull \hbox (1.24844pt too wide) in paragraph at lines 2867--2871
+\OT1/cmr/m/it/12 mul-ti-pli-cand \OT1/cmr/m/n/12 and \OT1/cmr/m/it/12 mul-ti-pl
+ier\OT1/cmr/m/n/12 , a third num-ber called \OT1/cmr/m/it/12 prod-uct\OT1/cmr/m
+/n/12 , which
+ []
+
+
+Overfull \hbox (21.76723pt too wide) in paragraph at lines 2872--2894
+[]\OT1/cmr/bx/n/12 71. \OT1/cmr/m/n/12 Ac-cord-ing to this def-i-ni-tion of mul
+-ti-pli-ca-tion,
+ []
+
+[51] [52] [53] [54] [55] [56] [57] [58
+
+] [59] [60] [61] [62] [63] [64] [65] [66] [67
+
+] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82
+
+] [83]
+Overfull \hbox (42.68674pt too wide) in paragraph at lines 4261--4288
+\OT1/cmr/m/n/12 should be care-fully no-ticed and re-mem-bered.
+
+ []
+
+[84] [85] [86] [87] [88]
+Overfull \hbox (1.2826pt too wide) in paragraph at lines 4520--4521
+[][] $[]$\OT1/cmr/m/n/12 .
+ []
+
+[89]
+Overfull \hbox (1.08803pt too wide) in paragraph at lines 4576--4577
+[][] $[]$\OT1/cmr/m/n/12 .
+ []
+
+[90] [91] [92
+
+] [93] [94]
+Overfull \hbox (2.12788pt too wide) in paragraph at lines 4767--4768
+[]\OT1/cmr/bx/n/12 108. When a bi-no-mial is the dif-fer-ence of two squares.
+ []
+
+[95] [96] [97] [98]
+Underfull \hbox (badness 10000) in paragraph at lines 4959--4963
+
+ []
+
+[99] [100] [101] [102] [103] [104]
+Overfull \hbox (1.29138pt too wide) in paragraph at lines 5268--5270
+[]\OT1/cmr/m/n/10.95 Two num-bers whose prod-uct is $30$ are $1$ and $30$, $2$
+and $15$, $3$ and $10$,
+ []
+
+[105] [106] [107] [108] [109] [110
+
+] [111] [112] [113] [114] [115] [116] [117
+
+] [118] [119] [120] [121] [122] [123]
+Overfull \hbox (0.88312pt too wide) in paragraph at lines 6065--6066
+[][] $[]$\OT1/cmr/m/n/12 , $[]$.
+ []
+
+[124]
+Overfull \hbox (3.79523pt too wide) in paragraph at lines 6118--6118
+[]
+ []
+
+[125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135]
+Overfull \hbox (12.6967pt too wide) in paragraph at lines 6449--6449
+[]
+ []
+
+[136
+
+]
+Overfull \hbox (13.73837pt too wide) in paragraph at lines 6508--6508
+[]
+ []
+
+[137] [138] [139] [140]
+Overfull \hbox (127.43008pt too wide) in paragraph at lines 6644--6644
+[]
+ []
+
+[141]
+Overfull \hbox (82.71672pt too wide) in paragraph at lines 6685--6685
+[]
+ []
+
+[142] [143]
+Overfull \hbox (50.27081pt too wide) in paragraph at lines 6733--6733
+[]
+ []
+
+
+Overfull \hbox (2.05074pt too wide) in paragraph at lines 6749--6749
+[]
+ []
+
+[144] [145]
+Overfull \hbox (60.99086pt too wide) in paragraph at lines 6827--6827
+[]
+ []
+
+[146] [147]
+Overfull \hbox (41.2357pt too wide) in paragraph at lines 6885--6885
+[]
+ []
+
+[148]
+Overfull \hbox (33.08694pt too wide) in paragraph at lines 6936--6936
+[]
+ []
+
+[149] [150]
+Overfull \hbox (30.04593pt too wide) in paragraph at lines 6991--6991
+[]
+ []
+
+[151]
+Overfull \hbox (57.59785pt too wide) in paragraph at lines 7039--7039
+[]
+ []
+
+[152]
+Overfull \hbox (24.40863pt too wide) in paragraph at lines 7052--7052
+[]
+ []
+
+[153]
+Overfull \hbox (54.40073pt too wide) in paragraph at lines 7088--7088
+[]
+ []
+
+[154]
+Overfull \hbox (55.29538pt too wide) in paragraph at lines 7144--7144
+[]
+ []
+
+[155] [156]
+Overfull \hbox (25.74243pt too wide) in paragraph at lines 7237--7237
+[]
+ []
+
+[157]
+Overfull \hbox (22.96907pt too wide) in paragraph at lines 7265--7265
+[]
+ []
+
+[158] [159]
+Overfull \hbox (2.44133pt too wide) in paragraph at lines 7352--7354
+[][] \OT1/cmr/m/n/12 Find the prin-ci-pal that will pro-duce $$280$ in-ter-est
+in $2$ years
+ []
+
+[160] [161] [162
+
+] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172]
+Overfull \hbox (2.92752pt too wide) in paragraph at lines 7879--7882
+[][] \OT1/cmr/m/n/12 A sum of money, at sim-ple in-ter-est, amounted in $10$ mo
+nths
+ []
+
+[173] [174] [175
+
+]
+Overfull \hbox (37.3597pt too wide) in paragraph at lines 7986--7986
+[]
+ []
+
+
+Overfull \hbox (19.65984pt too wide) in paragraph at lines 8009--8009
+[]
+ []
+
+[176]
+Overfull \hbox (28.17653pt too wide) in paragraph at lines 8026--8026
+[]
+ []
+
+[177] [178]
+Overfull \hbox (101.83775pt too wide) in paragraph at lines 8136--8136
+[]
+ []
+
+[179]
+Overfull \hbox (75.6592pt too wide) in paragraph at lines 8158--8158
+[]
+ []
+
+
+Overfull \hbox (81.72191pt too wide) in paragraph at lines 8180--8180
+[]
+ []
+
+[180] [181] [182] [183]
+Overfull \hbox (14.36713pt too wide) in paragraph at lines 8349--8349
+[]
+ []
+
+
+Overfull \hbox (39.82089pt too wide) in paragraph at lines 8367--8367
+[]
+ []
+
+[184]
+Overfull \hbox (48.35448pt too wide) in paragraph at lines 8374--8374
+[]
+ []
+
+
+Overfull \hbox (14.62827pt too wide) in paragraph at lines 8395--8395
+[]
+ []
+
+[185] [186]
+Overfull \hbox (36.34747pt too wide) in paragraph at lines 8465--8465
+[]
+ []
+
+[187] [188] [189
+
+] [190]
+Overfull \hbox (41.95776pt too wide) in paragraph at lines 8610--8610
+[]
+ []
+
+[191] [192] [193] [194] [195] [196] [197
+
+]
+Overfull \hbox (5.98813pt too wide) in paragraph at lines 8846--8859
+[]\OT1/cmr/m/n/10.95 The 5th and 7th terms are $\OML/cmm/m/it/10.95 ar[]$ \OT1/
+cmr/m/n/10.95 and $\OML/cmm/m/it/10.95 ar[]$\OT1/cmr/m/n/10.95 , re-spec-tively
+.
+ []
+
+[198]
+Overfull \hbox (1.00482pt too wide) in paragraph at lines 8878--8880
+[]\OT1/cmr/m/n/12 Hence\OT1/cmr/m/it/12 , the ge-o-met-ri-cal mean of any two n
+um-bers is the square
+ []
+
+
+Overfull \hbox (84.25482pt too wide) in paragraph at lines 8894--8894
+[]
+ []
+
+[199]
+Overfull \hbox (35.57372pt too wide) in paragraph at lines 8921--8921
+[]
+ []
+
+
+Overfull \hbox (36.34883pt too wide) in paragraph at lines 8935--8935
+[]
+ []
+
+[200]
+Overfull \hbox (2.11494pt too wide) in paragraph at lines 8950--8952
+[][] \OT1/cmr/m/n/12 Find the com-mon ra-tio if the 1st and 3d terms are $2$ an
+d $32$.
+ []
+
+[201] [202] [203
+
+] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
+[217] [218] [219] [220]
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9785--9786
+[][]$\OT1/cmr/m/n/10 14$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9787--9788
+[][]$\OT1/cmr/m/n/10 10$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9789--9790
+[][]$\OT1/cmr/m/n/10 13$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9791--9792
+[][]$\OT1/cmr/m/n/10 11$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9793--9794
+[][]$\OT1/cmr/m/n/10 13$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9825--9826
+[][]$\OT1/cmr/m/n/10 10$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9830--9831
+[][]$\OT1/cmr/m/n/10 91$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9832--9833
+[][]$\OT1/cmr/m/n/10 21$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9834--9835
+[][]$\OT1/cmr/m/n/10 60$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9836--9837
+[][]$\OT1/cmr/m/n/10 24$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9838--9839
+[][]$\OT1/cmr/m/n/10 96$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9840--9841
+[][]$\OT1/cmr/m/n/10 16$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9842--9843
+[][]$\OT1/cmr/m/n/10 36$.
+ []
+
+[221
+
+
+] [222] [223] [224]
+Underfull \hbox (badness 10000) in paragraph at lines 10283--10284
+[][]\OT1/cmr/m/n/10 $$6$ quar-ters, $18$ ten-cent
+ []
+
+[225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [
+238]
+Underfull \hbox (badness 10000) in paragraph at lines 11388--11389
+[][]$\OT1/cmr/m/n/10 (1 + 10\OML/cmm/m/it/10 a\OT1/cmr/m/n/10 )(1 +
+ []
+
+[239] [240] [241] [242]
+Overfull \hbox (24.36917pt too wide) in paragraph at lines 11738--11739
+[][]$[]$\OT1/cmr/m/n/10 .
+ []
+
+[243] [244]
+Overfull \hbox (8.9993pt too wide) in paragraph at lines 11831--11832
+[][]$[]$\OT1/cmr/m/n/10 .
+ []
+
+[245] [246] [247]
+Underfull \hbox (badness 10000) in paragraph at lines 12079--12080
+[][]$\OT1/cmr/m/n/10 100$,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12083--12084
+[][]$\OT1/cmr/m/n/10 103$,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12085--12086
+[][]$\OT1/cmr/m/n/10 295$,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12100--12101
+[][]\OT1/cmr/m/n/10 Son,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12106--12107
+[][]\OT1/cmr/m/n/10 Son,
+ []
+
+
+Overfull \hbox (8.14185pt too wide) in paragraph at lines 12111--12112
+[][]$\OT1/cmr/m/n/10 1[]$ dy.
+ []
+
+
+Overfull \hbox (12.12798pt too wide) in paragraph at lines 12113--12114
+[][]$\OT1/cmr/m/n/10 1[]$ dy.
+ []
+
+
+Overfull \hbox (12.12798pt too wide) in paragraph at lines 12115--12116
+[][]$\OT1/cmr/m/n/10 1[]$ dy.
+ []
+
+
+Overfull \hbox (6.75574pt too wide) in paragraph at lines 12117--12118
+[][]$\OT1/cmr/m/n/10 15$ dy.
+ []
+
+
+Overfull \hbox (6.22795pt too wide) in paragraph at lines 12119--12120
+[][]$\OT1/cmr/m/n/10 12$ hr.
+ []
+
+
+Overfull \hbox (6.75574pt too wide) in paragraph at lines 12121--12122
+[][]$\OT1/cmr/m/n/10 10$ dy.
+ []
+
+
+Overfull \hbox (0.42635pt too wide) in paragraph at lines 12126--12127
+[][]$\OT1/cmr/m/n/10 7[]$ hr.
+ []
+
+
+Overfull \hbox (0.42635pt too wide) in paragraph at lines 12132--12133
+[][]$\OT1/cmr/m/n/10 1[]$ hr.
+ []
+
+
+Overfull \vbox (1.93811pt too high) has occurred while \output is active []
+
+
+Overfull \vbox (1.93811pt too high) has occurred while \output is active []
+
+[248]
+Underfull \hbox (badness 10000) in paragraph at lines 12188--12189
+[][]$\OT1/cmr/m/n/10 90[] 0[] 30[]$;
+ []
+
+[249]
+Underfull \hbox (badness 10000) in paragraph at lines 12320--12321
+[][]\OT1/cmr/m/n/10 $$6000$ at $4$%;
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12331--12332
+[][]\OT1/cmr/m/n/10 Wheat,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12333--12334
+[][]\OT1/cmr/m/n/10 A, $$235$;
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12337--12338
+[][]\OT1/cmr/m/n/10 Lemon,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12339--12340
+\OT1/cmr/m/n/10 ples; B,
+ []
+
+[250]
+Underfull \hbox (badness 10000) in paragraph at lines 12370--12371
+[][]\OT1/cmr/m/n/10 Width,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12370--12371
+\OT1/cmr/m/n/10 12$ rd.;
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12370--12371
+\OT1/cmr/m/n/10 length,
+ []
+
+[251] [252] [253] [1
+
+
+
+] [2] [3] [4] [5] [6] [7] [8] (./36670-t.aux)
+
+ *File List*
+ book.cls 2005/09/16 v1.4f Standard LaTeX document class
+ bk12.clo 2005/09/16 v1.4f Standard LaTeX file (size option)
+inputenc.sty 2006/05/05 v1.1b Input encoding file
+ latin1.def 2006/05/05 v1.1b Input encoding file
+ ifthen.sty 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)
+ amsmath.sty 2000/07/18 v2.13 AMS math features
+ amstext.sty 2000/06/29 v2.01
+ amsgen.sty 1999/11/30 v2.0
+ amsbsy.sty 1999/11/29 v1.2d
+ amsopn.sty 1999/12/14 v2.01 operator names
+ amssymb.sty 2002/01/22 v2.2d
+amsfonts.sty 2001/10/25 v2.2f
+ alltt.sty 1997/06/16 v2.0g defines alltt environment
+ array.sty 2005/08/23 v2.4b Tabular extension package (FMi)
+multicol.sty 2006/05/18 v1.6g multicolumn formatting (FMi)
+graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
+ keyval.sty 1999/03/16 v1.13 key=value parser (DPC)
+graphics.sty 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR)
+ trig.sty 1999/03/16 v1.09 sin cos tan (DPC)
+graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive
+ pdftex.def 2007/01/08 v0.04d Graphics/color for pdfTeX
+indentfirst.sty 1995/11/23 v1.03 Indent first paragraph (DPC)
+textcase.sty 2004/10/07 v0.07 Text only upper/lower case changing (DPC)
+ calc.sty 2005/08/06 v4.2 Infix arithmetic (KKT,FJ)
+fancyhdr.sty
+geometry.sty 2002/07/08 v3.2 Page Geometry
+geometry.cfg
+hyperref.sty 2007/02/07 v6.75r Hypertext links for LaTeX
+ pd1enc.def 2007/02/07 v6.75r Hyperref: PDFDocEncoding definition (HO)
+hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
+kvoptions.sty 2006/08/22 v2.4 Connects package keyval with LaTeX options (HO
+)
+ url.sty 2005/06/27 ver 3.2 Verb mode for urls, etc.
+ hpdftex.def 2007/02/07 v6.75r Hyperref driver for pdfTeX
+supp-pdf.tex
+ color.sty 2005/11/14 v1.0j Standard LaTeX Color (DPC)
+ color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
+ nameref.sty 2006/12/27 v2.28 Cross-referencing by name of section
+refcount.sty 2006/02/20 v3.0 Data extraction from references (HO)
+ 36670-t.out
+ 36670-t.out
+ umsa.fd 2002/01/19 v2.2g AMS font definitions
+ umsb.fd 2002/01/19 v2.2g AMS font definitions
+ omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
+./images/fig1.pdf
+./images/fig2.pdf
+./images/fig3.pdf
+ ***********
+
+ )
+Here is how much of TeX's memory you used:
+ 5458 strings out of 94074
+ 70648 string characters out of 1165154
+ 142333 words of memory out of 1500000
+ 7978 multiletter control sequences out of 10000+50000
+ 19082 words of font info for 72 fonts, out of 1200000 for 2000
+ 645 hyphenation exceptions out of 8191
+ 29i,18n,46p,258b,494s stack positions out of 5000i,500n,6000p,200000b,5000s
+</usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmbx10.pfb></usr/share/texmf
+-texlive/fonts/type1/bluesky/cm/cmbx12.pfb></usr/share/texmf-texlive/fonts/type
+1/bluesky/cm/cmcsc10.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmex1
+0.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmmi10.pfb></usr/share/t
+exmf-texlive/fonts/type1/bluesky/cm/cmmi12.pfb></usr/share/texmf-texlive/fonts/
+type1/bluesky/cm/cmmi8.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmr
+10.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmr12.pfb></usr/share/t
+exmf-texlive/fonts/type1/bluesky/cm/cmr17.pfb></usr/share/texmf-texlive/fonts/t
+ype1/bluesky/cm/cmr6.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmr7.
+pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmr8.pfb></usr/share/texmf
+-texlive/fonts/type1/bluesky/cm/cmsy10.pfb></usr/share/texmf-texlive/fonts/type
+1/bluesky/cm/cmsy7.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmsy8.p
+fb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmti10.pfb></usr/share/texm
+f-texlive/fonts/type1/bluesky/cm/cmti12.pfb></usr/share/texmf-texlive/fonts/typ
+e1/bluesky/cm/cmtt8.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/ams/msam1
+0.pfb>
+Output written on 36670-t.pdf (269 pages, 788109 bytes).
+PDF statistics:
+ 2045 PDF objects out of 2073 (max. 8388607)
+ 681 named destinations out of 1000 (max. 131072)
+ 224 words of extra memory for PDF output out of 10000 (max. 10000000)
+
diff --git a/36670-t/images/fig1.pdf b/36670-t/images/fig1.pdf
new file mode 100644
index 0000000..08f3c8c
--- /dev/null
+++ b/36670-t/images/fig1.pdf
Binary files differ
diff --git a/36670-t/images/fig2.pdf b/36670-t/images/fig2.pdf
new file mode 100644
index 0000000..3bc9532
--- /dev/null
+++ b/36670-t/images/fig2.pdf
Binary files differ
diff --git a/36670-t/images/fig3.pdf b/36670-t/images/fig3.pdf
new file mode 100644
index 0000000..dfad200
--- /dev/null
+++ b/36670-t/images/fig3.pdf
Binary files differ
diff --git a/36670-t/images/src/fig1.eepic b/36670-t/images/src/fig1.eepic
new file mode 100644
index 0000000..50e2f19
--- /dev/null
+++ b/36670-t/images/src/fig1.eepic
@@ -0,0 +1,40 @@
+%% Generated from fig1.xp on Thu Jul 7 12:53:38 EDT 2011 by
+%% ePiX-1.2.4
+%%
+%% Cartesian bounding box: [0,12] x [0,1]
+%% Actual size: 5 x 0.5in
+%% Figure offset: left by 0in, down by 0in
+%%
+%% usepackages tikz
+%%
+\xdefinecolor{rgb_000000}{rgb}{0,0,0}%
+\begin{tikzpicture}
+\pgfsetlinewidth{0.4pt}
+\useasboundingbox (0in,0in) rectangle (5in,0.5in);
+\pgfsetlinewidth{0.8pt}
+\draw (0.106878in,0in)--(2.5in,0in)--(4.89312in,0in);
+\draw (0.416667in,0in)--(2.5in,0in)--(4.58333in,0in);
+\pgftext[at={\pgfpoint{0.416667in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{0.833333in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{1.25in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{1.66667in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{2.08333in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{2.5in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{2.91667in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{3.33333in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{3.75in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{4.16667in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{4.58333in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{0.416667in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$1$}}}
+\pgftext[at={\pgfpoint{0.833333in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$2$}}}
+\pgftext[at={\pgfpoint{1.25in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$3$}}}
+\pgftext[at={\pgfpoint{1.66667in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$4$}}}
+\pgftext[at={\pgfpoint{2.08333in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$5$}}}
+\pgftext[at={\pgfpoint{2.5in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$6$}}}
+\pgftext[at={\pgfpoint{2.91667in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$7$}}}
+\pgftext[at={\pgfpoint{3.33333in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$8$}}}
+\pgftext[at={\pgfpoint{3.75in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$9$}}}
+\pgftext[at={\pgfpoint{4.16667in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$10$}}}
+\pgftext[at={\pgfpoint{4.58333in}{0.13837in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$11$}}}
+\pgftext[at={\pgfpoint{0in}{0in}}] {\makebox(0,0)[c]{\hbox{\color{rgb_000000}$0$}}}
+\end{tikzpicture}
diff --git a/36670-t/images/src/fig1.xp b/36670-t/images/src/fig1.xp
new file mode 100644
index 0000000..4833046
--- /dev/null
+++ b/36670-t/images/src/fig1.xp
@@ -0,0 +1,21 @@
+/* -*-ePiX-*- */
+#include "epix.h"
+using namespace ePiX;
+
+int main()
+{
+ picture(P(0,0), P(12,1), "5 x 0.5in");
+
+ begin();
+ bold();
+ axis Ax(P(1,0), P(11,0), 10, P(0,10), t);
+ Ax.align(t);
+
+ line(P(1,0), P(11,0), 20);
+ Ax.draw();
+
+ label(P(0,0), "$0$");
+
+ tikz_format();
+ end();
+}
diff --git a/36670-t/images/src/fig2.eepic b/36670-t/images/src/fig2.eepic
new file mode 100644
index 0000000..e5c0149
--- /dev/null
+++ b/36670-t/images/src/fig2.eepic
@@ -0,0 +1,37 @@
+%% Generated from fig2.xp on Thu Jul 7 13:03:55 EDT 2011 by
+%% ePiX-1.2.4
+%%
+%% Cartesian bounding box: [-4,4] x [0,1]
+%% Actual size: 5 x 0.5in
+%% Figure offset: left by 0in, down by 0in
+%%
+%% usepackages tikz
+%%
+\xdefinecolor{rgb_000000}{rgb}{0,0,0}%
+\begin{tikzpicture}
+\pgfsetlinewidth{0.4pt}
+\useasboundingbox (0in,0in) rectangle (5in,0.5in);
+\pgfsetlinewidth{0.8pt}
+\draw (-0.371746in,0in)--(2.5in,0in)--(5.37175in,0in);
+\draw (0in,0in)--(2.5in,0in)--(5in,0in);
+\pgftext[at={\pgfpoint{0in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{0.625in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{1.25in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{1.875in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{2.5in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{3.125in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{3.75in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{4.375in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{5in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{0.0507242in}{0.135264in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$-4$}}}
+\pgftext[at={\pgfpoint{0.675724in}{0.135264in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$-3$}}}
+\pgftext[at={\pgfpoint{1.30072in}{0.135264in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$-2$}}}
+\pgftext[at={\pgfpoint{1.92572in}{0.135264in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$-1$}}}
+\pgftext[at={\pgfpoint{2.55072in}{0.135264in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$\phantom{-}0$}}}
+\pgftext[at={\pgfpoint{3.17572in}{0.135264in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+1$}}}
+\pgftext[at={\pgfpoint{3.80072in}{0.135264in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+2$}}}
+\pgftext[at={\pgfpoint{4.42572in}{0.135264in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+3$}}}
+\pgftext[at={\pgfpoint{5.05072in}{0.135264in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+4$}}}
+\pgftext[at={\pgfpoint{-0.3125in}{0.193718in}}] {\makebox(0,0)[r]{\hbox{\color{rgb_000000}$\cdots$}}}
+\pgftext[at={\pgfpoint{5.3125in}{0.193718in}}] {\makebox(0,0)[l]{\hbox{\color{rgb_000000}$\cdots$}}}
+\end{tikzpicture}
diff --git a/36670-t/images/src/fig2.xp b/36670-t/images/src/fig2.xp
new file mode 100644
index 0000000..591e5d8
--- /dev/null
+++ b/36670-t/images/src/fig2.xp
@@ -0,0 +1,36 @@
+/* -*-ePiX-*- */
+#include "epix.h"
+using namespace ePiX;
+
+std::string f(double t, unsigned int prec, unsigned int base)
+{
+ std::ostringstream buf;
+ buf << "$";
+ if (t == 0)
+ buf << "\\phantom{-}";
+
+ else if(0 < t)
+ buf << "+";
+
+ buf << t << "$";
+ return buf.str();
+}
+
+int main()
+{
+ picture(P(-4,0), P(4,1), "5 x 0.5in");
+
+ begin();
+ bold();
+ axis Ax(P(xmin(),0), P(xmax(),0), xsize(), P(3,10), tl);
+ Ax.align(t);
+
+ line(P(xmin(),0), P(xmax(),0), 20);
+ Ax.label_rep(f).draw();
+
+ label(P(xmin() - 0.5,0), P(0, 14), "$\\cdots$", l);
+ label(P(xmax() + 0.5,0), P(0, 14), "$\\cdots$", r);
+
+ tikz_format();
+ end();
+}
diff --git a/36670-t/images/src/fig3.eepic b/36670-t/images/src/fig3.eepic
new file mode 100644
index 0000000..faf251d
--- /dev/null
+++ b/36670-t/images/src/fig3.eepic
@@ -0,0 +1,43 @@
+%% Generated from fig3.xp on Thu Jul 7 13:03:27 EDT 2011 by
+%% ePiX-1.2.4
+%%
+%% Cartesian bounding box: [-5,6] x [0,1]
+%% Actual size: 5 x 0.5in
+%% Figure offset: left by 0in, down by 0in
+%%
+%% usepackages tikz
+%%
+\xdefinecolor{rgb_000000}{rgb}{0,0,0}%
+\begin{tikzpicture}
+\pgfsetlinewidth{0.4pt}
+\useasboundingbox (0in,0in) rectangle (5in,0.5in);
+\pgfsetlinewidth{0.8pt}
+\draw (-0.371746in,0in)--(2.5in,0in)--(5.37175in,0in);
+\draw (0in,0in)--(2.5in,0in)--(5in,0in);
+\pgftext[at={\pgfpoint{0in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{0.454545in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{0.909091in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{1.36364in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{1.81818in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{2.27273in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{2.72727in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{3.18182in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{3.63636in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{4.09091in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{4.54545in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{5in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}$\rule{0.5pt}{6pt}$}}}
+\pgftext[at={\pgfpoint{0.0380106in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$-5$}}}
+\pgftext[at={\pgfpoint{0.492556in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$-4$}}}
+\pgftext[at={\pgfpoint{0.947102in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$-3$}}}
+\pgftext[at={\pgfpoint{1.40165in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$-2$}}}
+\pgftext[at={\pgfpoint{1.85619in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$-1$}}}
+\pgftext[at={\pgfpoint{2.31074in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$\phantom{-}0$}}}
+\pgftext[at={\pgfpoint{2.76528in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+1$}}}
+\pgftext[at={\pgfpoint{3.21983in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+2$}}}
+\pgftext[at={\pgfpoint{3.67437in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+3$}}}
+\pgftext[at={\pgfpoint{4.12892in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+4$}}}
+\pgftext[at={\pgfpoint{4.58347in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+5$}}}
+\pgftext[at={\pgfpoint{5.03801in}{0.139372in}}] {\makebox(0,0)[br]{\hbox{\color{rgb_000000}$+6$}}}
+\pgftext[at={\pgfpoint{-0.227273in}{0.193718in}}] {\makebox(0,0)[r]{\hbox{\color{rgb_000000}$\cdots$}}}
+\pgftext[at={\pgfpoint{5.22727in}{0.193718in}}] {\makebox(0,0)[l]{\hbox{\color{rgb_000000}$\cdots$}}}
+\end{tikzpicture}
diff --git a/36670-t/images/src/fig3.xp b/36670-t/images/src/fig3.xp
new file mode 100644
index 0000000..d6a7ced
--- /dev/null
+++ b/36670-t/images/src/fig3.xp
@@ -0,0 +1,36 @@
+/* -*-ePiX-*- */
+#include "epix.h"
+using namespace ePiX;
+
+std::string f(double t, unsigned int prec, unsigned int base)
+{
+ std::ostringstream buf;
+ buf << "$";
+ if (t == 0)
+ buf << "\\phantom{-}";
+
+ else if(0 < t)
+ buf << "+";
+
+ buf << t << "$";
+ return buf.str();
+}
+
+int main()
+{
+ picture(P(-5,0), P(6,1), "5 x 0.5in");
+
+ begin();
+ bold();
+ axis Ax(P(xmin(),0), P(xmax(),0), xsize(), P(3,10), tl);
+ Ax.align(t);
+
+ line(P(xmin(),0), P(xmax(),0), 20);
+ Ax.label_rep(f).draw();
+
+ label(P(xmin() - 0.5,0), P(0, 14), "$\\cdots$", l);
+ label(P(xmax() + 0.5,0), P(0, 14), "$\\cdots$", r);
+
+ tikz_format();
+ end();
+}
diff --git a/36670-t/old/36670-t.tex b/36670-t/old/36670-t.tex
new file mode 100644
index 0000000..667128f
--- /dev/null
+++ b/36670-t/old/36670-t.tex
@@ -0,0 +1,14160 @@
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+% %
+% The Project Gutenberg EBook of The First Steps in Algebra, by %
+% G. A. (George Albert) Wentworth %
+% %
+% This eBook is for the use of anyone anywhere at no cost and with %
+% almost no restrictions whatsoever. You may copy it, give it away or %
+% re-use it under the terms of the Project Gutenberg License included %
+% with this eBook or online at www.gutenberg.net %
+% %
+% %
+% Title: The First Steps in Algebra %
+% %
+% Author: G. A. (George Albert) Wentworth %
+% %
+% Release Date: July 9, 2011 [EBook #36670] %
+% %
+% Language: English %
+% %
+% Character set encoding: ISO-8859-1 %
+% %
+% *** START OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA ***%
+% %
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+
+\def\ebook{36670}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% %%
+%% Packages and substitutions: %%
+%% %%
+%% book: Required. %%
+%% inputenc: Standard DP encoding. Required. %%
+%% %%
+%% fix-cm: For larger title page fonts. Optional. %%
+%% ifthen: Logical conditionals. Required. %%
+%% %%
+%% amsmath: AMS mathematics enhancements. Required. %%
+%% amssymb: Additional mathematical symbols. Required. %%
+%% %%
+%% alltt: Fixed-width font environment. Required. %%
+%% array: Enhanced tabular features. Required. %%
+%% %%
+%% indentfirst: Indent first word of each sectional unit. Optional. %%
+%% textcase: Apply \MakeUppercase (et al.) only to text, not math. %%
+%% Required. %%
+%% %%
+%% calc: Length calculations. Required. %%
+%% soul: Spaced text. Optional. %%
+%% %%
+%% fancyhdr: Enhanced running headers and footers. Required. %%
+%% %%
+%% graphicx: Standard interface for graphics inclusion. Required. %%
+%% wrapfig: Illustrations surrounded by text. Required. %%
+%% %%
+%% geometry: Enhanced page layout package. Required. %%
+%% hyperref: Hypertext embellishments for pdf output. Required. %%
+%% %%
+%% %%
+%% Producer's Comments: %%
+%% %%
+%% Changes are noted in this file in two ways. %%
+%% 1. \DPtypo{}{} for typographical corrections, showing original %%
+%% and replacement text side-by-side. %%
+%% 2. [** TN: Note]s for lengthier or stylistic comments. %%
+%% %%
+%% Compilation Flags: %%
+%% %%
+%% The following behavior may be controlled by boolean flags. %%
+%% %%
+%% ForPrinting (false by default): %%
+%% Compile a screen-optimized PDF file. Set to true for print- %%
+%% optimized file (large text block, two-sided layout, black %%
+%% hyperlinks). %%
+%% %%
+%% Both print and screen layout are relatively loose, and contain %%
+%% hard-coded page breaks (\PrintBreak, \ScreenBreak, \newpage). %%
+%% %%
+%% %%
+%% PDF pages: 269 (if ForPrinting set to false) %%
+%% PDF page size: 4.75 x 7" (non-standard) %%
+%% PDF bookmarks: created, point to ToC entries %%
+%% PDF document info: filled in %%
+%% Images: 3 pdf diagrams %%
+%% %%
+%% Summary of log file: %%
+%% * Large numbers of visually-harmless over-full hboxes and vboxes %%
+%% from DPalign* and DPgather* environments. %%
+%% %%
+%% %%
+%% Compile History: %%
+%% %%
+%% July, 2011: adhere (Andrew D. Hwang) %%
+%% texlive2007, GNU/Linux %%
+%% %%
+%% Command block: %%
+%% %%
+%% pdflatex x2 %%
+%% %%
+%% %%
+%% July 2011: pglatex. %%
+%% Compile this project with: %%
+%% pdflatex 36670-t.tex ..... TWO times %%
+%% %%
+%% pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) %%
+%% %%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\listfiles
+\documentclass[12pt]{book}[2005/09/16]
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PACKAGES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\usepackage[latin1]{inputenc}[2006/05/05]
+
+\usepackage{ifthen}[2001/05/26] %% Logical conditionals
+
+\usepackage{amsmath}[2000/07/18] %% Displayed equations
+\usepackage{amssymb}[2002/01/22] %% and additional symbols
+
+\usepackage{alltt}[1997/06/16] %% boilerplate, credits, license
+
+\usepackage{array}[2005/08/23] %% extended array/tabular features
+
+\usepackage{multicol}
+
+\usepackage{graphicx}[1999/02/16]%% For diagrams
+
+\usepackage{indentfirst}[1995/11/23]
+\usepackage{textcase}[2004/10/07]
+
+\usepackage{calc}[2005/08/06]
+
+% for running heads
+\usepackage{fancyhdr}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%% Interlude: Set up PRINTING (default) or SCREEN VIEWING %%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% ForPrinting=true (default) false
+% Asymmetric margins Symmetric margins
+% Black hyperlinks Blue hyperlinks
+% Start Preface, ToC, etc. recto No blank verso pages
+%
+% Chapter-like ``Sections'' start both recto and verso in the scanned
+% book. This behavior has been retained.
+\newboolean{ForPrinting}
+
+%% UNCOMMENT the next line for a PRINT-OPTIMIZED VERSION of the text %%
+%\setboolean{ForPrinting}{true}
+
+%% Initialize values to ForPrinting=false
+\newcommand{\Margins}{hmarginratio=1:1} % Symmetric margins
+\newcommand{\HLinkColor}{blue} % Hyperlink color
+\newcommand{\PDFPageLayout}{SinglePage}
+\newcommand{\TransNote}{Transcriber's Note}
+\newcommand{\TransNoteCommon}{%
+ Minor typographical corrections and presentational changes have
+ been made without comment.
+ \bigskip
+}
+
+\newcommand{\TransNoteText}{%
+ \TransNoteCommon
+
+ This PDF file is optimized for screen viewing, but may easily be
+ recompiled for printing. Please see the preamble of the \LaTeX\
+ source file for instructions.
+}
+%% Re-set if ForPrinting=true
+\ifthenelse{\boolean{ForPrinting}}{%
+ \renewcommand{\Margins}{hmarginratio=2:3} % Asymmetric margins
+ \renewcommand{\HLinkColor}{black} % Hyperlink color
+ \renewcommand{\PDFPageLayout}{TwoPageRight}
+ \renewcommand{\TransNote}{Transcriber's Note}
+ \renewcommand{\TransNoteText}{%
+ \TransNoteCommon
+
+ This PDF file is optimized for printing, but may easily be
+ recompiled for screen viewing. Please see the preamble of the
+ \LaTeX\ source file for instructions.
+ }
+}{% If ForPrinting=false, don't skip to recto
+ \renewcommand{\cleardoublepage}{\clearpage}
+}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%% End of PRINTING/SCREEN VIEWING code; back to packages %%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\ifthenelse{\boolean{ForPrinting}}{%
+ \setlength{\paperwidth}{8.5in}%
+ \setlength{\paperheight}{11in}%
+ \usepackage[body={5in,8in},\Margins]{geometry}[2002/07/08]
+}{%
+ \setlength{\paperwidth}{4.75in}%
+ \setlength{\paperheight}{7in}%
+ \raggedbottom
+ \usepackage[body={4.5in,6in},\Margins,includeheadfoot]{geometry}[2002/07/08]
+}
+
+\providecommand{\ebook}{00000} % Overridden during white-washing
+\usepackage[pdftex,
+ hyperref,
+ hyperfootnotes=false,
+ pdftitle={The Project Gutenberg eBook \#\ebook: The First Steps in Algebra},
+ pdfauthor={George Albert Wentworth},
+ pdfkeywords={Peter Vachuska, Chuck Greif, Andrew D. Hwang
+ Project Gutenberg Online Distributed Proofreading Team},
+ pdfstartview=Fit, % default value
+ pdfstartpage=1, % default value
+ pdfpagemode=UseNone, % default value
+ bookmarks=true, % default value
+ linktocpage=false, % default value
+ pdfpagelayout=\PDFPageLayout,
+ pdfdisplaydoctitle,
+ pdfpagelabels=true,
+ bookmarksopen=true,
+ bookmarksopenlevel=1,
+ colorlinks=true,
+ linkcolor=\HLinkColor]{hyperref}[2007/02/07]
+
+%%%% Fixed-width environment to format PG boilerplate %%%%
+\newenvironment{PGtext}{%
+\begin{alltt}
+\fontsize{8.1}{9}\ttfamily\selectfont}%
+{\end{alltt}}
+
+%% No hrule in page header
+\renewcommand{\headrulewidth}{0pt}
+\setlength{\extrarowheight}{2pt}
+\setlength{\arraycolsep}{2pt}
+
+% Tighten up spacing surrounding multicols environments
+\setlength{\multicolsep}{8pt plus 4pt minus 8pt}
+\setlength{\parskip}{6pt plus 6pt minus 4pt}
+
+% Check for specified remaining height on current page
+\newcommand{\Require}[1][2\baselineskip]{%
+ \setlength{\TmpLen}{\pagegoal-\pagetotal}%
+ \ifthenelse{\lengthtest{0pt < \TmpLen}\and\lengthtest{\TmpLen < #1}}{%
+ \vfil\newpage%
+ }{}%
+}
+
+% Hard-coded page breaks for print- and screen-formatted versions
+\newcommand{\PrintBreak}{\ifthenelse{\boolean{ForPrinting}}{\newpage}{}}
+\newcommand{\ScreenBreak}{\ifthenelse{\not\boolean{ForPrinting}}{\newpage}{}}
+
+\newcommand{\PrintStretch}[1]{%
+ \ifthenelse{\boolean{ForPrinting}}{\enlargethispage{#1}}{}%
+}
+
+% Running heads
+\newcommand{\FlushRunningHeads}{\clearpage\fancyhf{}\cleardoublepage}
+
+\newcommand{\RHead}[1]{\footnotesize\MakeUppercase{#1}}
+\newcommand{\SetRunningHeads}[2][First Steps in Algebra.]{%
+ \pagestyle{fancy}
+ \fancyhf{}
+ \setlength{\headheight}{15pt}
+ \thispagestyle{plain}
+ \fancyhead[CE]{\RHead{#1}}
+ \fancyhead[CO]{\RHead{#2}}
+
+ \ifthenelse{\boolean{ForPrinting}}
+ {\fancyhead[RO,LE]{\thepage}}
+ {\fancyhead[R]{\thepage}}
+}
+
+\newcommand{\BookMark}[2]{\phantomsection\pdfbookmark[#1]{#2}{#2}}
+
+%\Chapter[ToC entry]{Number.}{Heading title}
+\newcommand{\Chapter}[3][]{%
+ \cleardoublepage
+ \phantomsection
+ \label{chap:#2}
+
+ \ifthenelse{\equal{#2}{I.}}{%
+ \begin{center}
+ \textbf{\Large FIRST STEPS IN ALGEBRA.}
+
+ \tb
+ \end{center}
+ }{}%
+ \section*{\normalfont\centering\large CHAPTER #2}
+ \subsection*{\normalfont\centering\small \MakeUppercase{#3}}
+ \SetRunningHeads{#3}%
+ \ifthenelse{\equal{#1}{}}{%
+ \addtocontents{toc}{\protect\ToCLine{#2}{#3}}%
+ \BookMark{0}{Chapter #2 #3}
+ }{%
+ \addtocontents{toc}{\protect\ToCLine{#2}{#1}}%
+ \BookMark{0}{Chapter #2 #1}
+ }
+}
+
+\newcommand{\Section}[1]{\subsection*{\centering\normalfont\small\scshape #1}}
+
+% Numbered units
+\newcommand{\Paragraph}[1]{\medskip\par\textbf{#1}}
+
+\newcommand{\Exercise}[2][]{%
+ \Require[3\baselineskip]
+ \subsection*{\centering\small Exercise #2}
+ \ifthenelse{\not\equal{#1}{}}{%
+ \subsubsection*{\centering\normalfont\small\scshape #1}
+ }{}
+ \phantomsection\label{exer:#2}%
+}
+
+\newcommand{\Preface}{%
+ \FlushRunningHeads
+ \pagestyle{fancy}
+ \section*{\centering\Large PREFACE.}
+ \SetRunningHeads[Preface.]{Preface.}
+ \BookMark{0}{Preface.}
+}
+
+\newcommand{\Signature}[2]{%
+ \medskip%
+ \null\hfill#1 \\
+ \hspace*{\parindent}#2%
+}
+
+% N.B. Re-defines the \Item command
+\newcommand{\Answers}{
+ \FlushRunningHeads
+ \pagestyle{fancy}
+ \phantomsection
+ \label{answers}
+ \section*{\centering\Large ANSWERS.}
+ \SetRunningHeads[Answers.]{Answers.}
+ \addtocontents{toc}{\protect\ToCLine{}{Answers.}}%
+ \BookMark{0}{Answers.}
+ \ifthenelse{\not\boolean{ForPrinting}}{\footnotesize}{\small}%
+
+ \renewcommand{\Item}[1]{
+ \vspace{4pt plus 16pt}\makebox[1em][r]{\textbf{##1}\ }\hangindent 2.5em%
+ }
+}
+
+% For internal use to keep track of current number of columns
+\newcommand{\CurrCols}{1}
+
+\newcommand{\ResetCols}[1][1]{%
+ \ifthenelse{\not\equal{\CurrCols}{1}}{%
+ \end{multicols}
+ }{}
+ \renewcommand{\CurrCols}{#1}
+ \ifthenelse{\not\equal{#1}{1}}{%
+ \begin{multicols}{#1}%
+ }{}
+}
+
+% For internal use
+\newcommand{\AnsSectHead}[2]{
+ \subsection*{%
+ \centering\small #1 #2 \hyperref[exer:#2]{Page \pageref{exer:#2}}
+ }
+}
+
+% \AnsTo[cols]{Exercise}{42.}
+\newcommand{\AnsTo}[3][3]{%
+ \ifthenelse{\not\equal{#3}{1.}}{% Not first group
+ \ifthenelse{\not\equal{\CurrCols}{1}}{%
+ \end{multicols}
+ }
+ }{}
+
+ \renewcommand{\CurrCols}{#1}%
+ \ifthenelse{\not\equal{#1}{1}}{%
+ \begin{multicols}{#1}[\AnsSectHead{#2}{#3}]
+ }{%
+ \AnsSectHead{#2}{#3}
+ }
+ }
+
+% Semantic boldface
+\newcommand{\Defn}[1]{\textbf{#1}}
+\newcommand{\Dictum}[1]{\Require\textbf{#1}}
+
+% Semantic small type
+\newenvironment{Remark}[1][]{\par\small\textsc{#1}}{\par}
+\newenvironment{Soln}[1][]{\par\small\textsc{#1}}{\par}
+
+% Semantic italics
+\newenvironment{Theorem}[1][]{%
+ \ifthenelse{\not\equal{#1}{nopar}}{\smallskip\par#1}{}%
+ \itshape}{\medskip\upshape\par}
+
+
+\newcommand{\Graphic}[1]{%
+\begin{center}
+ \includegraphics[width=\textwidth]{./images/fig#1.pdf}%
+\end{center}
+}
+
+\newcommand{\Item}[1]{\vspace{4pt plus 16pt}\makebox[1em][r]{\textbf{#1}\ }}
+\newcommand{\Ax}[1]{\vspace{4pt plus 16pt}\makebox[3.5em][l]{Ax.\ #1}\ignorespaces}
+\newcommand{\Ans}[1]{%
+ \hfil\allowbreak\null\nobreak\hfill\nobreak\mbox{#1 \textit{Ans.}}%
+}
+% Trailing words in displays
+\newcommand{\EqText}[1]{\rlap{\quad\text{#1}}}
+
+\newcommand{\First}[1]{\textsc{#1}}
+
+% For corrections.
+\newcommand{\DPtypo}[2]{#2}
+\newcommand{\Add}[1]{\DPtypo{}{#1}}
+
+% \PadTo[#1]{#2}{#3} sets #3 in a box of width #2, aligned at #1 (default [r])
+% e.g., \PadTo{3x^{2} - 5x}{x}
+\newlength{\TmpLen}
+\newcommand{\PadTo}[3][r]{%
+ \settowidth{\TmpLen}{$#2$}%
+ \makebox[\TmpLen][#1]{$#3$}%
+}
+
+% Decorative rule
+\newcommand{\tb}[1][0.75in]{%
+ \rule{#1}{0.5pt}\\
+ \medskip
+}
+
+% Common abbreviations
+\newcommand{\HCF}{H.\,C.\,F.}
+\newcommand{\LCM}{L.\,C.\,M.}
+\newcommand{\LCD}{L.\,C.\,D.}
+
+% For rectangular arrays illustrating multiplication
+\newcommand{\DOT}{\bullet}
+\newcommand{\NOT}{\bullet\llap{$/$}}
+
+% Miscellaneous alignment conveniences
+\newcommand{\Z}{\phantom{0}}
+\newcommand{\Neg}{\phantom{-}}
+
+% In-line "vertical sum" and vinculum
+\newcommand{\VSum}[2]{\begin{array}{r}#1\\[-4pt]+#2\end{array}\Big|}
+\newcommand{\Vinc}[1]{\overline{#1\strut}}
+
+% Table entries providing their own vertical bar (or not)
+\newcommand{\NoBar}[1]{\multicolumn{1}{@{}r}{#1}}
+\newcommand{\TbBar}[1]{\multicolumn{1}{@{}r|}{#1}}
+
+% Big brace, for table on 168.png
+\newcommand{\threelines}{\rule[-18pt]{0pt}{36pt}}
+\newcommand{\BB}{\makebox[2pt][r]{\smash{$\left.\threelines\right\}$}}}
+
+\DeclareInputText{176}{\ifmmode{{}^\circ}\else\textdegree\fi}
+\DeclareInputText{183}{\ifmmode\cdot\else\textperiodcentered\fi}
+
+% ToC formatting
+\AtBeginDocument{\renewcommand{\contentsname}%
+ {\protect\centering\protect\Large CONTENTS.}}
+
+\newcommand{\TableofContents}{%
+ \tableofcontents
+ \SetRunningHeads{Contents.}
+ \BookMark{0}{Contents.}
+}
+
+% Project-dependent logic
+\newcommand{\ToCLine}[2]{%
+ \settowidth{\TmpLen}{\textsc{\footnotesize Chapter99}}%
+ \ifthenelse{\equal{#1}{I.}}{%
+ \noindent\textsc{\footnotesize Chapter\hfill Page}\\
+ }{}%
+ \ifthenelse{\not\equal{#1}{}}{%
+ \noindent\parbox[b]{\textwidth}{\strut\raggedright\hangindent\TmpLen%
+ \makebox[\TmpLen][r]{#1\quad}\textsc{#2}\dotfill\pageref{chap:#1}%
+ }%
+ }{%
+ \noindent\parbox[b]{\textwidth}{\strut\raggedright\hangindent\TmpLen%
+ \makebox[\TmpLen][r]{#1\quad}\textsc{#2}\dotfill\pageref{answers}%
+ }%
+ }
+}
+
+%% Major document divisions %%
+\newcommand{\PGBoilerPlate}{%
+ \pagenumbering{Alph}
+ \pagestyle{empty}
+ \BookMark{0}{PG Boilerplate.}
+}
+\newcommand{\FrontMatter}{%
+ \cleardoublepage % pagestyle still empty; \Preface calls \pagestyle{fancy}
+ \frontmatter
+ \BookMark{-1}{Front Matter.}
+}
+
+\newcommand{\MainMatter}{%
+ \FlushRunningHeads
+ \mainmatter
+ \BookMark{-1}{Main Matter.}
+}
+
+\newcommand{\BackMatter}{%
+ \FlushRunningHeads
+ \pagenumbering{Roman}
+ \backmatter
+ \BookMark{-1}{Back Matter.}
+ \BookMark{0}{PG License.}
+ \SetRunningHeads[License.]{License.}
+}
+
+\newcommand{\Tag}[1]{\tag*{#1}}
+
+% DPalign, DPgather
+\makeatletter
+\providecommand\shortintertext\intertext
+\newcount\DP@lign@no
+\newtoks\DP@lignb@dy
+\newif\ifDP@cr
+\newif\ifbr@ce
+\def\f@@zl@bar{\null}
+\def\addto@DPbody#1{\global\DP@lignb@dy\@xp{\the\DP@lignb@dy#1}}
+\def\parseb@dy#1{\ifx\f@@zl@bar#1\f@@zl@bar
+ \addto@DPbody{{}}\let\@next\parseb@dy
+ \else\ifx\end#1
+ \let\@next\process@DPb@dy
+ \ifDP@cr\else\addto@DPbody{\DPh@@kr&\DP@rint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&}\fi
+ \addto@DPbody{\end}
+ \else\ifx\intertext#1
+ \def\@next{\eat@command0}%
+ \else\ifx\shortintertext#1
+ \def\@next{\eat@command1}%
+ \else\ifDP@cr\addto@DPbody{&\DP@lint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&\DPh@@kl}
+ \DP@crfalse\fi
+ \ifx\begin#1\def\begin@stack{b}
+ \let\@next\eat@environment
+ \else\ifx\lintertext#1
+ \let\@next\linter@text
+ \else\ifx\rintertext#1
+ \let\@next\rinter@text
+ \else\ifx\\#1
+ \addto@DPbody{\DPh@@kr&\DP@rint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&\\}\DP@crtrue
+ \global\advance\DP@lign@no\@ne
+ \let\@next\parse@cr
+ \else\check@braces#1!Q!Q!Q!\ifbr@ce\addto@DPbody{{#1}}\else
+ \addto@DPbody{#1}\fi
+ \let\@next\parseb@dy
+ \fi\fi\fi\fi\fi\fi\fi\fi\@next}
+\def\process@DPb@dy{\let\lintertext\@gobble\let\rintertext\@gobble
+ \@xp\start@align\@xp\tw@\@xp\st@rredtrue\@xp\m@ne\the\DP@lignb@dy}
+\def\linter@text#1{\@xp\DPlint\@xp{\the\DP@lign@no}{#1}\parseb@dy}
+\def\rinter@text#1{\@xp\DPrint\@xp{\the\DP@lign@no}{#1}\parseb@dy}
+\def\DPlint#1#2{\@xp\def\csname DP@lint:#1\endcsname{\text{#2}}}
+\def\DPrint#1#2{\@xp\def\csname DP@rint:#1\endcsname{\text{#2}}}
+\def\DP@lint#1{\ifbalancedlrint\@xp\ifx\csname
+DP@lint:#1\endcsname\relax\phantom
+ {\csname DP@rint:#1\endcsname}\else\csname DP@lint:#1\endcsname\fi
+ \else\csname DP@lint:#1\endcsname\fi}
+\def\DP@rint#1{\ifbalancedlrint\@xp\ifx\csname
+DP@rint:#1\endcsname\relax\phantom
+ {\csname DP@lint:#1\endcsname}\else\csname DP@rint:#1\endcsname\fi
+ \else\csname DP@rint:#1\endcsname\fi}
+\def\eat@command#1#2{\ifcase#1\addto@DPbody{\intertext{#2}}\or
+ \addto@DPbody{\shortintertext{#2}}\fi\DP@crtrue
+ \global\advance\DP@lign@no\@ne\parseb@dy}
+\def\parse@cr{\new@ifnextchar*{\parse@crst}{\parse@crst{}}}
+\def\parse@crst#1{\addto@DPbody{#1}\new@ifnextchar[{\parse@crb}{\parseb@dy}}
+\def\parse@crb[#1]{\addto@DPbody{[#1]}\parseb@dy}
+\def\check@braces#1#2!Q!Q!Q!{\def\dp@lignt@stm@cro{#2}\ifx
+ \empty\dp@lignt@stm@cro\br@cefalse\else\br@cetrue\fi}
+\def\eat@environment#1{\addto@DPbody{\begin{#1}}\begingroup
+ \def\@currenvir{#1}\let\@next\digest@env\@next}
+\def\digest@env#1\end#2{%
+ \edef\begin@stack{\push@begins#1\begin\end \@xp\@gobble\begin@stack}%
+ \ifx\@empty\begin@stack
+ \@checkend{#2}
+ \endgroup\let\@next\parseb@dy\fi
+ \addto@DPbody{#1\end{#2}}
+ \@next}
+\def\lintertext{lint}\def\rintertext{rint}
+\newif\ifbalancedlrint
+\let\DPh@@kl\empty\let\DPh@@kr\empty
+\def\DPg@therl{&\omit\hfil$\displaystyle}
+\def\DPg@therr{$\hfil}
+
+\newenvironment{DPalign*}[1][a]{%
+ \setlength{\abovedisplayskip}{8pt plus 4pt minus 6pt}
+ \setlength{\belowdisplayskip}{8pt plus 4pt minus 6pt}
+ \if m#1\balancedlrintfalse\else\balancedlrinttrue\fi
+ \global\DP@lign@no\z@\DP@crfalse
+ \DP@lignb@dy{&\DP@lint0&}\parseb@dy
+}{%
+ \endalign
+}
+\newenvironment{DPgather*}[1][a]{%
+ \setlength{\abovedisplayskip}{8pt plus 4pt minus 6pt}
+ \setlength{\belowdisplayskip}{8pt plus 4pt minus 6pt}
+ \if m#1\balancedlrintfalse\else\balancedlrinttrue\fi
+ \global\DP@lign@no\z@\DP@crfalse
+ \let\DPh@@kl\DPg@therl
+ \let\DPh@@kr\DPg@therr
+ \DP@lignb@dy{&\DP@lint0&\DPh@@kl}\parseb@dy
+}{%
+ \endalign
+}
+\makeatother
+%%%%%%%%%%%%%%%%%%%%%%%% START OF DOCUMENT %%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\begin{document}
+%%%% PG BOILERPLATE %%%%
+\PGBoilerPlate
+
+\begin{center}
+\begin{minipage}{\textwidth}
+\small
+\begin{PGtext}
+The Project Gutenberg EBook of The First Steps in Algebra, by
+G. A. (George Albert) Wentworth
+
+This eBook is for the use of anyone anywhere at no cost and with
+almost no restrictions whatsoever. You may copy it, give it away or
+re-use it under the terms of the Project Gutenberg License included
+with this eBook or online at www.gutenberg.net
+
+
+Title: The First Steps in Algebra
+
+Author: G. A. (George Albert) Wentworth
+
+Release Date: July 9, 2011 [EBook #36670]
+
+Language: English
+
+Character set encoding: ISO-8859-1
+
+*** START OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA ***
+\end{PGtext}
+\end{minipage}
+\end{center}
+\clearpage
+%%%% Credits and transcriber's note %%%%
+\begin{center}
+\begin{minipage}{\textwidth}
+\begin{PGtext}
+Produced by Andrew D. Hwang, Peter Vachuska, Chuck Greif
+and the Online Distributed Proofreading Team at
+http://www.pgdp.net.
+\end{PGtext}
+\end{minipage}
+\end{center}
+\vfill
+
+\begin{minipage}{0.85\textwidth}
+\small
+\BookMark{0}{Transcriber's Note}
+\subsection*{\centering\normalfont\scshape
+\normalsize\MakeLowercase{\TransNote}}
+
+\raggedright
+\TransNoteText
+\end{minipage}
+%%%%%%%%%%%%%%%%%%%%%%%%%%% FRONT MATTER %%%%%%%%%%%%%%%%%%%%%%%%%%
+\FrontMatter
+%% -----File: 001.png---Folio i-------
+\begin{center}
+\Large THE
+\vfill
+
+\textbf{\LARGE FIRST STEPS IN ALGEBRA.}
+\vfill
+
+\normalsize BY \\[12pt]
+\Large G. A. WENTWORTH, A.M. \\[12pt]
+\footnotesize AUTHOR OF A SERIES OF TEXT-BOOKS IN MATHEMATICS.
+\vfill\vfill
+
+\large BOSTON, U.S.A.: \\
+PUBLISHED BY GINN \& COMPANY. \\
+1904.
+\end{center}
+%% -----File: 002.png---Folio ii-------
+\newpage
+\null\vfill
+\begin{center}
+\footnotesize
+Entered according to Act of Congress, in the year 1894, by \\[4pt]
+G. A. WENTWORTH, \\[4pt]
+in the Office of the Librarian of Congress, at Washington. \\[4pt]
+\tb
+\textsc{All Rights Reserved.}
+\vfill
+
+\textsc{Typography by J. S. Cushing \& Co., Boston, U.S.A.} \\
+\tb[2.5in]
+\textsc{Presswork by Ginn \& Co., Boston, U.S.A.}
+\end{center}
+%% -----File: 003.png---Folio iii-------
+
+
+\Preface
+
+\First{This} book is written for pupils in the upper grades of
+grammar schools and the lower grades of high schools.
+The introduction of the simple elements of Algebra into
+these grades will, it is thought, so stimulate the mental
+activity of the pupils, that they will make considerable
+progress in Algebra without detriment to their progress
+in Arithmetic, even if no more time is allowed for the
+two studies than is usually given to Arithmetic alone.
+
+The great danger in preparing an Algebra for very
+young pupils is that the author, in endeavoring to smooth
+the path of the learner, will sacrifice much of the educational
+value of the study. To avoid this real and serious
+danger, and at the same time to gain the required simplicity,
+great care has been given to the explanations of
+the fundamental operations and rules, the arrangement
+of topics, the model solutions of examples, and the making
+of easy examples for the pupils to solve.
+
+Nearly all the examples throughout the book are new,
+and made expressly for beginners.
+
+The first chapter clears the way for quite a full treatment
+of simple integral equations with one unknown number.
+In the first two chapters only \emph{positive} numbers are
+%% -----File: 004.png---Folio iv-------
+involved, and the learner is led to see the practical advantages
+of Algebra in its most interesting applications before
+he faces the difficulties of negative numbers.
+
+The third chapter contains a simple explanation of negative
+numbers. The recognition of the facts that the real
+nature of subtraction is counting backwards, and that the
+real nature of multiplication is forming the product from
+the multiplicand precisely as the multiplier is formed from
+unity, makes an easy road to the laws of addition and subtraction
+of algebraic numbers, and to the law of signs in
+multiplication and division. All the principles and rules
+of this chapter are illustrated and enforced by numerous
+examples involving \emph{simple} algebraic expressions only.
+
+The ordinary processes with \emph{compound} expressions, including
+simple cases of resolution into factors, and the
+treatment of fractions, naturally follow the third chapter.
+The immediate succession of topics that require similar
+work is of the highest importance to the beginner, and it
+is hoped that the half-dozen chapters on algebraic expressions
+will prove interesting, and give sufficient readiness
+in the use of symbols.
+
+A chapter on fractional equations with one unknown
+number, a chapter on simultaneous equations with two
+unknown numbers, and a chapter on quadratics follow in
+order. Only one method of elimination is given in simultaneous
+equations and one method of completing the
+square in quadratics. Moreover, the solution of the examples
+in quadratics requires the square roots of only small
+numbers such as every pupil knows who has learned the
+%% -----File: 005.png---Folio v-------
+multiplication table. In each of these three chapters a
+considerable number of problems is given to \emph{state} and solve.
+By this means the learner is led to exercise his reasoning
+faculty, and to realize that the methods of Algebra require
+a strictly logical process. These problems, however, are
+divided into classes, and a model solution of an example
+of each class is given as a guide to the solution of other
+examples of that class.
+
+The course may end with the chapter on quadratics, but
+the simple questions of arithmetical progression and of
+geometrical progression are so interesting in themselves,
+and show so clearly the power of Algebra, that it will
+be a great loss not to take the short chapters on these
+series.
+
+The last chapter is on square and cube roots. It is
+expected that pupils who use this book will learn how to
+extract the square and cube roots by the simple formulas
+of Algebra, and be spared the necessity of committing to
+memory the long and tedious rules given in Arithmetic,
+rules that are generally forgotten in less time than they
+are learned.
+
+Any corrections or suggestions will be thankfully received
+by the author.
+
+A teachers' edition is in press, containing solutions of
+examples, and such suggestions as experience with beginners
+has shown to be valuable.
+
+\Signature{G\Add{.} A. WENTWORTH.}
+{\textsc{Exeter}, NH, April, 1894}
+%% -----File: 006.png---Folio vi-------
+\TableofContents
+\iffalse
+CONTENTS.
+
+Chapter Page
+
+I. Introduction.............. 1
+
+II. Simple Equations............. 19
+
+III. Positive and Negative Numbers....... 33
+
+IV. Addition and Subtraction......... 46
+
+V. Multiplication and Division........ 53
+
+VI. Special Rules in Multiplication and Division . 64
+
+VII. Factors............... 71
+
+VIII. Common Factors and Multiples....... 84
+
+IX. Fractions................ 89
+
+X. Fractional Equations........... 103
+
+XI. Simultaneous Equations of the First Degree . 122
+
+XII. Quadratic Equations........... 132
+
+XIII. Arithmetical Progression......... 142
+
+XIV. Geometrical Progression.......... 148
+
+XV. Square and Cube Roots.......... 152
+
+ Answers................ 165
+\fi
+%% -----File: 007.png---Folio 1-------
+\MainMatter
+% FIRST STEPS IN ALGEBRA.
+% [** TN: Chapter macro prints preceding line]
+
+\Chapter{I.}{Introduction.}
+
+\begin{Remark}[\First{Note}\Add{.}]
+The principal definitions are put at the beginning of the
+book for convenient reference. They are not to be committed to
+memory. It is a good plan to have definitions and explanations
+read aloud in the class, and to encourage pupils to make comments
+upon them, and ask questions about them.
+\end{Remark}
+
+\Paragraph{1. Algebra.} Algebra, like Arithmetic, treats of numbers.
+
+\Paragraph{2. Units.} In counting separate objects or in measuring
+magnitudes, the \emph{standards} by which we count or measure
+are called \Defn{units}.
+
+\begin{Remark}
+Thus, in counting the boys in a school, the unit is a boy; in selling
+eggs by the dozen, the unit is a dozen eggs; in selling bricks by
+the thousand, the unit is a thousand bricks; in measuring short distances,
+the unit is an inch, a foot, or a yard; in measuring long
+distances, the unit is a rod or a mile.
+\end{Remark}
+
+\Paragraph{3. Numbers.} \emph{Repetitions of the unit} are expressed by
+numbers.
+
+\Paragraph{4. Quantities.} A number of specified units of any kind
+is called a quantity; as, $4$~pounds, $5$~oranges.
+
+\Paragraph{5. Number-Symbols in Arithmetic.} Arithmetic employs
+the arbitrary symbols, $1$,~$2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$,~$0$, called
+\Defn{figures}, to represent numbers.
+%% -----File: 008.png---Folio 2-------
+
+\Paragraph{6. Number-Symbols in Algebra.} Algebra employs \emph{the
+letters of the alphabet} in addition to the figures of Arithmetic
+to represent numbers. Letters are used as \emph{general}
+symbols of numbers to which \emph{any particular values} may be
+assigned.
+
+
+\Section{PRINCIPAL SIGNS OF OPERATIONS.}
+
+\Paragraph{7.} The signs of the fundamental operations are the same
+in Algebra as in Arithmetic.
+
+\Paragraph{8. The Sign of Addition,~$+$.} The sign~$+$ is read \emph{plus}.
+
+\begin{Remark}
+Thus, $4 + 3$, read $4$~plus~$3$, indicates that the number~$3$ is to be
+added to the number~$4$, $a + b$, read $a$~plus~$b$, indicates that the number~$b$
+is to be added to the number~$a$.
+\end{Remark}
+
+\Paragraph{9. The Sign of Subtraction,~$-$\Add{.}} The sign~$-$ is read \emph{minus}.
+
+\begin{Remark}
+Thus, $4 - 3$, read $4$~minus~$3$, indicates that the number~$3$ is to be
+subtracted from the number~$4$, $a - b$, read $a$~minus~$b$, indicates that
+the number~$b$ is to be subtracted from the number~$a$.
+\end{Remark}
+
+\Paragraph{10. The Sign of Multiplication,~$×$\Add{.}} The sign~$×$ is read
+\emph{times}.
+
+\begin{Remark}
+Thus, $4 × 3$, read $4$~times~$3$, indicates that the number~$3$ is to be
+multiplied by~$4$, $a × b$, read $a$~times~$b$, indicates that the number~$b$
+is to be multiplied by the number~$a$.
+\end{Remark}
+
+A dot is sometimes used for the sign of multiplication.
+Thus $2 · 3 · 4 · 5$ means the same as $2 × 3 × 4 × 5$. Either
+sign is read \emph{multiplied by} when followed by the multiplier.
+\$$a × b$, or \$$a · b$, is read $a$~dollars multiplied by~$b$.
+
+\Paragraph{11. The Sign of Division,~$÷$.} The sign~$÷$ is read \emph{divided by}.
+
+\begin{Remark}
+Thus, $4 ÷ 2$, read $4$~divided by~$2$, indicates that the number~$4$ is
+to be divided by~$2$, $a ÷ b$, read $a$~divided by~$b$, indicates that the
+number~$a$ is to be divided by the number~$b$.
+\end{Remark}
+%% -----File: 009.png---Folio 3-------
+
+Division is also indicated by writing the dividend above
+the divisor with a horizontal line between them.
+
+\begin{Remark}
+Thus, $\dfrac{4}{2}$ means the same as~$4 ÷ 2$; $\dfrac{a}{b}$~means the same as~$a ÷ b$.
+\end{Remark}
+
+
+\Section{OTHER SIGNS USED IN ALGEBRA.}
+
+\Paragraph{12. The Sign of Equality,~$=$.} The sign~$=$ is read \emph{is equal
+to}, when placed between two numbers and indicates that
+these two numbers are equal.
+
+\begin{Remark}
+Thus, $8 + 4 = 12$ means that $8 + 4$ and~$12$ stand for \emph{equal} numbers;
+$x + y = 20$ means that $x + y$ and~$20$ stand for equal numbers.
+\end{Remark}
+
+\Paragraph{13. The Sign of Inequality, $>$~or~$<$.} The sign $>$~or~$<$ is
+read \emph{is greater than} and \emph{is less than} respectively, and when
+placed between two numbers indicates that these two numbers
+are unequal, and that the number toward which the
+sign opens is the greater.
+
+\begin{Remark}
+Thus, $9 + 6 > 12$ means that $9 + 6$ is greater than~$12$; and
+$9 + 6 < 16$ means that $9 + 6$ is less than~$16$.
+\end{Remark}
+
+%[** TN: [sic] no punctuation after \therefore]
+\Paragraph{14. The Sign of Deduction,~$\therefore$}\quad The sign~$\therefore$ is read \emph{hence}
+or \emph{therefore}.
+
+\Paragraph{15. The Sign of Continuation,~$\dots$.} The sign~$\dots$ is read
+\emph{and so on}.
+
+\Paragraph{16. The Signs of Aggregation.} The signs of aggregation
+are the bar~$|$, the vinculum~$\overline{\phantom{a+x}}$, the parenthesis~$(\ )$, the
+bracket~$[\ ]$, and the brace~$\{\ \}$.
+
+\begin{Remark}
+Thus, each of the expressions $\VSum{a}{b}$, $\Vinc{a + b}$, $(a + b)$, $[a + b]$, $\{a + b\}$,
+signifies that $a + b$ is to be treated as a single number.
+\end{Remark}
+%% -----File: 010.png---Folio 4-------
+
+
+\Section{FACTORS. COEFFICIENTS. POWERS.}
+
+\Paragraph{17. Factors.} When a number consists of the product of
+two or more numbers, each of these numbers is called a
+\Defn{factor} of the product.
+
+The sign~$×$ is generally omitted between a figure and a
+letter, or between letters; thus, instead of $63 × a × b$, we
+write~$63ab$; instead of $a × b × c$, we write~$abc$.
+
+The expression~$abc$ must not be confounded with $a + b + c$.
+$abc$~is a product; $a + b + c$ is a sum.
+\begin{DPalign*}
+\lintertext{\indent If}
+a = 2,\quad b &= 3,\quad c = 4, \\
+\lintertext{then}
+abc &= 2 × 3 × 4 = 24; \\
+\lintertext{but}
+a + b + c &= 2 + 3 + 4 = 9.
+\end{DPalign*}
+
+\begin{Remark}[Note.]
+When a sign of operation is omitted in the notation of
+Arithmetic, it is always the \emph{sign of addition}; but when a sign of
+operation is omitted in the notation of Algebra, it is always the
+\emph{sign of multiplication}. Thus, $456$~means $400 + 50 + 6$, but $4ab$
+means $4 × a × b$.
+\end{Remark}
+
+\Paragraph{18.} Factors expressed by letters are called \Defn{literal} factors;
+factors expressed by figures are called \Defn{numerical} factors.
+
+\Paragraph{19.} If one factor of a product is equal to~$0$, the product
+is equal to~$0$, whatever the values of the other factors.
+Such a factor is called a \Defn{zero factor}.
+
+\Paragraph{20. Coefficients.} A known factor of a product which is
+prefixed to another factor, to show the number of times that
+factor is taken, is called a \Defn{coefficient}.
+
+\begin{Remark}
+Thus, in~$7c$, $7$~is the coefficient of~$c$; in~$7ax$, $7$~is the
+coefficient of~$ax$,
+or, if $a$~is known, $7a$~is the coefficient of~$x$.
+\end{Remark}
+%% -----File: 011.png---Folio 5-------
+
+By coefficient, we generally mean the \textbf{numerical coefficient
+with its sign}. If no numerical coefficient is written, $1$~is
+understood. Thus, $ax$~means the same as~$1ax$.
+
+\Paragraph{21. Powers and Roots.} A product consisting of two or
+more \textbf{equal factors} is called a \Defn{power} of that factor, and one
+of the equal factors is called a \Defn{root} of the number.
+
+\begin{Remark}
+Thus, $9 = 3 × 3$; that is, $9$~is a power of~$3$, and $3$~is a root of~$9$.
+\end{Remark}
+
+\Paragraph{22. Indices or Exponents.} An index or exponent is a
+number-symbol written at the right of, and a little above,
+a number.
+
+If the index is a \emph{whole number}, it shows the number
+of times the given number is taken as a factor.
+
+\begin{Remark}
+Thus, $a^{1}$, or simply~$a$, denotes that $a$~is taken \emph{once} as a
+factor; $a^{2}$~denotes
+that $a$~is taken \emph{twice} as a factor; $a^{3}$~denotes that $a$~is taken
+\emph{three times} as a factor; and $a^{4}$~denotes that $a$~is taken \emph{four times} as a
+factor; and so on. These are read: the first power of~$a$; the second
+power of~$a$; the third power of~$a$; the fourth power of~$a$; and so on.
+
+$a^{3}$~is written instead of~$aaa$.
+
+$a^{4}$~is written instead of~$aaaa$.
+\end{Remark}
+
+\Paragraph{23.} The meaning of coefficient and exponent must be
+carefully distinguished. Thus,
+\begin{DPalign*}
+4a &= a + a + a + a; \\
+a^{4} &= a× a× a× a. \displaybreak[1] \\
+\lintertext{\indent If $a = 3$,}
+4a &= 3 + 3 + 3 + 3 = 12. \\
+a^{4} &= 3 × 3 × 3 × 3 = 81.
+\end{DPalign*}
+
+\begin{Remark}
+The second power of a number is generally called the \emph{square} of
+that number; thus, $a^{2}$~is called the \emph{square} of~$a$, because if $a$~denotes
+the number of units of length in the side of a square, $a^{2}$~denotes the
+number of units of surface in the square. The third power of a number
+is generally called the \emph{cube} of that number; thus, $a^{3}$~is called the
+\emph{cube} of~$a$, because if $a$~denotes the number of units of length in the
+edge of a cube, $a^{3}$~denotes the number of units of volume in the
+cube.
+\end{Remark}
+%% -----File: 012.png---Folio 6-------
+
+
+\Section{ALGEBRAIC EXPRESSIONS.}
+
+\Paragraph{24. An Algebraic Expression.} An algebraic expression is
+a number written with algebraic symbols. An algebraic
+expression may consist of one symbol, or of several symbols
+connected by signs.
+
+\begin{Remark}
+Thus, $a$, $3abc$, $5a + 2b - 3c$, are algebraic expressions.
+\end{Remark}
+
+\Paragraph{25. Terms.} A \Defn{term} is an algebraic expression, the parts
+of which are not separated by the sign $+$~or~$-$.
+
+\begin{Remark}
+Thus, $a$, $5xy$, $2ab × 4cd$, $\dfrac{3ab}{4cd}$ are algebraic expressions of one
+term each. A term may be separated into parts by the sign $×$~or~$÷$.
+\end{Remark}
+
+\Paragraph{26. Simple Expressions.} An algebraic expression of \emph{one
+term} is called a \Defn{simple expression} or \Defn{monomial}.
+
+\begin{Remark}
+Thus, $5xy$, $7a × 2b$, $7a ÷ 2b$, are simple expressions.
+\end{Remark}
+
+\Paragraph{27. Compound Expressions.} An algebraic expression of
+\emph{two or more terms} is called a \Defn{compound expression} or \Defn{polynomial}.
+
+\begin{Remark}
+Thus, $5xy + 7a$, $2x - y - 3z$, $4a - 3b + 2c - 3d$ are compound
+expressions.
+\end{Remark}
+
+\Paragraph{28.} A polynomial of two terms is called a \Defn{binomial}; of
+three terms, a \Defn{trinomial}.
+
+\begin{Remark}
+Thus, $3a - b$ is a binomial; and $3a - b + c$ is a trinomial.
+\end{Remark}
+
+\Paragraph{29. Positive and Negative Terms.} The terms of a compound
+expression preceded by the sign~$+$ are called \Defn{positive
+terms}, and the terms preceded by the sign~$-$ are called
+\Defn{negative terms}. The sign~$+$ before the first term is omitted.
+
+\Paragraph{30.} A positive and a negative term of the same numerical
+value cancel each other when combined.
+%% -----File: 013.png---Folio 7-------
+
+\Paragraph{31. Like Terms.} Terms which have the same combination
+of \emph{letters} are called \Defn{like} or \Defn{similar} terms; terms which
+do not have the same combination of letters are called
+\Defn{unlike} or \Defn{dissimilar} terms.
+
+\begin{Remark}
+Thus, $5a^{2}bc$, $-7a^{2}bc$, $a^{2}bc$, are like terms; but $5a^{2}bc$, $5ab^{2}c$,
+$5abc^{2}$, are unlike terms.
+\end{Remark}
+
+\Paragraph{32. Degree of a Term.} A term that is the product of
+three letters is said to be of the \emph{third degree}; a term of
+four letters is of the \emph{fourth degree}; and so on.
+
+\begin{Remark}
+Thus, $5abc$~is of the third degree; $2a^{2}b^{2}c^{2}$, that is, $2aabbcc$, is of
+the sixth degree.
+\end{Remark}
+
+\Paragraph{33. Degree of a Compound Expression.} The degree of a
+compound expression is the degree of that term of the
+expression which is of the \emph{highest degree}.
+
+\begin{Remark}
+Thus, $a^{2}x^{2} + bx + c$ is of the fourth degree, since $a^{2}x^{2}$~is of the
+fourth degree.
+\end{Remark}
+
+\Paragraph{34. Dominant Letter.} It often happens that there is one
+letter in an expression of more importance than the rest,
+and this is, therefore, called the \Defn{dominant letter}. In such
+cases the degree of the expression is generally called by
+the degree of the \emph{dominant letter}.
+
+\begin{Remark}
+Thus, $a^{2}x^{2} + bx + c$ is of the \emph{second degree in~$x$}.
+\end{Remark}
+
+\Paragraph{35. Arrangement of a Compound Expression.} A compound
+expression is said to be \emph{arranged} according to the powers
+of some letter when the exponents of that letter, reckoning
+from left to right, either descend or ascend in \emph{the order of
+magnitude}.
+
+\begin{Remark}
+Thus, $3ax^{3} - 4bx^{2} - 6ax + 8b$ is arranged according to the descending
+powers of~$x$, and $8b - 6ax - 4bx^{2} + 3ax^{3}$ is arranged
+according to the ascending powers of~$x$.
+\end{Remark}
+%% -----File: 014.png---Folio 8-------
+
+
+\Section{PARENTHESES.}
+
+\Paragraph{36.} If a compound expression is to be treated as a whole,
+it is enclosed in a parenthesis.
+
+\begin{Remark}
+Thus, $2 × (10 + 5)$ means that we are to add $5$~to~$10$ and multiply
+the result by~$2$; if we were to omit the parenthesis and write
+$2 × 10 + 5$, the meaning would be that we were to multiply $10$~by~$2$
+and add~$5$ to the result.
+\end{Remark}
+
+Like the parenthesis, we use with the same meaning any
+other sign of aggregation.
+
+\begin{Remark}
+Thus, $(5 + 2)$, $[5 + 2]$, $\{5 + 2\}$, $\Vinc{5 + 2}$, $\VSum{5}{2}$, all mean that the
+expression $5 + 2$ is to be treated as the single symbol~$7$.
+\end{Remark}
+
+\Paragraph{37. Parentheses preceded by~$+$.} If a man has $10$~dollars
+and afterwards collects $3$~dollars and then $2$~dollars, it
+makes no difference whether he adds the $3$~dollars to his
+$10$~dollars, and then the $2$~dollars, or puts the $3$~and~$2$
+dollars together and adds their sum to his $10$~dollars.
+
+The first process is represented by $10 + 3 + 2$.
+
+The second process is represented by $10 + (3 + 2)$.
+
+\begin{DPgather*}
+\lintertext{\indent Hence,}
+10 + (3 + 2) = 10 + 3 + 2.
+\Tag{(1)}
+\end{DPgather*}
+
+If a man has $10$~dollars and afterwards collects $3$~dollars
+and then pays a bill of $2$~dollars, it makes no difference
+whether he adds the $3$~dollars collected to his $10$~dollars
+and pays out of this sum his bill of $2$~dollars, or pays the
+$2$~dollars from the $3$~dollars collected and adds the remainder
+to his $10$~dollars.
+
+The first process is represented by $10 + 3 - 2$.
+
+The second process is represented by $10 + (3 - 2)$.
+
+\begin{DPgather*}
+\lintertext{\indent Hence,}
+10 + (3 - 2) = 10 + 3 - 2.
+\Tag{(2)}
+\end{DPgather*}
+%% -----File: 015.png---Folio 9-------
+
+From (1)~and~(2) it follows that
+
+\begin{Theorem}
+If an expression within a parenthesis is preceded by the
+sign~$+$, the parenthesis can be removed without making any
+change in the signs of the expression.
+\end{Theorem}
+
+\begin{Theorem}[\textsc{Conversely.}] Any part of an expression can lie enclosed
+within a parenthesis and the sign~$+$ prefixed, without making
+any change in the signs of the terms thus enclosed.
+\end{Theorem}
+
+\Paragraph{38. Parentheses preceded by~$-$.} If a man has $10$~dollars
+and has to pay two bills, one of $3$~dollars and one of $2$~dollars,
+it makes no difference whether he takes $3$~dollars
+and $2$~dollars in succession, or takes the $3$~and~$2$ dollars at
+one time, from his $10$~dollars.
+
+The first process is represented by $10 - 3 - 2$.
+
+The second process is represented by $10 - (3 + 2)$.
+
+\begin{DPgather*}
+\lintertext{\indent Hence,}
+10 - (3 + 2) = 10 - 3 - 2.
+\Tag{(3)}
+\end{DPgather*}
+
+If a man has $10$~dollars consisting of $2$~five-dollar bills,
+and has a debt of $3$~dollars to pay, he can pay his debt by
+giving a five-dollar bill and receiving $2$~dollars.
+
+This process is represented by $10 - 5 + 2$.
+
+Since the debt paid is $3$~dollars, that is, $(5 - 2)$~dollars,
+the number of dollars he has left can evidently be
+expressed by
+\begin{DPalign*}
+10 &- (5 - 2). \\
+\lintertext{\indent Hence,}
+10 &- (5 - 2) = 10 - 5 + 2.
+\Tag{(4)}
+\end{DPalign*}
+
+From (3)~and~(4) it follows that
+
+\begin{Theorem}
+If an expression within a parenthesis is preceded by the
+sign~$-$, the parenthesis can be removed, provided the sign
+before each term within the parenthesis is changed, the
+sign~$+$ to~$-$, and the sign~$-$ to~$+$.
+\end{Theorem}
+%% -----File: 016.png---Folio 10-------
+
+\begin{Theorem}[\textsc{Conversely.}] Any part of an expression can be enclosed
+within a parenthesis and the sign~$-$ prefixed, provided the
+sign of each term enclosed is changed, the sign~$+$ to~$-$, and
+the sign~$-$ to~$+$.
+\end{Theorem}
+
+
+\Exercise{1.}
+
+Remove the parentheses, and combine:
+\begin{multicols}{2}
+\Item{1.} $9 + (3 + 2)$.
+
+\Item{2.} $9 + (3 - 2)$.
+
+\Item{3.} $7 + (5 + 1)$.
+
+\Item{4.} $7 + (5 - 1)$.
+
+\Item{5.} $6 + (4 + 3)$.
+
+\Item{6.} $6 + (4 - 3)$.
+
+\Item{7.} $3 + (8 - 2)$.
+
+\Item{8.} $9 - (8 - 6)$.
+
+\Item{9.} $10 - (9 - 5)$.
+
+\Item{10.} $9 - (6 + 1)$.
+
+\Item{11.} $8 - (3 + 2)$.
+
+\Item{12.} $7 - (3 - 2)$.
+
+\Item{13.} $9 - (4 + 3)$.
+
+\Item{14.} $9 - (4 - 3)$.
+
+\Item{15.} $7 - (5 - 2)$.
+
+\Item{16.} $7 - (7 - 3)$.
+
+\Item{17.} $(8 - 6) - 1$.
+
+\Item{18.} $(3 - 2) - (1 - 1)$.
+
+\Item{19.} $(7 - 3) - (3 - 2)$.
+
+\Item{20.} $(8 - 2) - (5 - 3)$.
+
+\Item{21.} $15 - (10 - 3 - 2)$.
+\end{multicols}
+
+\Paragraph{39. Multiplying a Compound Expression.} The expression
+$4(5 + 3)$ means that we are to take the sum of the numbers
+$5$~and~$3$ four times. The process can be represented by
+placing five dots in a line, and a little to the right three
+more dots in the same line, and then placing a second,
+third, and fourth line of dots underneath the first line and
+exactly similar to it.
+\[
+\begin{array}{*{9}{>{\ }r}}
+\DOT & \DOT & \DOT & \DOT & \DOT & \quad & \DOT & \DOT & \DOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \DOT & \DOT & \DOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \DOT & \DOT & \DOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \DOT & \DOT & \DOT \\[-4pt]
+\end{array}
+\]
+
+There are $(5 + 3)$ dots in each line, and $4$~lines. The
+total number of dots, therefore, is $4 × (5 + 3)$.
+
+We see that in the left-hand group there are $4 × 5$ dots,
+and in the right-hand group $4 × 3$ dots. The sum of these
+%% -----File: 017.png---Folio 11-------
+two numbers $(4 × 5) + (4 × 3)$ must be equal to the total
+number; that is,
+\begin{align*}
+4(5 + 3) &= (4 × 5) + (4 × 3) \\
+ &= 20 + 12.
+\end{align*}
+
+Again, the expression $4(8 - 3)$ means that we are to
+take the difference of the numbers $8$~and~$3$ four times.
+The process can be represented by placing eight dots in a
+line and crossing the last three, and then placing a second,
+third, and fourth line of dots underneath the first line and
+exactly similar to it.
+\[
+%[** TN: Added gap between dot groups.]
+\begin{array}{*{9}{>{\ }r}}
+\DOT & \DOT & \DOT & \DOT & \DOT & \quad & \NOT & \NOT & \NOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \NOT & \NOT & \NOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \NOT & \NOT & \NOT \\[-4pt]
+\DOT & \DOT & \DOT & \DOT & \DOT & & \NOT & \NOT & \NOT \\[-4pt]
+\end{array}
+\]
+
+The whole number of dots not crossed in each line is
+evidently $(8 - 3)$, and the whole number of lines is~$4$.
+Therefore the total number of dots not crossed is
+\[
+4 × (8 - 3).
+\]
+
+The total number of dots (crossed and not crossed) is
+$(4 × 8)$, and the total number of dots crossed is~$(4 × 3)$.
+Therefore the total number of dots not crossed is
+\begin{DPalign*}
+(4 × 8) &- (4 × 3); \\
+\lintertext{that is,}
+4(8 - 3) &= (4 × 8) - (4 × 3) \\
+ &= 32 - 12. \displaybreak[1] \\
+\intertext{\indent If $a$, $b$, and~$c$ stand for any three numbers, we have}
+a (b + c) &= ab + ac, \\
+\lintertext{and}
+a(b - c) &= ab - ac.
+\EqText{Therefore,}
+\end{DPalign*}
+
+\Dictum{To multiply a compound expression by a simple one},
+\begin{Theorem}
+Multiply each term by the multiplier, and write the successive
+products with the same signs as those of the original
+terms.
+\end{Theorem}
+%% -----File: 018.png---Folio 12-------
+
+\Exercise{2.}
+
+Multiply and remove parentheses:
+\begin{multicols}{3}
+\Item{1.} $7(8 + 5)$.
+
+\Item{2.} $7(8 - 5)$.
+
+\Item{3.} $6(7 + 3)$.
+
+\Item{4.} $6(7 - 3)$.
+
+\Item{5.} $8(7 + 5)$.
+
+\Item{6.} $8(7 - 5)$.
+
+\Item{7.} $9(6 - 2)$.
+
+\Item{8.} $4(a + b)$.
+
+\Item{9.} $4(a - b)$.
+
+\Item{10.} $2(a^{2} + b^{2})$.
+
+\Item{11.} $2(a^{2} - b^{2})$.
+
+\Item{12.} $3(ab + c)$.
+
+\Item{13.} $3(ab - c)$.
+
+\Item{14.} $3(c - ab)$.
+
+\Item{15.} $a(b + c)$.
+
+\Item{16.} $a(b - c)$.
+
+\Item{17.} $3a(b + c)$.
+
+\Item{18.} $3a(b - c)$.
+
+\Item{19.} $5a(b^{2} + c)$.
+
+\Item{20.} $5a(b^{2} - c^{2})$.
+
+\Item{21.} $5a^{2}(b^{2} - c)$.
+\end{multicols}
+
+\Paragraph{40.} The numerical value of an algebraic expression is the
+number obtained by putting for the letters involved the
+numbers for which these letters stand, and then performing
+the operations required by the signs.
+
+\Item{1.} If $b = 4$, find the value of~$3b^{2}$.
+\begin{Soln}
+\begin{DPgather*}
+\lintertext{\indent Here}
+3b^{2} = 3 × 4^{2} = 3 × 16 = 48.
+\end{DPgather*}
+\end{Soln}
+
+\Item{2.} If $a = 7$, $b = 2$, $c = 3$, find the value of~$5ab^{2}c^{3}$.
+\begin{Soln}
+\begin{DPgather*}
+\lintertext{\indent Here}
+5ab^{2}c^{3} = 5 × 7 × 2^{2} × 3^{3} = 3780.
+\end{DPgather*}
+\end{Soln}
+
+\Exercise{3.}
+
+If $a = 7$, $b = 5$, $c = 3$, find the value of
+\begin{multicols}{3}
+\Item{1.} $9a$.
+
+\Item{2.} $8ab$.
+
+\Item{3.} $4b^{2}c$.
+
+\Item{4.} $2a^{2}$.
+
+\Item{5.} $3c^{3}$.
+
+\Item{6.} $2b^{4}$.
+
+\Item{7.} $5ac$.
+
+\Item{8.} $abc$.
+
+\Item{9.} $abc^{2}$.
+
+\Item{10.} $\frac{1}{3}abc$.
+
+\Item{11.} $\frac{1}{5}ab^{2}c$.
+
+\Item{12.} $\frac{1}{7}a^{2}bc$.
+\end{multicols}
+
+If $a = 5$, $b = 2$, $c = 0$, $x = 1$, $y = 3$, find the value of
+\begin{multicols}{3}
+\Item{13.} $4acy^{2}$.
+
+\Item{14.} $3ax^{5}y^{2}$.
+
+\Item{15.} $2ab^{2}y$.
+
+\Item{16.} $2a^{2}b^{2}c^{2}y^{2}$.
+
+\Item{17.} $2a^{2}b^{2}x^{2}y^{2}$.
+
+\Item{18.} $2abx^{3}y^{3}$.
+
+\Item{19.} $3abcxy$.
+
+\Item{20.} $3abx^{3}y^{2}$.
+
+\Item{21.} $3ab^{2}xy^{2}$.
+\end{multicols}
+%% -----File: 019.png---Folio 13-------
+
+\Paragraph{41. The Numerical Value of a Compound Expression.}
+
+If $a$~stands for~$10$, $b$~for~$4$, and $c$~for~$3$, find the value of
+the expression $5ab - 10c^{2} - 5b^{2}$.
+
+Find the value of each term, and combine the results.
+\begin{Soln}
+\begin{gather*}
+\begin{alignedat}{3}
+ 5ab &\text{ stands for } &5 × 10 &× 4 &&= 200; \\
+10c^{2} &\text{ stands for } & 10 &× 3^{2} &&= \Z90; \\
+5b^{2} &\text{ stands for } & 5 &× 4^{2} &&= \Z80.
+\end{alignedat} \\
+\begin{aligned}
+&\therefore 5ab - 10c^{2} - 5b^{2} \\
+&= 200 - 90 - 80 \\
+&= 30.
+\end{aligned}
+\end{gather*}
+\end{Soln}
+
+\Paragraph{42.} In finding the value of a compound expression the
+operations indicated \emph{for each term} must be performed \emph{before}
+the operation indicated by the sign prefixed to the term.
+
+When there is no sign expressed between single symbols
+or between \emph{simple} and \emph{compound expressions}, it must be
+remembered that the sign understood is the \emph{sign of multiplication}.
+Thus $2(a - b)$ has the same meaning as $2 × (a - b)$.
+
+\Exercise{4.}
+
+If $a = 5$, $b = 4$, $c = 3$, find the value of
+\begin{multicols}{2}
+\Item{1.} $9a - 2bc$.
+
+\Item{2.} $ab + 2c$.
+
+\Item{3.} $abc + bc$.
+
+\Item{4.} $5ac + 2a$.
+
+\Item{5.} $2abc - 2ac^{2}$.
+
+\Item{6.} $ab + bc - ac$.
+
+\Item{7.} $ac - (b + c)$.
+
+\Item{8.} $a^{2} + (b^{2} + c^{2})$\Add{.}
+
+\Item{9.} $2a + (2b + 2c)$.
+
+\Item{10.} $a^{2} - b^{2} - c^{2}$.
+
+\Item{11.} $3(a - b + c)$.
+
+\Item{12.} $6ab - (bc + 8)$.
+
+\Item{13.} $7bc - c^{2} + a$.
+
+\Item{14.} $5ac - b^{2} + 3b$.
+
+\Item{15.} $4b^{2}c - 5c^{2} - 2b$.
+
+\Item{16.} $2a + (b + c)$.
+
+\Item{17.} $b + 2(a - c)$.
+
+\Item{18.} $c + 2(a - b)$.
+
+\Item{19.} $2a - (b + c)$.
+
+\Item{20.} $2b - (a - c)$.
+
+\Item{21.} $2c - (a - b)$.
+
+\Item{22.} $2c - 5(a - b)$.
+
+\Item{23.} $2b - 3(a - c)$.
+
+\Item{24.} $2c - b(a - b)$.
+\end{multicols}
+%% -----File: 020.png---Folio 14-------
+
+
+\Section{ALGEBRAIC NOTATION.}
+
+\Exercise{5.}
+
+\Item{1.} Read $a + b$; $a - b$; $ab$; $a÷b$.
+
+\Item{2.} Write six increased by four. \Ans{$6 + 4$.}
+
+\Item{3.} Write $a$ increased by~$b$.
+
+\Item{4.} Write six diminished by four. \Ans{$6 - 4$.}
+
+\Item{5.} Write $a$ diminished by~$b$.
+
+\Item{6.} By how much does twenty-five exceed sixteen?
+\Ans{$25 - 16$.}
+
+\Item{7.} By how much does $x$ exceed~$y$?
+
+\Item{8.} Write four times three; the fourth power of three.
+\Ans{$4 × 3$; $3^{4}$.}
+
+\Item{9.} Write four times~$x$; the fourth power of~$x$.
+
+\Item{10.} If one part of twenty-five is fifteen, what is the
+other part?
+\Ans{$25 - 15$.}
+
+\Item{11.} If one part of~$35$ is~$x$, what is the other part?
+
+\Item{12.} If one part of~$x$ is~$a$, what is the other part?
+
+\Item{13.} How much does ten lack of being twelve?
+\Ans{$12 - 10$.}
+
+\Item{14.} How much does $x$ lack of being fourteen?
+
+\Item{15.} How much does $x$ lack of being~$a$?
+
+\Item{16.} If a man walks four miles an hour, how many miles
+will he walk in three hours?
+\Ans{$3 × 4$.}
+
+\Item{17.} If a man walks $y$~miles an hour, how many miles
+will he walk in $x$~hours?
+
+\Item{18.} If a man walks $y$~miles an hour, how many hours
+will it take him to walk $x$~miles?
+%% -----File: 021.png---Folio 15-------
+
+\Exercise{6.}
+
+\Item{1.} If the dividend is twenty and the quotient five,
+what is the divisor?
+\Ans{$\frac{20}{5}$.}
+
+\Item{2.} If the dividend is~$a$ and the quotient~$b$, what is the
+divisor?
+
+\Item{3.} If John is twenty years old to-day, how old was he
+four years ago? How old will he be five years hence?
+\Ans{$20 - 4$; $20 + 5$.}
+
+\Item{4.} If James is $x$~years old to-day, how old was he three
+years ago? How old will he be seven years hence?
+
+\Item{5.} Write four times the expression seven minus five.
+\Ans{$4(7 - 5)$.}
+
+\Item{6.} Write seven times the expression $2x$~minus~$y$.
+
+\Item{7.} Write the next integral number above four.
+\Ans{$4 + 1$.}
+
+\Item{8.} If $x$~is an integral number, write the next integral
+number above it; the next integral number below it.
+
+\Item{9.} What number is less than $20$ by~$d$?
+
+\Item{10.} If the difference of two numbers is five, and the
+smaller number is fifteen, what is the greater number?
+\Ans{$15 + 5$.}
+
+\Item{11.} If the difference of two numbers is eight, and the
+smaller number is~$x$, what is the greater number?
+
+\Item{12.} If the sum of two numbers is~$30$, and one of them
+is~$20$, what is the other?
+\Ans{$30 - 20$.}
+
+\Item{13.} If the sum of two numbers is~$x$, and one of them is~$10$,
+what is the other?
+
+\Item{14.} If $100$ contains~$x$ ten times, what is the value of~$x$?
+%% -----File: 022.png---Folio 16-------
+
+\Exercise{7.}
+
+\Item{1.} In $x$~years a man will be $40$~years old; what is his
+present age?
+
+\Item{2.} How old will a man be in $y$~years, if his present age
+is $a$~years?
+
+\Item{3.} What is the value of~$x$ if $7x$~equals~$28$?
+
+\Item{4.} If it takes $3$~men $4$~days to reap a field, how many
+days will it take one man to reap it?
+\Ans{$3 × 4$.}
+
+\Item{5.} If it takes $a$~men $b$~days to reap a field, how many
+days will it take one man to reap it?
+
+\Item{6.} What is the excess of~$5x$ over~$3x$?
+
+\Item{7.} By how much does $20 - 3$ exceed $(10 + 1)$?
+\Ans{$20 - 3 - (10 + 1)$.}
+
+\Item{8.} By how much does $2x - 3$ exceed $(x + 1)$?
+
+\Item{9.} If $x$~stands for~$10$, find the value of~$4(3x - 20)$.
+
+\Item{10.} If $a$~stands for~$10$, and $b$~for~$2$, find the value of
+$2(a - 2b)$.
+
+\Item{11.} How many cents in $a$~dollars, $b$~quarters, and $c$~dimes?
+
+\Item{12.} A book-shelf contains French, Latin, and Greek
+books. There are $100$~books in all, and there are $x$~Latin
+and $y$~Greek books. How many French books are there?
+
+\Item{13.} A regiment of men is drawn up in $10$~ranks of $80$~men
+each, and there are $15$~men over. How many men
+are there in the regiment?
+\Ans{$10 × 80 + 15$.}
+
+\Item{14.} A regiment of men is drawn up in $x$~ranks of $y$~men
+each, and there are $c$~men over. How many men are there
+in the regiment?
+%% -----File: 023.png---Folio 17-------
+
+\Exercise{8.}
+
+\Item{1.} A room is $10$~yards long and $8$~yards wide. In the
+middle there is a carpet $6$~yards square. How many
+square yards of oilcloth will be required to cover the rest
+of the floor?
+\Ans{$10 × 8 - 6^{2}$.}
+
+\Item{2.} A room is $x$~yards long and $y$~yards wide. In the
+middle there is a carpet $a$~yards square. How many
+square yards of oilcloth will be required to cover the rest
+of the floor?
+
+\Item{3.} How many rolls of paper $g$~feet long and $k$~feet
+wide will be required to paper a room, the perimeter of
+which, after proper allowance is made for doors and windows,
+is $p$~feet and the height $h$~feet?
+
+\Item{4.} Write six times the square of~$m$, plus five~$c$ times
+the expression $d$~plus $b$~minus~$a$.
+
+\Item{5.} Write five times the expression two~$n$ plus one,
+diminished by six times the expression $c$~minus $a$~plus~$b$.
+
+\Item{6.} A lady bought a dress for $a$~dollars, a cloak for $b$~dollars,
+two pairs of gloves for $c$~dollars a pair. She gave
+a hundred-dollar bill in payment. How much money
+should be returned to her?
+
+\Item{7.} If a man can perform a piece of work in $4$~days, how
+much of it can he do in one day?
+\Ans{$\frac{1}{4}$.}
+
+\Item{8.} If a man can perform a piece of work in $x$~days,
+how much of it can he do in one day?
+
+\Item{9.} If A~can do a piece of work in $x$~days, B~in $y$~days,
+C~in $z$~days, how much of it can they all do in one day,
+working together?
+
+\Item{10.} Write an expression for the sum, and also for the
+product, of three consecutive numbers of which the least is~$n$.
+%% -----File: 024.png---Folio 18-------
+
+\Item{11.} The product of two factors is~$36$; if one of the
+factors is~$x$, what is the other factor?
+
+\Item{12.} If $d$~is the divisor and $q$~the quotient, what is the
+dividend?
+
+\Item{13.} If $d$~is the divisor, $q$~the quotient, and $r$~the remainder,
+what is the dividend?
+
+\Item{14.} If $x$~oranges can be bought for $50$~cents, how many
+oranges can be bought for $100$~cents?
+
+\Item{15.} What is the price in cents of $x$~apples, if they are
+ten cents a dozen?
+
+\Item{16.} If $b$~oranges cost $6$~cents, what will $a$~oranges cost?
+
+\Item{17.} How many miles between two places, if a train
+travelling $m$~miles an hour requires $4$~hours to make the
+journey?
+
+\Item{18.} If a man was $x$~years old $10$~years ago, how many
+years old will he be $7$~years hence?
+
+\Item{19.} If a man was $x$~years old $y$~years ago, how many
+years old will he be $c$~years hence?
+
+\Item{20.} If a floor is $3x$~yards long and $12$~yards wide, how
+many square yards does the floor contain?
+
+\Item{21.} How many hours will it take to walk $c$~miles, at
+the rate of one mile in $15$~minutes?
+
+\Item{22.} Write three consecutive numbers of which $x$~is the
+middle number.
+
+\Item{23.} If an odd number is represented by~$2n + 1$, what
+will represent the next odd number?
+%% -----File: 025.png---Folio 19-------
+
+
+\Chapter{II.}{Simple Equations.}
+
+\Paragraph{43. Equations.} An equation is a statement in symbols
+that two expressions stand for the same number.
+
+\begin{Remark}
+Thus, the equation $3x + 2 = 8$ states that $3x + 2$ and~$8$ stand for
+the same number.
+\end{Remark}
+
+\Paragraph{44.} That part of the equation which precedes the sign
+of equality is called the \Defn{first member}, or \Defn{left side}, and that
+which follows the sign of equality is called the \Defn{second member},
+or \Defn{right side}.
+
+\Paragraph{45.} The statement of equality between two algebraic
+expressions, if true for all values of the letters involved, is
+called an \Defn{identical equation}; but if true only for certain
+particular values of the letters involved, it is called an
+\Defn{equation of condition}.
+
+\begin{Remark}
+Thus, $a + b = b + a$, which is true for \emph{all values} of $a$~and~$b$, is an
+\emph{identical equation}, and $3x + 2 = 8$, which is true only when $x$~stands
+for~$2$, is an \emph{equation of condition}\Add{.}
+\end{Remark}
+
+For brevity, an identical equation is called an \Defn{identity},
+and an equation of condition is called simply an \Defn{equation}.
+
+\Paragraph{46.} We often employ an equation to discover an \emph{unknown
+number} from its relation to known numbers. We usually
+represent the unknown number by one of the \emph{last} letters
+of the alphabet, as $x$,~$y$,~$z$; and by way of distinction, we
+use the \emph{first} letters, $a$,~$b$, $c$,~etc., to represent numbers that
+%% -----File: 026.png---Folio 20-------
+are supposed to be known, though not expressed in the
+number-symbols of Arithmetic.
+
+\begin{Remark}
+Thus, in the equation $ax + b = c$, $x$~is supposed to represent an
+unknown number, and $a$,~$b$, and~$c$ are supposed to represent known
+numbers.
+\end{Remark}
+
+\Paragraph{47. Simple Equations.} An equation which contains the
+first power of~$x$, the symbol for the unknown number, and
+no higher power, is called a \Defn{simple equation}, or an \Defn{equation
+of the first degree}.
+
+\begin{Remark}
+Thus, $ax + b = c$ is a simple equation, or an equation of the first
+degree \emph{in~$x$}.
+\end{Remark}
+
+\Paragraph{48. Solution of an Equation.} To solve an equation is to
+find the unknown number; that is, the number which, when
+substituted for its symbol in the given equation, renders the
+equation an identity. This number is said to \emph{satisfy} the
+equation, and is called the \Defn{root} of the equation.
+
+\Paragraph{49. Axioms.} In solving an equation, we make use of the
+following axioms:
+
+\Ax{1.} If equal numbers be added to equal numbers,
+the sums will be equal.
+
+\Ax{2.} If equal numbers be subtracted from equal numbers,
+the remainders will be equal.
+
+\Ax{3.} If equal numbers be multiplied by equal numbers,
+the products will be equal.
+
+\Ax{4.} If equal numbers be divided by equal numbers,
+the quotients will be equal.
+
+\begin{Theorem}
+If, therefore, the two sides of an equation be increased by,
+diminished by, multiplied by, or divided by equal numbers,
+the results will be equal.
+\end{Theorem}
+
+%[** TN: Next paragraph set in normal-size type in the original]
+\begin{Remark}
+Thus, if $8x = 24$, then $8x + 4 = 24 + 4$, $8x - 4 = 24 - 4$,
+$4 × 8x = 4 × 24$, and $8x ÷ 4 = 24 ÷ 4$.
+\end{Remark}
+%% -----File: 027.png---Folio 21-------
+
+\Paragraph{50. Transposition of Terms.} It becomes necessary in solving
+an equation to bring all the terms that contain the
+symbol for the unknown number to one side of the equation,
+and all the other terms to the other side. This is
+called \Defn{transposing the terms}. We will illustrate by examples:
+
+\Item{1.} Find the number for which $x$~stands when
+\[
+14x - 11 = 5x + 70.
+\]
+
+The first object to be attained is to get all the terms
+which contain~$x$ on the left side of the equation, and all the
+other terms on the right side. This can be done by first
+subtracting~$5x$ from both sides (Ax.~2), which gives
+\[
+9x - 11 = 70,
+\]
+and then adding~$11$ to these equals (Ax.~1), which gives
+\begin{DPalign*}
+9x + 11 - 11 &= 70 + 11. \\
+\lintertext{\indent Combine,}
+9x &= 81. \\
+\lintertext{\indent Divide by~$9$,}
+x &= 9.
+\end{DPalign*}
+
+\Item{2.} Find the number for which $x$~stands when $x + b = a$.
+\begin{DPalign*}[m]
+\lintertext{\indent The equation is}
+x + b &= a. \\
+\lintertext{\indent Subtract~$b$ from each side,}
+x + b - b &= a - b.
+\rintertext{(Ax.~2)}
+\end{DPalign*}
+
+Since $+b$~and~$-b$ in the left side cancel each other
+(§~30), we have $x = a - b$.
+
+\Item{3.} Find the number for which $x$~stands when $x - b = a$.
+\begin{DPalign*}
+\lintertext{\indent The equation is}
+x - b &= a. \\
+\lintertext{Add $+b$ to each side,}
+x + b - b &= a + b.
+\rintertext{(Ax.~1)}
+\end{DPalign*}
+
+Since $+b$~and~$-b$ in the left side cancel each other
+(§~30), we have $x = a + b$.
+%% -----File: 028.png---Folio 22-------
+
+\Paragraph{51.} The effect of the operation in the preceding equations,
+when Axioms (1)~and~(2) are used, is to take a term
+from one side and put it on the other side with its sign
+changed. We can proceed in a like manner in any other
+case. Hence the general rule:
+
+\Paragraph{52.} \begin{Theorem}[nopar] Any term may be transposed from one side of an
+equation to the other, provided its sign is changed.
+\end{Theorem}
+
+\Paragraph{53.} Any term, therefore, which occurs on both sides
+with \emph{the same sign} may be removed from both without
+affecting the equality; and the sign of every term of an
+equation may be changed without affecting the equality.
+
+\Paragraph{54. Verification.} When the root is substituted for its
+symbol in the given equation, and the equation reduces to
+an \emph{identity}, the root is said to be \Defn{verified}. We will illustrate
+by examples:
+
+\Item{1.} What number added to twice itself gives~$24$?
+
+Let $x$~stand for the number; \\
+then $2x$~will stand for twice the number, \\
+and the number added to twice itself will be $x + 2x$.
+
+But the number added to twice itself is~$24$.
+\begin{DPalign*}
+\therefore x + 2x &= 24. \\
+\lintertext{\indent Combine $x$~and~$2x$,}
+3x &= 24. \\
+\intertext{\indent Divide by~$3$, the coefficient of~$x$,}
+x &= 8.
+\rintertext{(Ax.~4)}
+\end{DPalign*}
+
+Therefore the required number is~$8$.
+
+\begin{DPalign*}
+\lintertext{\indent\textsc{Verification.}}
+x + 2x &= 24, \\
+8 + 2 × 8 &= 24, \\
+8 + 16 &= 24, \\
+24 &= 24.
+\end{DPalign*}
+%% -----File: 029.png---Folio 23-------
+
+\ScreenBreak
+\Item{2.} If $4x - 5$ stands for~$19$, for what number does $x$~stand?
+
+We have the equation
+\begin{DPalign*}
+4x - 5 &= 19. \\
+\lintertext{\indent Transpose $-5$,}
+4x &= 19 + 5. \\
+\lintertext{\indent Combine,}
+4x &= 24. \\
+\lintertext{\indent Divide by~$4$,}
+x &= 6.
+\rintertext{(Ax.~4)} \displaybreak[1] \\
+\lintertext{\indent \textsc{Verification.}}
+4x - 5 &= 19, \\
+4 × 6 - 5 &= 19, \\
+24 - 5 &= 19, \\
+19 &= 19.
+\end{DPalign*}
+
+\Item{3.} If $3x - 7$ stands for the same number as $14 - 4x$,
+what number does $x$~stand for?
+
+We have the equation
+\[
+3x - 7 = 14 - 4x.
+\]
+
+Transpose $-4x$ to the left side, and $-7$ to the right side,
+\begin{DPalign*}
+3x + 4x &= 14 + 7. \\
+\lintertext{\indent Combine,}
+7x &= 21. \\
+\lintertext{\indent Divide by~$7$,}
+x &= 3. \displaybreak[1] \\
+\lintertext{\indent \textsc{Verification.}}
+3x - 7 &= 14 - 4x, \\
+3 × 3 - 7 &= 14 - 4 × 3, \\
+2 &= 2.
+\end{DPalign*}
+
+\Item{4.} Solve the equation
+\[
+7(x - 1) - 30 = 4(x - 4).
+\]
+We have the equation
+\[
+7(x - 1) - 30 = 4(x - 4).
+\]
+%% -----File: 030.png---Folio 24-------
+%[** TN: Equation repeated at page break in the original]
+% 7(x - 1) - 30 = 4(x - 4).
+
+Remove the parentheses,
+\begin{DPalign*}
+7x - 7 - 30 &= 4x - 16. \\
+\lintertext{\indent Then}
+7x - 4x &= 7 + 30 - 16. \\
+\lintertext{\indent Combine,}
+3x &= 21. \\
+\lintertext{\indent Divide by~$3$,}
+x &= 7. \displaybreak[1] \\
+\lintertext{\indent \textsc{Verification.}}
+7(7 - 1) - 30 &= 4(7 - 4), \\
+7 × 6 - 30 &= 4 x 3, \\
+42 - 30 &= 12, \\
+12 &= 12.
+\end{DPalign*}
+
+\Exercise{9.}
+
+Find the number that $x$~stands for, if:
+\begin{multicols}{2}
+\Item{1.} $3x = x + 8$.
+
+\Item{2.} $3x = 2x + 5$.
+
+\Item{3.} $3x + 4 = x + 10$.
+
+\Item{4.} $4x + 6 = x + 9$.
+
+\Item{5.} $7x - 19 = 5x + 7$.
+
+\Item{6.} $3(x - 2) = 2(x - 3)$.
+
+\Item{7.} $8x + 7 = 4x + 27$.
+
+\Item{8.} $3x + 10 = x + 20$.
+
+\Item{9.} $5(x - 2) = 3x + 4$.
+
+\Item{10.} $3(x - 2) = 2(x - 1)$.
+
+\Item{11.} $2x + 3 = 16 - (2x - 3)$.
+
+\Item{12.} $19x - 3 = 2(7 + x)$.
+
+\Item{13.} $7x - 70 = 5x - 20$.
+
+\Item{14.} $2x - 22 = 108 - 2x$.
+
+\Item{15.} $2(x + 5) + 5(x - 4) = 32$.
+
+\Item{16.} $2(3x - 25) = 10$.
+
+\Item{17.} $33x - 70 = 3x + 20$.
+
+\Item{18.} $4(1 + x) + 3(2 + x) = 17$.
+
+\Item{19.} $8x - (x + 2) = 47$.
+
+\Item{20.} $3(x - 2) = 50 - (2x - 9)$.
+\end{multicols}
+%% -----File: 031.png---Folio 25-------
+
+\Item{21.} $2x - (3 + 4x - 3x + 5) = 4$.
+
+\Item{22.} $5(2 - x) + 7x - 21 = x + 3$.
+
+\Item{23.} $3(x - 2) + 2(x - 3) + (x - 4) = 3x + 5$.
+
+\Item{24.} $x + 1 + x + 2 + x + 4 = 2x + 12$.
+
+\Item{25.} $(2x - 5) - (x - 4) + (x - 3) = x - 4$.
+
+\Item{26.} $4 - 5x - (1 - 8x) = 63 - x$.
+
+\Item{27.} $3x - (x + 10) - (x - 3) = 14 - x$.
+
+\Item{28.} $x^{2} - 2x - 3 = x^{2} - 3x + 1$.
+
+\Item{29.} $(x^{2} - 9) - (x^{2} - 16) + x = 10$.
+
+\Item{30.} $x^{2} + 8x - (x^{2} - x - 2) = 5(x + 3) + 3$.
+
+\Item{31.} $x^{2} + x - 2 + x^{2} + 2x - 3 = 2x^{2} - 7x - 1$.
+
+\Item{32.} $10x - (x - 5) = 2x + 47$.
+
+\Item{33.} $7x - 5 - (6 - 8x) + 2 = 3x - 7 + 106$.
+
+\Item{34.} $6x + 3 - (3x + 2) = (2x - 1) + 9$.
+
+\Item{35.} $3(x + 10) + 4(x + 20) + 5x - 170 = 15 - 3x$.
+
+\Item{36.} $20 - x + 4(x - 1) - (x - 2) = 30$.
+
+\Item{37.} $5x + 3 - (2x - 2) + (1 - x) = 6(9 - x)$.
+
+
+\Paragraph{55. Statement and Solution of Problems.} The difficulties
+which the beginner usually meets in stating problems will
+be quickly overcome if he will observe the following directions:
+
+Study the problem until you clearly understand its meaning
+and just what is required to be found.
+
+Remember that $x$~must not be put for money, length,
+time, weight,~etc., but for the \textbf{required number} of \emph{specified
+units} of money, length, time, weight,~etc.
+
+Express each statement carefully in algebraic language,
+and write out in full just what each expression stands for.
+%% -----File: 032.png---Folio 26-------
+
+Do not attempt to form the equation until all the statements
+are made in symbols.
+
+We will illustrate by examples:
+
+\Item{1.} John has three times as many oranges as James, and
+they together have~$32$. How many has each?
+\begin{Soln}
+\begin{DPgather*}
+\lintertext{\indent Let}
+\text{$x$~stand for the \emph{number} of oranges James has;} \\
+\lintertext{then}
+\text{$3x$~is the number of oranges John has;} \\
+\lintertext{and}
+\text{$x + 3x$ is the number of oranges they together have.}
+\end{DPgather*}
+
+But $32$~is the number of oranges they together have.
+\begin{DPalign*}
+\therefore x + 3x &= 32; \\
+\lintertext{or,}
+4x &= 32, \\
+\lintertext{and}
+x &= 8. \\
+\lintertext{\indent Since $x = 8$,}
+3x &= 24.
+\end{DPalign*}
+\end{Soln}
+
+Therefore James has $8$~oranges, and John has $24$~oranges.
+
+\begin{Remark}[Note.] Beginners in stating the preceding problem generally write:
+\[
+\text{Let $x = {}$\emph{what} James had.}
+\]
+
+Now, we know \emph{what} James had. He had oranges, and we are to
+discover simply the \emph{number} of oranges he had.
+\end{Remark}
+
+\Item{2.} James and John together have~\$$24$, and James has
+\$$8$~more than John. How many dollars has each?
+\begin{Soln}
+\begin{DPgather*}
+\lintertext{\indent Let}
+\text{$x$~stand for the number of dollars John has;} \\
+\lintertext{then}
+\text{$x + 8$ is the number of dollars James has;} \\
+\lintertext{and}
+\text{$x + (x + 8)$ is the number of dollars they both have.}
+\end{DPgather*}
+
+But $24$~is the number of dollars they both have.
+\[
+\therefore x + (x + 8) = 24.
+\]
+
+Removing the parenthesis,
+\[
+x + x + 8 = 24.
+\]
+\begin{DPalign*}
+\therefore 2x &= 16. \\
+\lintertext{\indent Dividing by~$2$,}
+x &= 8. \\
+\lintertext{\indent Since $x = 8$,}
+x + 8 &= 16.
+\end{DPalign*}
+\end{Soln}
+
+Therefore John has~\$$8$, and James has~\$$16$.
+%% -----File: 033.png---Folio 27-------
+
+\begin{Remark}[Note\Add{.}] The beginner must avoid the mistake of writing
+\[
+\text{Let $x = {}$John's money\Add{.}}
+\]
+
+We are required to find the \emph{number} of dollars John has, and therefore
+$x$~must represent this required number.
+\end{Remark}
+
+\Item{3.} The sum of two numbers is~$18$, and three times the
+greater number exceeds four times the less by~$5$. Find the
+numbers.
+
+\begin{Soln}
+Let $x = {}$the greater number.
+
+Then, since $18$~is the sum and $x$~is one of the numbers, the other
+number must be the sum minus~$x$. Hence
+\[
+18 - x = \text{the smaller number}\Add{.}
+\]
+
+Now, three times the greater number is~$3x$, and four times the less
+number is~$4(18 - x)$\Add{.}
+\begin{DPalign*}
+\lintertext{\indent Hence,}
+&3x - 4(18 - x) = \text{the excess}\Add{.} \\
+\lintertext{\indent But}
+&5 = \text{the excess}\Add{,} \\
+\therefore\ &3x - 4(18 - x) = 5 \\
+\therefore\ &3x - (72 - 4x) = 5, \\
+\lintertext{or}
+&3x - 72 + 4x = 5. \\
+\therefore\ &7x = 77, \\
+\lintertext{and}
+&\Z x = 11\Add{.}
+\end{DPalign*}
+\end{Soln}
+
+Therefore the numbers are $11$~and~$7$.
+
+\Exercise{10.}
+
+\Item{1.} If a number is multiplied by~$9$, the product is~$270$.
+Find the number.
+
+\Item{2.} If the sum of the ages of a father and son is $60$~years,
+and the father is $5$~times as old as the son, what is the
+age of each?
+
+\Item{3.} The sum of two numbers is~$91$, and the greater is $6$~times
+the less. Find the numbers.
+%% -----File: 034.png---Folio 28-------
+
+\Item{4.} A tree $90$~feet high was broken so that the part
+broken off was $8$~times the length of the part left standing.
+Find the length of each part.
+
+\Item{5.} The difference of two numbers is~$7$, and their sum is~$53$.
+Find the numbers.
+
+\Item{6.} The difference of two numbers is~$12$, and their sum is~$84$.
+Find the numbers.
+
+\Item{7.} Divide $35$ into two parts so that one part shall be
+greater by~$5$ than the other part.
+
+\Item{8.} Three times a given number is equal to the number
+increased by~$40$. Find the number.
+
+\Item{9.} Three times a given number diminished by~$24$ is
+equal to the given number. Find the number.
+
+\Item{10.} One number is $4$~times another, and their difference
+is~$30$. Find the numbers.
+
+\Item{11.} The sum of two numbers is~$36$, and one of them
+exceeds twice the other by~$6$. Find the numbers.
+
+\begin{Remark}[Hint.] Let $x$~equal the greater number: then $36 - x$ will equal the
+smaller.
+\end{Remark}
+
+\Item{12.} The sum of two numbers is~$40$, and $5$~times the
+smaller exceeds $2$~times the greater by~$25$. Find the
+numbers.
+
+\Item{13.} The number $30$ is divided into two parts such that
+$4$~times the greater part exceeds $5$~times the smaller part
+by~$30$. Find the parts.
+
+\Item{14.} The sum of two numbers is~$27$, and twice the greater
+number increased by $3$~times the less is~$61$. Find the
+numbers.
+
+\Item{15.} The sum of two numbers is~$32$, and five times the
+smaller is $3$~times the greater number. Find the numbers.
+%% -----File: 035.png---Folio 29-------
+
+\Exercise{11.}
+
+\Item{1.} A farmer sold a horse and a cow for~\$$210$. He
+sold the horse for four times as much as the cow. How
+much did he get for each?
+
+\Item{2.} Three times the excess of a certain number over~$6$
+is equal to the number plus~$144$. Find the number.
+
+\Item{3.} Thirty-one times a certain number is as much above~$40$
+as nine times the number is below~$40$. Find the number.
+
+\Item{4.} Two numbers differ by~$10$, and their sum is equal to
+seven times their difference. Find the numbers.
+
+\Item{5.} Find three consecutive numbers, $x$, $x + 1$, and~$x + 2$,
+whose sum is~$78$.
+
+\Item{6.} Find five consecutive numbers whose sum is~$35$.
+
+\Item{7.} The sum of the ages of A~and~B is $40$~years, and $10$~years
+hence A~will be twice as old as~B\@. Find their
+present ages.
+
+\Item{8.} A father is four times as old as his son, and in $5$~years
+he will be only three times as old. Find their present ages.
+
+\Item{9.} One man is $60$~years old, and another man is $50$~years.
+How many years ago was the first man twice as
+old as the second?
+
+\Item{10.} A man $50$~years old has a son $10$~years old. In
+how many years will the father be three times as old as
+the son?
+
+\Item{11.} A~has~\$$100$, and B~has~\$$20$. How much must A
+give B in order that they may each have the same sum?
+
+\Item{12.} A banker paid \$$63$ in $5$-dollar bills and $2$-dollar
+bills. He paid just as many $5$-dollar bills as $2$-dollar bills.
+How many bills of each kind did he pay?
+%% -----File: 036.png---Folio 30-------
+
+\Exercise{12.}
+
+\Item{1.} In a company of $90$~persons, composed of men,
+women, and children, there are three times as many children
+as men, and twice as many women as men. How many
+are there of each?
+
+\Item{2.} Find the number whose double exceeds~$70$ by as
+much as the number itself is less than~$80$.
+
+\Item{3.} A farmer employed two men to build $112$~rods of
+wall. One of them built on the average $4$~rods a day, and
+the other $3$~rods a day. How many days did they work?
+
+\Item{4.} Two men travel in \emph{opposite} directions, one $30$~miles
+a day, and the other $20$~miles a day. In how many days
+will they be $350$~miles apart?
+
+\Item{5.} Two men travel in the same direction, one $30$~miles
+a day, and the other $20$~miles a day. In how many days
+will they be $350$~miles apart?
+
+\Item{6.} A man bought $3$~equal lots of hay for~\$$408$. For
+the first lot he gave \$$17$~a ton, for the second~\$$16$, for the
+third~\$$18$. How many tons did he buy in all?
+
+\Item{7.} A farmer sold a quantity of wood for~\$$84$, one half
+of it at \$$3$~a cord, and the other half at \$$4$~a cord. How
+many cords did he sell?
+
+\begin{Remark}[Hint.]
+Let $2x$~equal the number of cords.
+\end{Remark}
+
+\Item{8.} If $2x - 3$ stands for~$29$, for what number will
+$4 + x$ stand?
+
+\Item{9.} At an election two opposing candidates received
+together $2044$~votes, and one received $104$~more votes than
+the other. How many votes did each candidate receive?
+%% -----File: 037.png---Folio 31-------
+
+\Exercise{13.}
+
+\Item{1.} A man walks $4$~miles an hour for $x$~hours, and
+another man walks $3$~miles an hour for $x + 2$~hours. If
+they each walk the same distance, how many miles does
+each walk?
+
+\Item{2.} A has twice as much money as~B; but if A gives~B
+\$$30$, it will take twice as much as A has left to equal~B's.
+How much money has each?
+
+\Item{3.} I have \$$12.75$ in two-dollar bills and twenty-five
+cent pieces, and I have twice as many bills as twenty-five
+cent pieces. How many have I of each?
+
+\Item{4.} I have in mind a certain number. If this number
+is diminished by~$8$ and the remainder multiplied by~$8$, the
+result is the same as if the number was diminished by~$6$
+and the remainder multiplied by~$6$. What is the number?
+
+\Item{5.} I have five times as many half-dollars as quarters, and
+the half-dollars and quarters amount to~\$$11$. How many
+of each have I?
+
+\Item{6.} A man pays a debt of~\$$91$ with ten-dollar bills and
+one-dollar bills, paying three times as many one-dollar bills
+as ten-dollar bills. How many bills of each kind does he
+pay?
+
+\Item{7.} A father is four times as old as his son, but $4$~years
+hence he will be only three times as old as his son. How
+old is each?
+
+\Item{8.} A workman was employed for $24$~days. For every
+day he worked he was to receive~\$$1.50$, and for every day
+he was idle he was to pay \$$0.50$ for his board. At the end
+of the time he received~\$$28$. How many days did he
+work?
+%% -----File: 038.png---Folio 32-------
+
+\Exercise{14.}
+
+\Item{1.} A boy has $4$~hours at his disposal. How far can he
+ride into the country at the rate of $9$~miles an hour and
+walk back at the rate of $3$~miles an hour, if he returns just
+on time?
+
+\begin{Remark}[Hint.] Let $x = {}$the number of hours he rides.
+
+Then $4 - x = {}$the number he walks.
+\end{Remark}
+
+\Item{2.} A has~\$$180$, and B has~\$$80$. How much must A
+give B in order that six times B's money shall be equal to
+$7$~times~A's?
+
+\Item{3.} A grocer has two kinds of tea, one kind worth $45$~cents
+a pound, and the other worth $65$~cents a pound.
+How many pounds of each kind must he take to make $80$~pounds,
+worth $50$~cents a pound?
+
+\Item{4.} A tank holding $1200$~gallons has three pipes. The
+first lets in $8$~gallons a minute, the second $10$~gallons, and
+the third $12$~gallons a minute. In how many minutes will
+the tank be filled?
+
+\Item{5.} The fore and hind wheels of a carriage are $10$~feet
+and $12$~feet respectively in circumference. How many
+feet will the carriage have passed over when the fore wheel
+has made $250$~revolutions more than the hind wheel?
+
+\Item{6.} Divide a yard of tape into two parts so that one part
+shall be $6$~inches longer than the other part.
+
+\Item{7.} A boy bought $7$~dozen oranges for~\$$1.50$. For a part
+he paid $20$~cents a dozen; and for the remainder, $25$~cents
+a dozen. How many dozen of each kind did he buy?
+
+\Item{8.} How can a bill of~\$$3.30$ be paid in quarters and ten-cent
+pieces so as to pay three times as many ten-cent
+pieces as quarters?
+%% -----File: 039.png---Folio 33-------
+
+
+\Chapter{III.}{Positive and Negative Numbers.}
+
+\Paragraph{56. Quantities Opposite in Kind.} If a person is engaged
+in trade, his capital will be \emph{increased} by his \emph{gains}, and
+\emph{diminished} by his \emph{losses}.
+
+\emph{Increase} in temperature is measured by the number of
+degrees the mercury rises in a thermometer, and \emph{decrease}
+in temperature by the number of degrees the mercury \emph{falls}.
+
+In considering any quantity whatever, a quantity that
+\emph{increases} the quantity considered is called a \emph{positive quantity};
+and a quantity that \emph{decreases} the quantity considered
+is called a \emph{negative quantity}.
+
+\Paragraph{57. Positive and Negative Numbers.} If from a given
+point, marked~$0$, we draw a straight line to the right, and
+beginning from the \emph{zero} point lay off units of length on this
+line, the successive repetitions of the unit will be expressed
+by the \emph{natural series of numbers}, $1$,~$2$, $3$, $4$,~etc. Thus:
+\Graphic{1}
+
+If we wish to \emph{add} $2$~to~$5$, we begin at~$5$, count $2$~units
+\emph{forwards}, and arrive at~$7$, the sum required. If we wish
+to \emph{subtract} $2$~from~$5$, we begin at~$5$, count $2$~units \emph{backwards},
+and arrive at~$3$, the difference required. If we wish
+to subtract $5$~from~$5$, we count $5$~units backwards, and arrive
+at~$0$. If we wish to subtract $5$~from~$2$, we cannot do it,
+because when we have counted backwards from~$2$ as far as~$0$,
+\emph{the natural series of numbers comes to an end}.
+%% -----File: 040.png---Folio 34-------
+
+In order to subtract a greater number from a smaller, it
+is necessary to \emph{assume} a new series of numbers, beginning
+at zero and extending to the left of zero. The series to the
+left of zero must proceed from zero by \emph{the repetitions of the
+unit}, precisely like the natural series to the right of zero;
+and the \emph{opposition} between the right-hand series and the
+left-hand series must be clearly marked. This opposition
+is indicated by calling every number in the right-hand
+series a \Defn{positive number}, and prefixing to it, when written,
+the sign~$+$; and by calling every number in the left-hand
+series a \Defn{negative number}, and prefixing to it the sign~$-$.
+The two series of numbers may be called the \Defn{algebraic series
+of numbers}, and written thus:
+\Graphic{2}
+
+If, now, we wish to subtract $7$~from~$4$, we begin at~$4$ in
+the positive series, count $7$~units in the \emph{negative direction}
+(to the left), and arrive at~$-3$ in the negative series; that
+is, $4 - 7 = -3$.
+
+The result obtained by subtracting a greater number from
+a less, when both are positive, is \emph{always a negative number}.
+
+In general, if $a$~and~$b$ represent any two numbers of the
+positive series, the expression $a - b$ will be a positive number
+when $a$~is greater than~$b$; will be zero when $a$~is equal
+to~$b$; will be a negative number when $a$~is less than~$b$.
+
+In counting from left to right in the algebraic series, numbers
+\emph{increase} in magnitude; in counting from right to left,
+numbers \emph{decrease} in magnitude. Thus $-3$,~$-1$, $0$, $+2$,~$+4$,
+are arranged in \emph{ascending} order of magnitude.
+
+\Paragraph{58.} Every algebraic number, as $+4$~or~$-4$, consists of a
+\emph{sign} $+$~or~$-$ and the \emph{absolute value} of the number. The
+sign shows whether the number belongs to the positive or
+%% -----File: 041.png---Folio 35-------
+negative series of numbers; the absolute value shows the
+place the number has in the positive or negative series.
+
+When no sign stands before a number, the sign~$+$ is
+always understood. Thus $4$~means the same as~$+4$, $a$~means
+the same as~$+a$. But \emph{the sign~$-$ is never omitted}.
+
+\Paragraph{59.} Two algebraic numbers which have, one the sign~$+$,
+and the other the sign~$-$, are said to have \emph{unlike signs}.
+
+Two algebraic numbers which have the same absolute
+values, but unlike signs, always cancel each other when
+combined. Thus $+4 - 4 = 0$; $+a - a = 0$.
+
+\Paragraph{60. Double Meanings of the Signs $+$~and~$-$.} The use of
+the signs $+$~and~$-$ to indicate addition and subtraction
+must be carefully distinguished from the use of the signs $+$~and~$-$
+to indicate in which series, the positive or the negative,
+a given number belongs. In the first sense they are
+signs of \emph{operations}, and are common to Arithmetic and
+Algebra; in the second sense they are signs of \emph{opposition},
+and are employed in Algebra alone.
+
+\begin{Remark}[Note.] In Arithmetic, if the things counted are \emph{whole units}, the
+numbers which count them are called \Defn{whole numbers}, \Defn{integral numbers},
+or \Defn{integers}, where the adjective is transferred from the things counted
+to the numbers which count them. But if the things counted are
+only \emph{parts of units}, the numbers which count them are called \Defn{fractional
+numbers}, or simply \Defn{fractions}, where again the adjective is transferred
+from the things counted to the numbers which count them.
+
+Likewise in Algebra, if the units counted are \emph{negative}, the numbers
+which count them are called \Defn{negative numbers}, where the adjective
+which defines the nature of the units counted is transferred to the
+numbers that count them.
+
+A whole number means a number of whole units, a fractional number
+means a number of parts of units, and a negative number means
+a number of negative units.
+\end{Remark}
+%% -----File: 042.png---Folio 36-------
+
+\Paragraph{61. Addition and Subtraction of Algebraic Numbers.} An
+algebraic number which is to be added or subtracted is
+often \DPtypo{inclosed}{enclosed} in a parenthesis, in order that the signs $+$~and~$-$,
+which are used to distinguish positive and negative
+numbers, may not be confounded with the $+$~and~$-$ signs
+that denote the operations of addition and subtraction.
+Thus $+4 + (-3)$ expresses the sum, and $+4 - (-3)$ expresses
+the difference, of the numbers $+4$~and~$-3$.
+
+\Paragraph{62. Addition.} In order to add two algebraic numbers, we
+begin at the place in the series which the first number occupies,
+and count, \emph{in the direction indicated by the sign of the
+second number}, as many units as there are in the absolute
+value of the second number.
+\Graphic{3}
+
+Thus the sum of $+4 + (+3)$ is found by counting from
+$+4$ three units in \emph{the positive direction}; that is, to the
+right, and is, therefore,~$+7$.
+
+The sum of $+4 + (-3)$ is found by counting from $+4$
+three units in \emph{the negative direction}; that is, to the left, and
+is, therefore,~$+1$.
+
+The sum of $-4 + (+3)$ is found by counting from $-4$
+three units in the positive direction, and is, therefore,~$-1$.
+
+The sum of $-4 + (-3)$ is found by counting from $-4$
+three units in the negative direction, and is, therefore,~$-7$.
+
+\Paragraph{63. Subtraction.} In order to subtract one algebraic number
+from another, we begin at the place in the series which
+the minuend occupies, and count, \emph{in the direction opposite to
+that indicated by the sign of the subtrahend}, as many units
+as there are in the absolute value of the subtrahend.
+
+Thus the result of subtracting $+3$~from~$+4$ is found by
+%% -----File: 043.png---Folio 37-------
+counting from $+4$ three units in the \emph{negative direction};
+that is, in the direction \emph{opposite to that indicated by the sign~$+$
+before~$3$}, and is, therefore,~$+1$.
+
+The result of subtracting $-3$~from~$+4$ is found by counting
+from $+4$ three units in the \emph{positive direction}, and is,
+therefore,~$+7$.
+
+The result of subtracting $+3$~from~$-4$ is found by counting
+from $-4$ three units in the \emph{negative direction}, and is,
+therefore,~$-7$.
+
+The result of subtracting $-3$~from~$-4$ is found by counting
+from $-4$ three units in the \emph{positive direction}, and is,
+therefore,~$-1$.
+
+\Paragraph{64.} Collecting the results obtained in addition and subtraction,
+we have:
+\[
+\begin{array}{c>{\quad}c}
+\textsc{Addition.} & \textsc{Subtraction.} \\
+ +4 + (-3) = +4 - 3 = +1. & +4 - (+3) = +4 - 3 = +1. \\
+ +4 + (+3) = +4 + 3 = +7. & +4 - (-3) = +4 + 3 = +7. \\
+- 4 + (-3) = -4 - 3 = -7. & -4 - (+3) = -4 - 3 = -7. \\
+- 4 + (+3) = -4 + 3 = -1. & -4 - (-3) = -4 + 3 = -1. \\
+\end{array}
+\]
+
+\Paragraph{65.} From these four cases of addition, therefore,
+
+% [**** TN: Book uses commas elsewhere]
+\Dictum{To Add Algebraic Numbers}\DPtypo{:}{,}
+\begin{Theorem}[I.] If the numbers have like signs, find the sum of their
+absolute values, and prefix the common sign to the result.
+\end{Theorem}
+
+\begin{Theorem}[II.] If the numbers have unlike signs, find the difference
+of their absolute values, and prefix the sign of the greater
+number to the result.
+\end{Theorem}
+
+\begin{Theorem}[III.] If there are more than two numbers, find the sum
+of the positive numbers and the sum of the negative numbers,
+%% -----File: 044.png---Folio 38-------
+take the difference between the absolute values of these two
+sums, and prefix the sign of the greater sum to the result.
+\end{Theorem}
+
+\begin{Remark}[Note.] Since the order in which numbers are added is immaterial,
+we may add any two of the numbers, and then this sum to
+any third number, and so on.
+\end{Remark}
+
+\Paragraph{66.} The result is generally called the \Defn{algebraic sum}, in
+distinction from the arithmetical sum; that is, the sum of
+the absolute values of the numbers.
+
+\Paragraph{67.} From the four cases of subtraction in §~64, we see
+that \textit{subtracting a positive number is equivalent to adding
+an equal negative number, and subtracting a negative number
+is equivalent to adding an equal positive number}.
+
+
+\Dictum{To Subtract One Algebraic Number from Another},
+\begin{Theorem}
+Change the sign of the subtrahend, and add the subtrahend
+to the minuend.
+\end{Theorem}
+
+\Paragraph{68. Examples.}
+
+\Item{1.} Find the sum of $3a$, $2a$, $a$, $5a$, $7a$.
+
+The sum of the coefficients is $3 + 2 + 1 + 5 + 7 = 18$.
+
+Hence the sum of the numbers is~$18a$.
+
+\Item{2.} Find the sum of $-5c$, $-c$, $-3c$, $-4c$, $-2c$.
+
+The sum of the coefficients is $-5 - 1 - 3 - 4 - 2 = -15$.
+
+Hence the sum of the numbers is~$-15c$.
+
+\Item{3.} Find the sum of $8x$, $-9x$, $-x$, $3x$, $4x$, $-12x$, $x$.
+
+The sum of the positive coefficients is $8 + 3 + 4 + 1 = 16$.
+
+The sum of the negative coefficients is $-9 - 1 - 12 = -22$.
+
+The difference between $16$~and~$22$ is~$6$, and the sign of
+the greater is negative.
+
+Hence the required sum is~$-6x$.
+%% -----File: 045.png---Folio 39-------
+
+\PrintBreak
+\Exercise{15.}
+
+Find the sum of:
+\begin{multicols}{2}
+\Item{1.} $5c$, $23c$, $c$, $11c$.
+
+\Item{2.} $4a$, $3a$, $7a$, $10a$.
+
+\Item{3.} $7x$, $12x$, $11x$, $9x$.
+
+\Item{4.} $6y$, $8y$, $2y$, $35y$.
+
+\Item{5.} $-3a$, $-5a$, $-18a$.
+
+\Item{6.} $-5x$, $-6x$, $-18x$, $-11x$.
+
+\Item{7.} $-3b$, $-b$, $-9b$, $-4b$.
+
+\Item{8.} $-z$, $-2z$, $-10z$, $-53z$.
+
+\Item{9.} $-11m$, $-3m$, $-5m$, $-m$.
+
+\Item{10.} $5d$, $-d$, $-4d$, $2d$.
+\end{multicols}
+
+\Item{11.} $13n$, $13n$, $-11n$, $-6n$, $-9n$, $n$, $2n$, $-3n$.
+
+\Item{12.} $5g$, $-3g$, $-6g$, $-4g$, $20g$, $-5g$, $-11g$, $-14g$.
+
+\Item{13.} $-9a^{2}$, $5a^{2}$, $6a^{2}$, $a^{2}$, $2a^{2}$, $-a^{2}$, $-3a^{2}$.
+
+\Item{14.} $3x^{3}$, $-2x^{3}$, $-5x^{3}$, $-7x^{3}$, $-x^{3}$, $2x^{3}$, $-10x^{3}$, $-x^{3}$.
+
+\Item{15.} $4a^{2}b^{2}$, $-a^{2}b^{2}$, $-6a^{2}b^{2}$, $4a^{2}b^{2}$, $-2a^{2}b^{2}$, $a^{2}b^{2}$.
+
+\Item{16.} $6mn$, $-5mn$, $mn$, $-3mn$, $4mn$.
+
+\Item{17.} $3xyz$, $-2xyz$, $5xyz$, $-7xyz$, $xyz$.
+
+\Item{18.} $5a^{3}b^{3}c^{3}$, $-7a^{3}b^{3}c^{3}$, $-3a^{3}b^{3}c^{3}$, $2a^{3}b^{3}c^{3}$.
+
+\Item{19.} $11abcd$, $-10abcd$, $-9abcd$, $-abcd$.
+
+\Item{20.} Subtract $-a$ from $-b$, and find the value of the
+result if $a = -4$, $b = -5$.
+
+When $a = 4$, $b = -2$, $c = -3$, find the difference in
+the values of:
+
+\Item{21.} $a - b + c$ and $-a + b + c$.
+
+\Item{22.} $a + (-b) + c$ and $a - (-b) + c$.
+
+\Item{23.} $-a - (-b) + c$ and $-(-a) + (-b) - c$.
+
+\Item{24.} $a - b + (-c)$ and $a - (-b) - (-c)$.
+%% -----File: 046.png---Folio 40-------
+
+
+\Section{MULTIPLICATION AND DIVISION OF ALGEBRAIC
+NUMBERS}
+
+\Paragraph{69. Multiplication.} Multiplication is generally defined
+in Arithmetic as the process of finding the result when one
+number (the multiplicand) is taken as many times as there
+are units in another number (the multiplier). This definition
+fails when the \emph{multiplier is a fraction}. In multiplying
+by a fraction, we divide the multiplicand into as many
+equal parts as there are units in the denominator, and take
+as many of these parts as there are units in the numerator.
+
+If, for example, we multiply $6$~by~$\frac{2}{3}$, we divide $6$ into
+\emph{three} equal parts and take \emph{two} of these parts, obtaining $4$
+for the product. The multiplier,~$\frac{2}{3}$, is~$\frac{2}{3}$ of~$1$, and the
+product,~$4$, is~$\frac{2}{3}$ of~$6$, in other words, \emph{the product is obtained
+from the multiplicand precisely as the multiplier is obtained
+from~$1$}.
+
+This statement is also true when the multiplier is a whole
+number. Thus in $5 × 7 = 35$, the multiplier,~$5$, is equal to
+\[
+1 + 1 + 1 + 1 + 1,
+\]
+and the product,~$35$, is equal to
+\[
+7 + 7 + 7 + 7 + 7.
+\]
+
+\Paragraph{70.} \Dictum{Multiplication may be defined}, therefore,
+
+As the operation of finding from two given numbers,
+called \emph{multiplicand} and \emph{multiplier}, a third number called
+\emph{product}, which is \emph{formed from the multiplicand as the multiplier
+is formed from unity}.
+
+\Paragraph{71.} According to this definition of multiplication,
+\begin{DPalign*}[m]
+\lintertext{since}
++3 &= + 1 + 1 + 1, \\
+3 × (+8) &= +8 + 8 + 8
+\Tag{(1)} \\
+&= +24, \displaybreak[1] \\
+%% -----File: 047.png---Folio 41-------
+\lintertext{and}
+3 × (-8) &= -8 - 8 - 8
+\Tag{(2)} \\
+&= -24. \displaybreak[1] \\
+\lintertext{\indent Again, since}
+-3 &= -1 - 1 - 1; \\
+(-3) × 8 &= -8 - 8 - 8
+\Tag{(3)} \\
+&= -24, \displaybreak[1] \\
+\lintertext{and}
+(-3) × (-8) &= -(-8) - (-8) - (-8)
+\Tag{(4)} \\
+&= +8 + 8 + 8 \\
+&= +24.
+\end{DPalign*}
+
+\Paragraph{72.} From these four cases it follows that in finding
+the product of two algebraic numbers, if the two numbers
+have \emph{like} signs, the product will have the \emph{plus} sign, and if
+\emph{unlike} signs, the product will have the \emph{minus} sign.
+
+Hence the \Defn{Law of Signs in Multiplication} is:
+\begin{Theorem}
+Like signs give~$+$, and unlike signs give~$-$.
+\end{Theorem}
+
+If $a$~and~$b$ stand for any two numbers, we have
+\begin{align*}
+(+a) × (+b) &= +ab, \\
+(+a) × (-b) &= -ab, \\
+(-a) × (+b) &= -ab, \\
+(-a) × (-b) &= +ab.
+\end{align*}
+
+\Paragraph{73. The Index Law in Multiplication.}
+\begin{DPalign*}
+\lintertext{\indent Since}
+a^{2} &= aa, \quad\text{and}\quad a^{3} = aaa, \\
+a^{2} × a^{3} &= aa × aaa = aaaaa = a^{5} = a^{2 + 3}; \\
+a^{4} × a &= aaaa × a = aaaaa = a^{5} = a^{4 + 1}.
+\end{DPalign*}
+
+If $a$~stands for any number, and $m$~and~$n$ for any integers,
+\[
+a^{m} × a^{n} = a^{m + n}. \EqText{Hence,}
+\]
+\begin{Theorem}
+The index of the product of two powers of the same number
+is equal to the sum of the indices of the factors.
+\end{Theorem}
+%% -----File: 048.png---Folio 42-------
+
+\Paragraph{74. Examples.}
+
+\Item{1.} Find the product of $6a^{2}b^{2}$ and $7ab^{2}c^{3}$.
+
+Since the order of the factors is immaterial,
+\begin{align*}
+6a^{2}b^{3} × 7ab^{2}c^{3}
+ &= 6 × 7 × a^{2} × a × b^{3} × b^{2} × c^{3} \\
+ &= 42a^{3}b^{5}c^{3}.
+\end{align*}
+
+\Item{2.} Find the product of $-3ab$ and $7ab^{3}$.
+\begin{align*}
+-3ab × 7ab^{3}
+ &= -3 × 7 × a × a × b × b^{3} \\
+ &= -21a^{2}b^{4}.
+\end{align*}
+
+\Paragraph{75. To Find the Product of Simple Expressions}, therefore,
+\begin{Theorem}
+Take the product of the coefficients and the sum of the
+indices of the like letters.
+\end{Theorem}
+
+\Exercise{16.}
+
+Find the product of:
+\begin{multicols}{2}
+\Item{1.} $5a^{2}$ and $6a^{3}$.
+
+\Item{2.} $8ab$ and $5a^{3}b^{2}$.
+
+\Item{3.} $9xy$ and $7xy$.
+
+\Item{4.} $2a^{2}b$ and $a^{3}b^{4}c^{2}$.
+
+\Item{5.} $3a^{3}b^{7}c^{8}$ and $3a^{4}b^{2}c$.
+
+\Item{6.} $2a$ and $-5a$.
+
+\Item{7.} $-3a$ and $-4b$.
+
+\Item{8.} $-ab$ and $a^{3}b^{2}$.
+
+\Item{9.} $-2ab^{4}$ and $-5a^{4}bc$.
+
+\Item{10.} $-2x^{6}y^{3}z$ and $-6xy^{2}z$.
+\end{multicols}
+
+\Item{11.} $3a^{2}b$, $-5ab^{2}$, and $-7a^{4}b^{2}$.
+
+\Item{12.} $2a^{2}bc^{3}$, $-3a^{3}b^{2}c$, and $-ab^{2}c^{3}$.
+
+\Item{13.} $2b^{2}c^{2}x^{2}$, $2a^{2}b^{2}c^{3}$, and $-3a^{3}bx^{3}$.
+
+\Item{14.} $2a^{3}b^{2}c$, $-3a^{2}b^{3}c$, and $-4a^{2}bc^{3}$.
+
+\Item{15.} $7am^{2}x^{3}$, $3a^{4}m^{2}x^{3}$, and $-2amx$.
+
+\Item{16.} $-3x^{2}y^{2}z^{2}$, $2x^{2}yz^{3}$, and $-5x^{4}yz$.
+%% -----File: 049.png---Folio 43-------
+
+If $a = -2$, $b = 3$, and $c = -1$, find the value of:
+\begin{multicols}{2}
+\Item{17.} $2ab^{2} - 3bc^{2} + c$.
+
+\Item{18.} $4a^{2} - 2b^{2} - c^{2}$.
+
+\Item{19.} $5a + 2b - 4c^{4}$.
+
+\Item{20.} $2a^{3} - 3b + 8c^{2}$.
+
+\Item{21.} $-a + 3b - 2c^{2}$.
+
+\Item{22.} $-a^{3} - 2b - 10c$.
+
+\Item{23.} $3a^{3} - 3b^{3} - 3c^{3}$.
+
+\Item{24.} $2ab^{2} - 3bc^{2} + 2ac$.
+
+\Item{25.} $3abc + 5a^{2}b^{2} - 2a^{2}b$.
+
+\Item{26.} $ab^{2}c^{2} + 2abc^{2} + a^{2}b^{2}c^{2}$.
+
+\Item{27.} $2a^{2}bc + 3abc + a^{2}b^{2}c^{2}$.
+
+\Item{28.} $6a^{2} + 8a^{2}b^{2} - 5a^{2}bc$.
+\end{multicols}
+
+\Paragraph{76. Division.} To divide $48$~by~$8$ is to find the number
+of times it is necessary to take $8$ to make~$48$. Here the
+\emph{product} and \emph{one factor} are given, and \emph{the other factor} is
+required. We may, therefore, take for the definition of
+division\Add{:}
+
+The operation by which when \emph{the product} and \emph{one factor}
+are given, \emph{the other factor is found}.
+
+With reference to this operation the product is called
+the \Defn{dividend}, the given factor the \Defn{divisor}, and the required
+factor the \Defn{quotient}.
+
+\Paragraph{77. Law of Signs in Division.}
+\begin{alignat*}{2}
+&\text{Since } (+a) × (+b) = +ab,\quad && \therefore +ab ÷ (+a) = +b. \\
+&\text{Since } (+a) × (-b) = -ab, && \therefore -ab ÷ (+a) = -b. \\
+&\text{Since } (-a) × (+b) = -ab, && \therefore -ab ÷ (-a) = +b. \\
+&\text{Since } (-a) × (-b) = +ab, && \therefore +ab ÷ (-a) = -b.
+\end{alignat*}
+
+That is, if the dividend and divisor have like signs, the
+quotient has the plus sign; and if they have unlike signs,
+the quotient has the minus sign. Hence, in division,
+\begin{Theorem}
+Like signs give~$+$, and unlike signs give~$-$.
+\end{Theorem}
+%% -----File: 050.png---Folio 44-------
+
+\Paragraph{78. Index Law in Division.}
+
+The dividend contains all the factors of the divisor and
+of the quotient, and therefore the quotient contains the
+factors of the dividend that are not found in the divisor.
+
+Thus, $\dfrac{abc}{bc} = a$, $\dfrac{aabx}{ab} = ax$, $\dfrac{124abc}{-4ab} = -31c$.
+
+Divide $a^{5}$~by~$a^{2}$, $a^{6}$~by~$a^{4}$, $a^{4}$~by~$a$\DPtypo{,}{.}
+\begin{alignat*}{4}
+\frac{a^{5}}{a^{2}}
+ &= \frac{aaaaa}{aa} &&= aaa &&= a^{3} &&= a^{5-2}; \\
+\frac{a^{6}}{a^{4}}
+ &= \frac{aaaaaa}{aaaa} &&= aa &&= a^{2} &&= a^{6-4}\DPtypo{,}{;} \\
+\frac{a^{4}}{a}
+ &= \frac{aaaa}{a} &&= aaa &&= a^{3} &&= a^{4-1}\DPtypo{,}{.}
+\end{alignat*}
+
+If $m$~and~$n$ stand for any integers, and $m$~is greater than~$n$\Add{,}
+\[
+a^{m} - a^{n} = a^{m - n}\Add{.}
+\]
+
+\begin{Theorem}
+The index of the quotient of two powers of the same letter
+is equal to the index of the letter in the dividend diminished
+by the index of the letter in the divisor.
+\end{Theorem}
+
+\Paragraph{79. Examples.}
+
+\Item{1.} Divide $15xy$~by~$5x$\Add{.}
+\[
+\frac{15xy}{5x} = \frac{3 × 5xy}{5x} = 3y.
+\]
+
+Here we cancel the factors $5$~and~$x$, which are common
+to the dividend and divisor\Add{.}
+
+\Item{2.} Divide $-21a^{2}b^{3}$~by~$3ab^{2}$\Add{.}
+\[
+\frac{-21a^{2}b^{3}}{3ab^{2}} = -7ab.
+\]
+%% -----File: 051.png---Folio 45-------
+
+\Item{3.} Divide $54a^{5}b^{3}c$~by~$-6ab^{2}c$.
+\[
+\frac{54a^{5}b^{3}c}{-6ab^{2}c} = -9a^{4}b.
+\]
+
+\Item{4.} Divide $-45x^{4}y^{5}z^{7}$~by~$-15x^{4}y^{5}z^{5}$.
+\[
+\frac{-45x^{4}y^{5}z^{7}}{-15x^{4}y^{5}z^{5}} = 3z^{2}.
+\]
+
+\Item{5.} Divide $-15a^{3}b^{2}c^{3}$~by~$-60a^{2}bc^{3}$.
+\[
+\frac{-15a^{3}b^{2}c^{3}}{-60a^{2}bc^{3}} = \frac{ab}{4}.
+\]
+
+\Exercise{17.}
+
+Divide:
+\begin{multicols}{2}
+\Item{1.} $x^{3}$~by~$x$.
+
+\Item{2.} $21x^{5}$~by~$7x^{3}$.
+
+\Item{3.} $35x^{2}$~by~$-5x^{2}$.
+
+\Item{4.} $-42x^{2}$~by~$6x^{2}$.
+
+\Item{5.} $-63x^{5}$~by~$-9x$.
+
+\Item{6.} $-72x^{3}$~by~$-8x^{2}$.
+
+\Item{7.} $-32a^{2}b^{2}$~by~$8ab^{2}$.
+
+\Item{8.} $-16x^{3}y^{3}$~by~$-4xy$.
+
+\Item{9.} $18x^{2}y$~by~$-2xy$.
+
+\Item{10.} $-25x^{4}y^{2}$~by~$-5x^{3}y^{2}$.
+
+\Item{11.} $-51x^{2}y^{3}$~by~$-17x^{2}y$.
+
+\Item{12.} $-28a^{4}b^{3}$~by~$7a^{3}b$.
+
+\Item{13.} $-36x^{2}y^{6}$~by~$-3xy^{2}$.
+
+\Item{14.} $-3x^{4}y^{6}$~by~$-5xy^{3}$.
+
+\Item{15.} $-12a^{2}b^{3}$~by~$8ab^{3}$.
+
+\Item{16.} $-abcd$~by~$ac$.
+
+\Item{17.} $-a^{2}b^{3}c^{4}d^{5}$~by~$-ab^{3}c^{3}d^{3}$.
+
+\Item{18.} $2x^{2}y^{2}z^{3}$~by~$-3xyz^{3}$.
+
+\Item{19.} $-5a^{5}b^{3}c^{7}$~by~$-a^{4}b^{2}c^{7}$.
+
+\Item{20.} $52a^{2}m^{3}n^{4}$~by~$13a^{2}m^{2}n^{3}$.
+
+\Item{21.} $13xy^{2}z^{4}$~by~$39xyz$.
+
+\Item{22.} $68xc^{2}d^{3}$~by~$-4xcd^{2}$.
+
+\Item{23.} $-8m^{5}n^{3}p^{2}$~by~$-4m^{5}np$.
+
+\Item{24.} $-6pqr^{3}$~by~$-2p^{2}qr$.
+
+\Item{25.} $26a^{2}g^{2}t^{5}$~by~$-2agt^{4}$.
+
+\Item{26.} $-a^{4}b^{2}c^{3}$~by~$-a^{5}b^{3}c^{4}$.
+
+\Item{27.} $-3x^{2}y^{2}z^{2}$~by~$-2x^{3}y^{4}z^{5}$.
+
+\Item{28.} $-6mnp$~by~$-3m^{2}n^{2}p^{2}$.
+
+\Item{29.} $-17a^{2}b^{3}c^{4}$~by~$51ab^{5}c^{4}$.
+
+\Item{30.} $-19mg^{2}t^{3}$~by~$57m2^gt^{4}$.
+\end{multicols}
+%% -----File: 052.png---Folio 46-------
+
+
+\Chapter{IV.}{Addition and Subtraction.}
+
+\Section{Integral Compound Expressions.}
+
+\Paragraph{80.} If an algebraic expression contains only \emph{integral
+forms}, that is, contains \emph{no letter in the denominator of
+any of its terms}, it is called an \Defn{integral expression}.
+
+Thus, $x^{3} + 7cx^{2} - c^{3} - 5c^{2}x$, is an integral expression.
+
+Integral and fractional expressions are so named on
+account of the \emph{form of the expressions}, and with no reference
+whatever to the \emph{numerical value} of the expressions
+when definite numbers are put in place of the letters.
+
+\Paragraph{81. Addition of Integral Compound Expressions.} The addition
+of two algebraic expressions can be represented by
+connecting the second expression with the first by the sign~$+$.
+If there are no like terms in the two expressions, the
+operation is \emph{algebraically complete} when the two expressions
+are thus connected.
+
+If, for example, it is required to add $m + n - p$ to
+$a + b + c$, the result will be $a + b + c + (m + n - p)$; or,
+removing the parenthesis (§~37), $a + b + c + m + n - p$.
+
+\Paragraph{82.} If there are like terms in the expressions, the like
+terms can be \emph{collected}; that is, every set of like terms can
+be replaced by a single term with a coefficient equal to
+the algebraic sum of the coefficients of the like terms.
+%% -----File: 053.png---Folio 47-------
+
+\Item{1.} Add $6x^{2} + 5x + 4$ to $x^{2} - 4x - 5$.
+\begin{DPalign*}
+\lintertext{\indent The sum}
+&= x^{2} - 4x - 5 + (6x^{2} + 5x + 4) \\
+&= x^{2} - 4x - 5 + 6x^{2} + 5x + 4
+\rintertext{§~37} \\
+&= x^{2} + 6x^{2} - 4x + 5x - 5 + 4 \\
+&= 7x^{2} + x - 1.
+\end{DPalign*}
+
+This process is more conveniently represented by arranging
+the terms in columns, so that like terms shall stand in
+the same column, as follows:
+\[
+\begin{array}{r*{2}{cr}}
+ x^{2} &-& 4x &-& 5 \\
+6x^{2} &+& 5x &+& 4 \\
+\hline
+7x^{2} &+& x &-& 1 \\
+\end{array}
+\]
+
+The coefficient of~$x^{2}$ in the result will be $6 + 1$, or~$7$; the
+coefficient of~$x$ will be $-4 + 5$, or~$1$; and the last term is
+$-5 + 4$, or~$-1$.
+
+\begin{Remark}[Note.] When the coefficient of a term is~$1$, it is not written, but
+understood.
+\end{Remark}
+
+\Item{2.} Add $2c^{3} - 5c^{2}d + 6cd^{2} + d^{3}$; $c^{3} + 6c^{2}d - 5cd^{2} - 2d^{3}$;
+and $3c^{3} - c^{2}d - 7cd^{2} - 3d^{3}$.
+\[
+\begin{array}{r*{3}{cr}}
+2c^{3} &-& 5c^{2}d &+& 6cd^{2} &+& d^{3} \\
+ c^{3} &+& 6c^{2}d &-& 5cd^{2} &-& 2d^{3} \\
+3c^{3} &-& c^{2}d &-& 7cd^{2} &-& 3d^{3} \\
+\hline
+6c^{3} & & &-& 6cd^{2} &-& 4d^{3} \\
+\end{array}
+\]
+
+The coefficient of~$c^{3}$ in the result will be $2 + 1 + 3$, or~$6$;
+the coefficient of~$c^{2}d$ will be $-5 + 6 - 1$, or~$0$; therefore
+$c^{2}d$ will not appear in the result; the coefficient of~$cd^{2}$ will
+be $6 - 5 - 7$, or~$-6$; and the coefficient of~$d^{3}$ will be
+$1 - 2 - 3$, or~$-4$.
+%% -----File: 054.png---Folio 48-------
+
+\Exercise{18.}
+
+Find the sum of:
+
+\Item{1.} $a^{2} - ab + b^{2}$; $a^{2} + ab + b^{2}$.
+
+\Item{2.} $3a^{2} + 5a-7$; $6a^{2} - 7a + 13$.
+
+\Item{3.} $x + 2y - 3z$; $-3x + y + 2z$; $2x - 3y + z$.
+
+\Item{4.} $3x + 2y - z$; $-x + 3y + 2z$; $2x - y + 3z$.
+
+\Item{5.} $-3a + 2b + c$; $a - 3b + 2c$; $2a + 3b - c$.
+
+\Item{6.} $-a + 3b + 4c$; $3a - b + 2c$; $2a + 2b - 2c$.
+
+\Item{7.} $4a^{2} + 3a + 5$; $-2a^{2} + 3a - 8$; $a^{2} - a + 1$.
+
+\Item{8.} $5ab + 6bc - 7ac$; $3ab - 9bc + 4ac$; $3bc + 6ac$.
+
+\Item{9.} $x^{3} + x^{2} + x$; $2x^{3} + 3x^{2} - 2x$; $3x^{3} - 4x^{2} + x$.
+
+\Item{10.} $3y^{2} - x^{2} - 3xy$; $5x^{2} + 6xy - 7y^{2}$; $x^{2} + 2y^{2}$.
+
+\Item{11.} $2a^{2} - 2ab + 3b^{2}$; $4b^{2} + 5ab - 2a^{2}$; $a^{2} - 3ab - 9b^{2}$.
+
+\Item{12.} $a^{3} - a^{2} + a - 1$; $a^{2} - 2a + 2$; $3a^{3} + 7a + 1$.
+
+\Item{13.} $2m^{3} - m^{2} - m$; $4m^{3} + 8m^{2} - 7$; $-3m^{3} + m + 9$.
+
+\Item{14.} $x^{3} - 3x + 6y$; $x^{2} + 2x - 5y$; $x^{3} - 3x^{2} + 5x$.
+
+\Item{15.} $6x^{3} - 5x + 1$; $x^{3} + 3x + 4$; $7x^{2} + 2x - 3$.
+
+\Item{16.} $a^{3} + 3a^{2}b - 3ab^{2}$; $-3a^{2}b - 6ab^{2} - b^{3}$; $3a^{2}b + 4ab^{2}$.
+
+\Item{17.} $a^{3} - 2a^{2}b - 2ab^{2}$; $a^{2}b - 3ab^{2} - b^{3}$; $3ab^{2} - 2a^{3} - b^{3}$.
+
+\Item{18.} $7x^{3} - 2x^{2}y + 9xy^{2} + 13y^{3}$; $5x^{2}y - 4xy^{2} - 2x^{3} - 3y^{3}$;
+$y^{3} - x^{3} - 3x^{2}y - 5xy^{2}$; $2x^{2}y - 5y^{3} - 2x^{3} - xy^{2}$.
+
+\Item{19.} Show that $x + y + z = 0$, if $x = a - b - c$,
+$y = 2b + 2c - 3a$, and $z = 2a - b - c$.
+
+\Item{20.} Show that $x + y = 3z$, if $x = 3a^{2} - 6a + 12$,
+$y = 9a^{2} + 12a - 21$, and $z = 4a^{2} + 2a - 3$.
+%% -----File: 055.png---Folio 49-------
+
+\Paragraph{83. Subtraction of Integral Compound Expressions.} The
+subtraction of one expression from another, if none of the
+terms are alike, can be represented only by connecting the
+subtrahend with the minuend by means of the sign~$-$.
+
+If, for example, it is required to subtract $a + b + c$ from
+$m + n - p$, the result will be represented by
+\[
+m + n - p - (a + b + c);
+\]
+or, removing the parenthesis (§~38),
+\[
+m + n - p - a - b - c.
+\]
+
+If, however, some of the terms in the two expressions are
+alike, we can replace two like terms by a single term.
+
+Thus, suppose it is required to subtract $a^{3} + 2a^{2} + 3a - 5$
+from $2a^{3} - 3a^{2} + 2a - 1$; the result may be expressed as
+follows:
+\[
+2a^{3} - 3a^{2} + 2a - 1 - (a^{3} + 2a^{2} + 3a - 5);
+\]
+or, removing the parenthesis (§~38),
+\begin{align*}
+&2a^{3} - 3a^{2} + 2a - 1 - a^{3} - 2a^{2} - 3a + 5 \\
+&\quad= 2a^{3} - a^{3} - 3a^{2} - 2a^{2} + 2a - 3a - 1 + 5 \\
+&\quad= a^{3} - 5a^{2} - a + 4.
+\end{align*}
+
+This process is more easily performed by writing the subtrahend
+below the minuend, \emph{mentally} changing the sign of
+each term in the subtrahend, and adding.
+\[
+\begin{array}{r*{3}{cr}}
+2a^{3} &-& 3a^{2} &+& 2a &-& 1 \\
+ a^{3} &+& 2a^{2} &+& 3a &-& 5 \\
+\hline
+ a^{3} &-& 5a^{2} &-& a &+& 4 \\
+\end{array}
+\]
+
+By changing the sign of each term in the subtrahend,
+the coefficient of~$a^{3}$ will be $2 - 1$, or~$1$; the coefficient of~$a^{2}$
+will be $-3 - 2$, or~$-5$; the coefficient of~$a$ will be~$2 - 3$,
+or~$-1$; the last term will be $-1 + 5$, or~$4$.
+%% -----File: 056.png---Folio 50-------
+
+Again, suppose it is required to subtract $x^{5} - 2ax^{4} -
+3a^{2} x^{3} + 4a^{3} x^{2}$ from $4a^{3} x^{2} - 2a^{2} x^{3} - 5ax^{4}$. Here terms
+which are alike can be written in columns, as before:
+\[
+\begin{array}{r*{3}{cr}}
+ &-& 5ax^{4} &-& 2a^{2} x^{3} &+& 4a^{3} x^{2} \\
+ x^{5} &-& 2ax^{4} &-& 3a^{2} x^{3} &+& 4a^{3} x^{2} \\
+\hline
+-x^{5} &-& 3ax^{4} &+& a^{2} x^{3} & &
+\end{array}
+\]
+
+There is no term of~$x^{5}$ in the minuend, hence the coefficient
+of~$x^{5}$ in the result will be~$0 - 1$, or~$-1$; the coefficient of~$ax^{4}$
+will be $-5 + 2$, or~$-3$; the coefficient\DPtypo{,}{} of~$a^{2}x^{3}$ will be
+$-2 + 3$, or~$+1$; the coefficient of~$a^{3}x^{2}$ will be $-4 + 4$, or~$0$,
+and therefore the term~$a^{3}x^{2}$ will not appear in the result.
+
+\Exercise{19.}
+
+Subtract:
+
+\Item{1.} $a - 2b + 3c$ from $2a - 3b + 4c$.
+
+\Item{2.} $a - 3b - 5c$ from $3a - 5b + c$.
+
+\Item{3.} $2x - 4y + 6z$ from $4x - y - 2z$.
+
+\Item{4.} $5x - 11y - 3z$ from $6x - 7y + 2z$.
+
+\Item{5.} $ab - ac - bc + bd$ from $ab + ac + bc + bd$.
+
+\Item{6.} $3ab + 2ac - 3bc + bd$ from $5ab - ac + bc + bd$.
+
+\Item{7.} $2x^{3} - x^{2} - 5x + 3$ from $3x^{3} + 2x^{2} - 3x - 5$.
+
+\Item{8.} $7x^{2} - 5x + 1 - a$ from $x^{3} - x + 1 - a$.
+
+\Item{9.} $7b^{3} + 8c^{3} - 15abc$ from $9b^{3} + 3abc - 7c^{3}$.
+
+\Item{10.} $x^{4} + x - 5x^{3} + 5$ from $7 - 2x^{2} - 3x^{3} + x^{4}$.
+
+\Item{11.} $a^{3} + b^{3} + c^{3} - 3abc$ from $3abc + a^{3} - 2b^{3} - 3c^{3}$.
+
+\Item{12.} $2x^{4} - 5x^{2} + 7x - 3$ from $x^{4} + 2 - 2x^{3} - x^{2}$.
+
+\Item{13.} $1 - x^{5} - x + x^{4} - x^{3}$ from $x^{4} + 1 + x + x^{2}$.
+
+\Item{14.} $a^{3} - b^{3} + 3a^{2}b - 3ab^{2}$ from $a^{3} + b^{3} - a^{2}b - ab^{2}$.
+
+\Item{15.} $a^{2} b - ab^{2} - 3a^{3} b^{3} - b^{4}$ from $b^{4} - 5a^{3} b^{3} - 2ab^{2} + a^{2} b$.
+
+\Item{16.} $-x^{3} + 7x^{2} y - 2y^{3} + 3xy^{2}$ from $3x^{3} + 5y^{3} - xy^{2} + 4x^{2}y$.
+%% -----File: 057.png---Folio 51-------
+
+\Paragraph{84. Parentheses or Brackets.} We have for positive numbers
+(§§~37,~38):
+\begin{alignat*}{2}
+a + (b + c) &= a + b + c,\qquad & \therefore a + b + c &= a + (b + c); \\
+a + (b - c) &= a + b - c, & \therefore a + b - c &= a + (b - c); \\
+a - (b + c) &= a - b - c, & \therefore a - b - c &= a - (b + c); \\
+a - (b - c) &= a - b + c, & \therefore a - b + c &= a - (b - c).
+\end{alignat*}
+
+That is, a parenthesis preceded by~$+$ may be removed
+\emph{without changing the sign of any term within the parenthesis};
+and any number of terms may be enclosed within a parenthesis
+preceded by the sign~$+$, \emph{without changing the sign
+of any term}.
+
+A parenthesis preceded by the sign~$-$ may be removed,
+\emph{provided the sign of every term within the parenthesis is
+changed}, namely, $+$~to~$-$, and $-$~to~$+$; and any number
+of terms may be enclosed within a parenthesis preceded
+by the sign~$-$, \emph{provided the sign of every term enclosed is
+changed}.
+
+The same laws hold for \emph{negative numbers}.
+
+\Paragraph{85.} Expressions may occur having a parenthesis within
+a parenthesis. In such cases parentheses of different shapes
+are used, and the beginner when he meets with a branch
+of a parenthesis~$($, or bracket~$[$, or brace~$\{$, must look carefully
+for the other part, whatever may intervene; and all
+that is included between the two parts of each parenthesis
+must be treated as the sign before it directs, without regard
+to other parentheses. It is best to remove each parenthesis
+in succession, \emph{beginning with the innermost}.
+\begin{align*}
+a - &\bigl\{b - [c - (d - e) + f]\bigr\} \\
+ &= a - \bigl\{b - [c - d + e + f]\bigr\} \\
+ &= a - \bigl\{b - c + d - e - f\bigr\} \\
+ &= a - b + c - d + e + f.
+\end{align*}
+%% -----File: 058.png---Folio 52-------
+
+\Exercise{20.}
+
+Remove the brackets and collect the like terms:
+
+\Item{1.} $a - b - (b - c) - a + 2b$.
+
+\Item{2.} $x - [x - (a - b) + a - y]$.
+
+\Item{3.} $3x - \bigl\{2y - [-7c - 2x] + y\bigr\}$.
+
+\Item{4.} $5a - [7 - (2b + 5) - 2a]$.
+
+\Item{5.} $x - [2x + (3a - 2x) - 5a]$.
+
+\Item{6.} $x - [15y - (13z + 12x)]$.
+
+\Item{7.} $2a - b + [4c - (b + 2c)]$.
+
+\Item{8.} $5a - \bigl\{b + [3c - (2b - c)]\bigr\}$.
+
+\Item{9.} $7x - \bigl\{5y - [3z - (3x + z)]\bigr\}$.
+
+\Item{10.} $(a - b + c) - (b - a - c) + (a + b - 2c)$.
+
+\Item{11.} $3x - [-2y - (2y - 3x) + z] + [x - (y - 2z - x)]$.
+
+\Item{12.} $x - [2x + (x - 2y) + 2y] - 3x - \bigl\{4x - [(x + 2y) - y]\bigr\}$.
+
+\Item{13.} $x - [y + z - x - (x + y) - z] + (3 x - \Vinc{2y + z})$.
+
+\begin{Remark}[Note.]
+The expression $-\Vinc{2y + z}$ is equivalent to~$-(2y + z)$.
+\end{Remark}
+
+Consider \emph{all the factors} that precede $x$,~$y$, and~$z$, respectively,
+as the \emph{coefficients} of these letters, and collect in
+brackets the coefficients of each of these letters:
+
+\Item{14.} $ax + by + cz - ay + az - bx
+= (a - b)x - (a - b)y + (a + c)z$.
+
+\Item{15.} $ax + az + by - cz - ay + cx$.
+
+\Item{16.} $2ax - 3ay - 4by + 5cx - 6bz - 7cz$.
+
+\Item{17.} $az - bmy + 3 cz - anx - cny + acx$.
+
+\Item{18.} $mnx - x - mny - y + mnz + z$.
+%% -----File: 059.png---Folio 53-------
+
+
+\Chapter{V.}{Multiplication and Division.}
+
+\Section{Compound Integral Expressions.}
+
+\Paragraph{86. Multiplication. Polynomials by Monomials.}
+
+We have for positive numbers (§~39),
+\begin{align*}
+a(b + c) &= ab + ac, \\
+a(b - c) &= ab - ac.
+\end{align*}
+
+The same law holds for negative numbers.
+
+\Dictum{To multiply a polynomial by a monomial}, therefore,
+\begin{Theorem}
+Multiply each term of the polynomial by the monomial,
+and add the partial products.
+\end{Theorem}
+
+\Item{1.} Find the product of $ab + ac - bc$ and~$abc$.
+\[
+\begin{array}{rcr}
+ab + ac - bc && \\
+ abc && \\
+\hline
+a^{2}b^{2}c + a^{2}bc^{2} &-& ab^{2}c^{2}
+\end{array}
+\]
+
+\begin{Remark}[Note.]
+We multiply~$ab$, the first term of the multiplicand, by~$abc$,
+and work to the right.
+\end{Remark}
+
+\Exercise{21.}
+
+Find the product of:
+\begin{multicols}{2}
+\Item{1.} $x + 7$ and $x$.
+
+\Item{2.} $2x - 3y$ and $4x$.
+
+\Item{3.} $2x - 3y$ and $7y$.
+
+\Item{4.} $x - 2a$ and $2a$.
+
+\Item{5.} $-x + 3b$ and $-b$.
+
+\Item{6.} $2a^{2} - 3ab$ and $-3a$.
+
+\Item{7.} $2x^{2} + 3xz$ and $5z$.
+
+\Item{8.} $a^{2} - 5ab$ and $5ab$.
+%% -----File: 060.png---Folio 54-------
+
+\Item{9.} $x^{2} - 3 xy$ and $-y^{2}$.
+
+\Item{10.} $2 x^{3} - 3x^{2}$ and $2x^{2}$.
+
+\Item{11.} $x^{2} - 3y^{2}$ and $4y$.
+
+\Item{12.} $x^{2} - 3 y^{2}$ and $-x^{2}$.
+
+\Item{13.} $b^{3} - a^{2}b^{2}$ and $-a^{3}$.
+
+\Item{14.} $-a^{2}b^{2} - a^{3}$ and $-a^{2}$.
+
+\Item{15.} $2x^{3} - 3x^{2} + x$ and $2x^{2}$.
+
+\Item{16.} $a^{2} - 5ab - b^{2}$ and $5ab$.
+\end{multicols}
+
+\Item{17.} $a^{3} + 2a^{2}b + 2ab^{2}$ and $a^{2}$.
+
+\Item{18.} $a^{3} + 2a^{2}b + 2ab^{2}$ and $b^{3}$.
+
+\Item{19.} $4x^{2} - 6xy - 9y^{2}$ and $2x$.
+
+\Item{20.} $-x^{2} - 2xy + y^{2}$ and $-y$.
+
+\Item{21.} $-a^{3} - a^{2}b^{2} - b^{3}$ and $-a^{2}$.
+
+\Item{22.} $-x^{2} + 2xy - y^{2}$ and $-y^{2}$.
+
+\Item{23.} $3 a^{2}b^{2} - 4 ab^{3} + a^{3}b$ and $5 a^{2}b^{2}$.
+
+\Item{24.} $-ax^{2} + 3axy^{2} - ay^{4}$ and $-3ay^{2}$.
+
+\Item{25.} $x^{12} - x^{10}y^{3} - x^{3}y^{10}$ and $x^{3}y^{2}$.
+
+\Item{26.} $-2x^{3} + 3x^{2}y^{2} - 2xy^{3}$ and $-2x^{2}y^{3}$.
+
+\Item{27.} $a^{3}x^{2}y^{5} - a^{2}xy^{4} - ay^{3}$ and $a^{7}x^{3}y^{5}$.
+
+\Item{28.} $3a^{2}b^{2} - 2ab^{3} + 5a^{3}b$ and $5a^{2}b^{3}$.
+
+\Paragraph{87. Multiplication. Polynomials by Polynomials.}
+
+If we have $m + n +p$ to be multiplied by $a + b + c$, we
+may substitute~$M$ for the multiplier $a + b + c$. Then
+\[
+M(m + n + p) = Mm + Mn + Mp.
+\]
+
+If now we substitute $a + b + c$ for~$M$, we shall have
+\begin{align*}
+&(a + b + c) m + (a + b + c) n + (a + b + c) p \\
+&= am + bm + cm + an + bn + cn + ap + bp + cp\DPtypo{.}{} \\
+&= am + an + ap + bm + bn + bp + cm + cn + cp.
+\end{align*}
+
+\Dictum{To find the product of two polynomials}, therefore,
+\begin{Theorem}
+Multiply every term of the multiplicand by each term of
+the multiplier, and add the partial products.
+\end{Theorem}
+%% -----File: 061.png---Folio 55-------
+
+\Paragraph{88.} In multiplying polynomials, it is a convenient
+arrangement to write the multiplier under the multiplicand,
+and place like terms of the partial products in
+columns.
+
+\Item{1.} Multiply $2x - 3y$ by $5x - 4y$.
+\[
+\begin{array}{ccrrcr}
+2x &-& 3&y && \\
+5x &-& 4&y && \\
+\cline{1-4}
+10x^{2} &-& 15&xy & & \\
+ &-& 8&xy &+& 12y^{2} \\
+\hline
+10x^{2} &-& 23&xy &+& 12y^{2} \\
+\end{array}
+\]
+
+We multiply~$2x$, the first term of the multiplicand, by~$5x$,
+the first term of the multiplier, and obtain~$10x^{2}$, then~$-3y$,
+the second term of the multiplicand, by~$5x$, and obtain~$-15xy$.
+The first line of partial products is $10x^{2} - 15xy$.
+In multiplying by~$-4y$, we obtain for a second line of partial
+products $-8xy + 12y^{2}$, which is put one place to the
+right, so that the like terms $-15xy$~and~$-8xy$ may stand
+in the same column. We then add the coefficients of the
+like terms, and obtain the complete product in its simplest
+form.
+
+\Item{2.} Multiply $2a + 3 - 4a^{2}$ by $3 - 2a^{2} - 3a$.
+
+Arrange both multiplicand and multiplier according to
+the \emph{ascending} powers of~$a$.
+\[
+\begin{array}{r*{4}{cr}}
+3 &+& 2a &-& 4a^{2} & & && \\
+3 &-& 3a &-& 2a^{2} & & && \\
+\cline{1-5}
+9 &+& 6a &-&12a^{2} & & && \\
+ &-& 9a &-& 6a^{2} &+&12a^{3} & & \\
+ & & &-& 6a^{2} &-& 4a^{3} &+& 8a^{4} \\
+\hline
+9 &-& 3a &-&24a^{2} &+& 8a^{3} &+& 8a^{4} \\
+\end{array}
+\]
+%% -----File: 062.png---Folio 56-------
+
+\Item{3.} Multiply $3x + x^{4} - 2x^{2}$ by $x^{3} - 2 - x$.
+
+Arrange according to the \emph{descending} powers of~$x$.
+\[
+\begin{array}{r*{5}{cr}}
+x^{4} &-& 2x^{2} &+& \PadTo[l]{3x^4}{3x} && && && \\
+x^{3} &-& \PadTo[c]{2x^2}{x} &-& \PadTo[l]{3x^4}{2}&& && && \\
+\cline{1-5}
+x^{7} &-& 2x^{5} &+& 3x^{4} && && && \\
+ &-& x^{5} & & &+& 2x^{3} &-& 3x^{2} && \\
+ & & &-& 2x^{4} & & &+& 4x^{2} &-& 6x \\
+\hline
+x^{7} &-& 3x^{5} &+& x^{4} &+& 2x^{3} &+& x^{2} &-& 6x \\
+\end{array}
+\]
+
+\Item{4.} Multiply $a^{2} + b^{2} + c^{2} - ab - bc - ac$ by $a + b + c$.
+
+Arrange according to descending powers of~$a$.
+\[
+\begin{array}{l*{8}{cr}}
+a^{2} &-& ab &-& ac &+& b^{2} &-& bc &+& c^{2} \\
+a &+& b &+& c \\
+\cline{1-11}
+a^{3} &-& a^{2}b &-& a^{2}c &+& ab^{2} &-& abc &+& ac^{2} \\
+ &+& a^{2}b & & &-& ab^{2} &-& abc & & &+& b^{3} &-& b^{2}c + bc^{2} \\
+ & & &+& a^{2}c & & &-& abc &-& ac^{2} & & &+& b^{2}c - bc^{2} &+& c^{3} \\
+\hline
+a^{3} & & & & & & &-&3abc & & &+& b^{3} & & &+& c^{3} \\
+\end{array}
+\]
+
+\begin{Remark}[Note.]
+The pupil should observe that, with a view to bringing
+like terms of the partial products in columns, the terms of the multiplicand
+and multiplier are arranged in the \emph{same order}.
+\end{Remark}
+
+\ScreenBreak
+\Exercise{22.}
+
+Find the product of:
+\begin{multicols}{2}
+\Item{1.} $x + 7$ and $x + 6$.
+
+\Item{2.} $x - 7$ and $x + 6$.
+
+\Item{3.} $x + 7$ and $x - 6$.
+
+\Item{4.} $x - 7$ and $x - 6$.
+
+\Item{5.} $x + 8$ and $x - 5$.
+
+\Item{6.} $2x + 3$ and $2x + 3$.
+
+\Item{7.} $2x - 3$ and $2x - 3$.
+
+\Item{8.} $2x + 3$ and $2x - 3$.
+
+\Item{9.} $3x - 2$ and $2 - 3x$.
+
+\Item{10.} $5x - 3$ and $4x - 7$.
+
+\Item{11.} $a - 2b$ and $a + 3b$.
+
+\Item{12.} $a - 7b$ and $a - 5b$.
+%% -----File: 063.png---Folio 57-------
+
+\Item{13.} $5x - 3y$ and $5x - 3y$.
+
+\Item{14.} $x - b$ and $x - c$.
+
+\Item{15.} $2m - p$ and $4m - 3p$.
+
+\Item{16.} $a + b + c$ and $a - c$.
+
+\Item{17.} $a^{2} - ab + b^{2}$ and $a^{2} + b^{2}$.
+
+\Item{18.} $x^{3} - 3x^{2} + 7$ and $x^{2} - 3$.
+
+\Item{19.} $a^{2} + ab + b^{2}$ and $a - b$.
+
+\Item{20.} $a^{2} - ab + b^{2}$ and $a + b$.
+\end{multicols}
+
+\Item{21.} $x^{2} + 5x - 10$ and $2x^{2} + 3x - 4$.
+
+\Item{22.} $3x^{3} - 2x^{2} + x$ and $3x^{2} + 2x - 2$.
+
+\Item{23.} $x^{3} + 2x^{2}y + 3xy^{2}$ and $x^{2} - 2xy + y^{2}$.
+
+\Item{24.} $a^{2} - 3ab - b^{2}$ and $-a^{2} + ab + 2b^{2}$.
+
+\Item{25.} $3a^{2}b^{2} + 2 ab^{3} - 5a^{3}b$ and $5a^{2}b^{2} - ab^{3} - b^{4}$.
+
+\Item{26.} $a^{2} - 2ab + b^{2}$ and $a^{2} + 2ab + b^{2}$.
+
+\Item{27.} $ab + ac + cd$ and $ab - ac + cd$.
+
+\Item{28.} $3x^{2}y^{2} + xy^{3} - 2x^{3}y$ and $x^{2}y^{2} + xy^{3} - 3y^{4}$.
+
+\Item{29.} $x^{2} + 2xy - y^{2}$ and $x^{2} - 2xy + y^{2}$.
+
+\Item{30.} $3x^{2} + xy - y^{2}$ and $x^{2} - 2xy - 3y^{2}$.
+
+\Item{31.} $a^{2} - 2ab - b^{2}$ and $b^{2} - 2ab - a^{2}$.
+
+\Item{32.} $a^{2} + b^{2} + c^{2} - ac$ and $a^{2} - b^{2} - c^{2}$.
+
+\Item{33.} $a^{2} + 4abx - 4a^{2}b^{2}x^{2}$ and $a^{2} - 4abx + 4a^{2}b^{2}x^{2}$.
+
+\Item{34.} $3 a^{2} - 2abx + b^{2}x^{2}$ and $2a^{2} + 3abx - 2b^{2}x^{2}$.
+
+\Item{35.} $2x^{3}y + 4x^{2}y^{2} - 8xy^{3}$ and $2xy^{3} - 3x^{2}y^{2} + 5x^{3}y$.
+
+\Paragraph{89. Division. Polynomials by Monomials.}
+\begin{DPalign*}
+\lintertext{\indent Since}
+a(b + c - d) &= ab + ac - ad, \\
+\therefore \frac{ab + ac - ad}{a}
+ &= \frac{ab}{a} + \frac{ac}{a} - \frac{ad}{a} \\
+ &= b + c - d.
+\end{DPalign*}
+%% -----File: 064.png---Folio 58-------
+
+\Dictum{To divide a polynomial by a monomial}, therefore,
+\begin{Theorem}
+Divide each term of the dividend by the divisor, and add
+the partial quotients.
+\end{Theorem}
+
+Divide $3a^{4}b^{2}c - 9a^{3}bc^{2} - 6a^{2}c^{3}$ by $3a^{2}c$.
+\begin{align*}
+\frac{3a^{4}b^{2}c - 9a^{3}bc^{2} - 6a^{2}c^{3}}{3a^{2}c}
+ &= \frac{3a^{4}b^{2}c}{3a^{2}c}
+ - \frac{9a^{3}bc^{2}}{3a^{2}c}
+ - \frac{6a^{2}c^{3}}{3a^{2}c} \\
+ &= a^{2}b^{2} - 3abc - 2c^{2}.
+\end{align*}
+
+\Exercise{23.}
+
+Divide:
+\begin{multicols}{2}
+\Item{1.} $2a^{3} - a^{2}$ by $a$.
+
+\Item{2.} $42a^{5} - 6a^{2}$ by $6a$.
+
+\Item{3.} $21x^{4} + 3x^{2}$ by $3x^{2}$.
+
+\Item{4.} $35m^{4} - 7p^{2}$ by $7$.
+
+\Item{5.} $27x^{5} - 45x^{4}$ by $9x^{2}$.
+
+\Item{6.} $24x^{6} - 8x^{3}$ by $-8x^{3}$.
+
+\Item{7.} $34x^{3} - 51x^{2}$ by $17x$.
+
+\Item{8.} $5x^{5} - 10x^{3}$ by $-5x^{3}$.
+
+\Item{9.} $-3a^{2} - 6ac$ by $-3a$.
+
+\Item{10.} $-5x^{3} + x^{2}y$ by $-x^{2}$.
+
+\Item{11.} $2a^{5}x^{3} - 2a^{4}x^{2}$ by $2a^{4}x^{2}$.
+
+\Item{12.} $-x^{2}y - x^{2}y^{2}$ by $-xy$.
+
+\Item{13.} $9a - 12b + 6c$ by $-3$.
+
+\Item{14.} $a^{3}b^{2} - a^{2}b^{5} - a^{4}b^{2}$ by $a^{2}b$.
+
+\Item{15.} $3x^{3} - 6x^{2}y - 9xy^{2}$ by $3x$.
+
+\Item{16.} $x^{2}y^{2} - x^{3}y - xy^{3}$ by $xy$.
+
+\Item{17.} $a^{3} - a^{2}b - ab^{2}$ by $-a$.
+
+\Item{18.} $a^{2}b - ab + ab^{2}$ by $-ab$.
+
+\Item{19.} $xy - x^{2}y^{2} + x^{3}y^{3}$ by $-xy$.
+
+\Item{20.} $-x^{6} - 2x^{5} - x^{4}$ by $-x^{4}$.
+\end{multicols}
+
+\Item{21.} $a^{2}x - abx - acx$ by $ax$.
+
+\Item{22.} $3x^{5}y^{2} - 3x^{4}y^{3} - 3x^{2}y^{4}$ by $3x^{2}y^{2}$.
+
+\Item{23.} $a^{2}b^{2} - 2ab - 3ab^{3}$ by $ab$.
+
+\Item{24.} $3a^{3}c^{3} + 3a^{2}c - 3ac^{2}$ by $3ac$.
+%% -----File: 065.png---Folio 59-------
+
+\Paragraph{90. Division. Polynomials by Polynomials.}
+\[
+\begin{array}{l*{4}{cr}}
+\text{If the divisor (one factor)}
+ &=& & & a &+& b &+& c, \\
+\text{and the quotient (other factor)}
+ &=& & & n &+& p &+& q, \\
+\cline{5-9}
+ & & & &an &+& bn&+& cn \\
+\text{then the dividend (product)}
+ &=& \smash{\left\{\threelines\right.}\kern-4pt
+ &+&ap &+& bp&+& cp \\
+ & & &+&aq &+& bq&+& cq\rlap{.} \\
+\end{array}
+\]
+
+The first term of the dividend is~$an$; that is, the product
+of~$a$, the first term of the divisor, by~$n$, the first term of the
+quotient. The first term~$n$ of the quotient is therefore
+found by dividing~$an$, the first term of the dividend, by~$a$,
+the first term of the divisor.
+
+If the partial product formed by multiplying the entire
+divisor by~$n$ be subtracted from the dividend, the first term
+of the remainder~$ap$ is the product of~$a$, the first term of
+the divisor, by~$p$, the second term of the quotient; that is,
+the second term of the quotient is obtained by dividing the
+first term of the remainder by the first term of the divisor.
+In like manner, the third term of the quotient is obtained
+by dividing the first term of the new remainder by the first
+term of the divisor; and so on.
+
+\Dictum{To divide one polynomial by another}, therefore,
+\begin{Theorem}
+Arrange both the dividend and divisor in ascending or
+descending powers of some common letter.
+
+Divide the first term of the dividend by the first term of
+the divisor.
+
+Write the result as the first term of the quotient.
+
+Multiply all the terms of the divisor by the first term of
+the quotient.
+
+Subtract the product from the dividend.
+
+If there is a remainder, consider it as a new dividend,
+and proceed as before.
+\end{Theorem}
+%% -----File: 066.png---Folio 60-------
+
+\Paragraph{91.} It is of fundamental importance to arrange the dividend
+and divisor \emph{in the same order} with respect to a common
+letter, and \emph{to keep this order throughout the operation}.
+
+The beginner should study carefully the processes in the
+following examples:
+
+\Item{1.} Divide $x^{2} + 18x + 77$ by $x + 7$.
+\[
+\begin{array}{r*{2}{cr}|l}
+x^{2} &+& 18x &+& 77 & x + 7 \\
+\cline{6-6}
+x^{2} &+& 7x & & & x + 11 \\
+\cline{1-5}
+ & & 11x &+& \NoBar{77} \\
+ & & 11x &+& \NoBar{77} \\
+\cline{3-5}
+\end{array}
+\]
+
+\begin{Remark}[Note.]
+The pupil will notice that by this process we have in
+effect separated the dividend into two parts, $x^{2} + 7x$ and $11x + 77$,
+and divided each part by $x + 7$, and that the complete quotient is the
+sum of the partial quotients $x$~and~$11$. Thus,
+\begin{align*}
+x^{2} + 18x + 77
+ &= x^{2} + 7x + 11x + 77 = (x^{2} + 7x) + (11x + 77). \\
+\therefore \frac{x^{2} + 18x + 77}{x + 7}
+ &= \frac{x^{2} + 7x}{x + 7} + \frac{11x + 77}{x + 7} = x + 11.
+\end{align*}
+\end{Remark}
+
+\Item{2.} Divide $a^{2} - 2ab + b^{2}$ by $a - b$.
+\[
+\begin{array}{r*{2}{cr}|l}
+a^{2} &-& 2ab &+& b^{2} & a - b \\
+\cline{6-6}
+a^{2} &-& ab & & & a - b \\
+\cline{1-5}
+ &-& ab &+& \NoBar{b^{2}} \\
+ &-& ab &+& \NoBar{b^{2}} \\
+\cline{2-5}
+\end{array}
+\]
+
+\Item{3.} Divide $a^{4} - ab^{3} + b^{4} + 2a^{2}b^{2} - a^{3}b$ by $a^{2} + b^{2}$.
+
+Arrange according to the descending powers of~$a$.
+\[
+\begin{array}{r*{4}{cr}|l}
+a^{4} &-& a^{3}b &+& 2a^{2}b^{2} &-& ab^{3} &+& b^{4} & a^{2} + b^{2} \\
+\cline{10-10}
+a^{4} & & &+& a^{2}b^{2} & & & & & a^{2} - ab + b^{2} \\
+\cline{1-9}
+ &-& a^{3}b &+& a^{2}b^{2} &-& ab^{3} &+& \NoBar{b^{4}} \\
+ &-& a^{3}b & & &-& ab^{3} \\
+\cline{2-9}
+ & & &+& a^{2}b^{2} & & &+& \NoBar{b^{4}} \\
+ & & &+& a^{2}b^{2} & & &+& \NoBar{b^{4}} \\
+\cline{4-9}
+\end{array}
+\]
+%% -----File: 067.png---Folio 61-------
+
+\Item{4.} Divide $10a^{2}b^{2} - 20b^{4} - 17a^{3}b + 6a^{4} + ab^{3}$
+by $2a^{2} - 4b^{2} - 3ab$.
+
+Arrange according to descending powers of~$a$.
+\[
+\begin{array}{r*{4}{cr}|l}
+6a^{4} &-&17a^{3}b &+& 10a^{2}b^{2} &+& ab^{3} &-& 20b^{4} & 2a^{2} - 3ab - 4b^{2} \\
+\cline{10-10}
+6a^{4} &-& 9a^{3}b &-& 12a^{2}b^{2} & & & & & 3a^{2} - 4ab + 5b^{2} \\
+\cline{1-9}
+ &-& 8a^{3}b &+& 22a^{2}b^{2} &+& ab^{3} &-& \NoBar{20b^{4}} \\
+ &-& 8a^{3}b &+& 12a^{2}b^{2} &+&16ab^{3} \\
+\cline{2-9}
+ & & & & 10a^{2}b^{2} &-&15ab^{3} &-& \NoBar{20b^{4}} \\
+ & & & & 10a^{2}b^{2} &-&15ab^{3} &-& \NoBar{20b^{4}} \\
+\cline{5-9}
+\end{array}
+\]
+
+\Item{5.} Divide $5x^{3} - 3x^{4} - 4x^{2} + 1 + x$ by $1 + 2x - 3x^{2}$.
+
+Arrange according to ascending powers of~$x$.
+\[
+\begin{array}{r*{4}{cr}|l*{2}{cr}}
+1 &+& x &-& 4x^{2} &+& 5x^{3} &-& 3x^{4} & 1 &+& 2x &-& 3x^{2} \\
+\cline{10-14}
+1 &+& 2x &-& 3x^{2} & & & & & 1 &-& x &+& x^{2} \\
+\cline{1-9}
+ &-& x &-& x^{2} &+& 5x^{3} &-& \NoBar{3x^{4}} \\
+ &-& x &-& 2x^{2} &+& 3x^{3} \\
+\cline{2-9}
+ & & & & x^{2} &+& 2x^{3} &-& \NoBar{3x^{4}} \\
+ & & & & x^{2} &+& 2x^{3} &-& \NoBar{3x^{4}} \\
+\end{array}
+\]
+
+\Item{6.} Divide $a^{3} + b^{3} + c^{3} - 3abc$ by $a + b + c$.
+
+Arrange according to descending powers of~$a$.
+\[
+%[** TN: Re-formatted slightly from the original]
+\begin{array}{r*{4}{cr}clcr|l}
+a^{3} & & & & &-& 3abc & & &+& b^{3} &+& c^{3} & a + b + c \\
+\cline{14-14}
+a^{3} &+& a^{2}b &+& a^{2}c & & & & & & & & &
+\smash[b]{\begin{aligned}[t]
+ a^{2} &- ab - ac \\
+ &+b^{2} - bc + c^{2}
+\end{aligned}} \\
+\cline{1-13}
+ &-& a^{2}b &-& a^{2}c &-& 3abc & & &+& b^{3} &+& \NoBar{c^{3}} \\
+ &-& a^{2}b &-& ab^{2} &-& abc \\
+\cline{2-13}
+ &-& a^{2}c &+& ab^{2} &-& 2abc & & &+& b^{3} &+& \NoBar{c^{3}} \\
+ &-& a^{2}c & & &-& abc &-& ac^{2} \\
+\cline{2-13}
+ & & & & ab^{2} &-& abc &+& ac^{2} &+& b^{3} &+& \NoBar{c^{3}} \\
+ & & & & ab^{2} & & & & &+& b^{3} &+& \NoBar{b^{2}c} \\
+\cline{4-13}
+ & & & & &-& abc &+& ac^{2} &-& b^{2}c&+& \NoBar{c^{3}} \\
+ & & & & &-& abc & & &-& b^{2}c&-& \NoBar{bc^{2}} \\
+\cline{6-13}
+ & & & & & & & & ac^{2} &+& bc^{2}&+& \NoBar{c^{3}} \\
+ & & & & & & & & ac^{2} &+& bc^{2}&+& \NoBar{c^{3}} \\
+\cline{9-13}
+\end{array}
+\]
+%% -----File: 068.png---Folio 62-------
+
+\Exercise{24.}
+
+Divide:
+\begin{multicols}{2}
+\Item{1.} $x^{2} + 15x + 56$ by $x + 7$.
+
+\Item{2.} $x^{2} - 15x + 56$ by $x - 7$.
+
+\Item{3.} $x^{2} + x-56$ by $x - 7$.
+
+\Item{4.} $x^{2} - x-56$ by $x + 7$.
+
+\Item{5.} $2a^{2} + 11a + 5$ by $2a + 1$.
+
+\Item{6.} $6a^{2} - 7a-3$ by $2a - 3$.
+
+\Item{7.} $4a^{2} + 23a + 15$ by $4a + 3$.
+
+\Item{8.} $3a^{2} - 4a-4$ by $2 - a$.
+
+\Item{9.} $x^{4} + x^{2} + 1$ by $x^{2} + x + 1$.
+
+\Item{10.} $x^{8} + x^{4} + 1$ by $x^{4} - x^{2} + 1$.
+
+\Item{11.} $1 - a^{3}b^{3}$ by $1 - ab$.
+
+\Item{12.} $x^{3} - 8x-3$ by $x - 3$.
+\end{multicols}
+
+\Item{13.} $a^{2} - 2ab + b^{2} - c^{2}$ by $a - b - c$.
+
+\Item{14.} $a^{2} + 2ab + b^{2} - c^{2}$ by $a + b + c$.
+
+\Item{15.} $x^{2} - y^{2} + 2yz - z^{2}$ by $x - y + z$.
+
+\Item{16.} $c^{4} + 2c^{2} - c + 2$ by $c^{2} - c + 1$.
+
+\Item{17.} $x^{2} - 4y^{2} - 4yz - z^{2}$ by $x + 2y + z$.
+
+Arrange and divide:
+
+\Item{18.} $x^{3} - 6a^{3} + 11a^{2}x - 6ax^{2}$ by $x^{2} + 6a^{2} - 5ax$.
+
+\Item{19.} $a^{2} - 4b^{2} - 9c^{2} + 12bc$ by $a - 3c + 2b$.
+
+\Item{20.} $2a^{3} - 8a + a^{4} + 12-7a^{2}$ by $2 + a^{2} - 3a$.
+
+\Item{21.} $q^{4} + 6q^{3} + 4 + 12q + 13q^{2}$ by $3q + 2 + q^{2}$.
+
+\Item{22.} $27a^{3} - 8b^{3}$ by $3a - 2b$.
+
+Find the remainder when:
+
+\Item{23.} $a^{4} + 9a^{2} + 15-11a - 7a^{3}$ is divided by $a - 5$.
+
+\Item{24.} $7 - 8c^{2} + 5c^{3} + 8c$ is divided by $5c - 3$.
+
+\Item{25.} $3 + 11a^{3} + 30a^{4} - 82a^{2} - 5a$ is divided by $3a^{2} - 4 + 2a$.
+
+\Item{26.} $2x^{3} - 16x + 10-39x^{2} + 17x^{4}$ is divided by $2 - 5x^{2} - 4x$.
+%% -----File: 069.png---Folio 63-------
+
+\Exercise[Miscellaneous Examples.]{25.}
+
+\Item{1.} Add $2a^{2} - 3ac - 3ab$; $2b^{2} + 3ac + a^{2}$; $-a^{2} - 2b^{2} + 3ab$.
+
+\Item{2.} Subtract $3a^{4} - 2 a^{3}b + 4 a^{2}b^{2}$ from $4b^{4} - 2 ab^{3} + 4 a^{2}b^{2}$.
+
+\Item{3.} Simplify $x - y - \{z - x - (y - x + z)\}$.
+
+\Item{4.} Multiply $a^{2} + b^{2} + c^{2} - d^{2}$ by $a^{2} + b^{2} - c^{2} + d^{2}$.
+
+\Item{5.} Divide $10y^{6} + 2 - 12y^{5}$ by $1 + y^{2} - 2y$.
+
+\Item{6.} If $a = 1$, $b = 2$, and $c = -3$, find the value of
+ $a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$.
+
+\Item{7.} Simplify $x - (y - z) - \bigl\{4y + [2y - (z - x)]\bigr\}$.
+
+\Item{8.} Multiply $a^{2} + b^{2} + c^{2} - ab - ac - bc$ by $a + b + c$.
+
+\Item{9.} Divide $16y^{4} - 21x^{2}y^{2} + 21x^{3}y - 10x^{4}$ by $4y^{2} - 5x^{2} + 3xy$.
+
+\Item{10.} Add $-2a^{4} + 3a^{3}b - 4a^{2}b^{2}$; $2a^{3}b - 3a^{2}b^{2}$; $7a^{2}b^{2} + 2a^{4} - b^{4}$.
+
+\Item{11.} From $3x^{3} + 5x - 1$ take the sum of $x - 5 + 5x^{2}$ and
+$3 + 4x -3x^{2}$.
+
+\Item{12.} The minuend is $9c^{2} + 11c - 5$, and the remainder is
+$6c^{2} - 13c + 7$. What is the subtrahend?
+
+\Item{13.} Find the remainder when $a^{4} + 6b^{4}$ is divided by
+$a^{2} + 2ab + 2b^{2}$.
+
+\Item{14.} Multiply $2 - 5x^{2} - 4x$ by $5 + 2x - 3x^{2}$.
+
+\Item{15.} Divide $a^{6} + a^{5}x + a^{4}x^{2} - a^{3}x^{3} + x^{6}$ by $a^{2} + ax + x^{2}$.
+
+Bracket the coefficients of the different powers of~$x$:
+
+\Item{16.} $ax^{3} - cx + bx^{2} - bx^{3} + cx^{2} - x$.
+
+\Item{17.} $ax^{4} - 2x + bx^{4} - cx - ax^{3} + bx^{3}$.
+
+\Item{18.} $x^{3} - bx^{2} - cx + bx - cx^{2} + ax^{3}$.
+%% -----File: 070.png---Folio 64-------
+
+
+\Chapter[Special Rules in Multiplication and Division.]
+{VI.}{Multiplication and Division.}
+
+\Section{Special Rules.}
+
+\Paragraph{92. Special Rules of Multiplication.} Some results of multiplication
+are of so great utility in shortening algebraic
+work that they should be carefully noticed and remembered.
+The following are important:
+
+\Paragraph{93. Square of the Sum of Two Numbers.}
+\begin{align*}
+(a + b)^{2}
+ &= (a + b)(a + b) \\
+ &= a(a + b) + b(a + b) \\
+ &= a^{2} + ab + ab + b^{2} \\
+ &= a^{2} + 2ab + b^{2}.
+\end{align*}
+
+Since $a$~and~$b$ stand for any two numbers, we have
+\begin{Theorem}[\textsc{Rule 1.}] The square of the sum of two numbers is the
+sum of their squares plus twice their product.
+\end{Theorem}
+
+\Paragraph{94. Square of the Difference of Two Numbers.}
+\begin{align*}
+(a - b)^{2}
+ &= (a - b) (a - b) \\
+ &= a(a - b) - b(a - b) \\
+ &= a^{2} - ab - ab + b^{2} \\
+ &= a^{2} - 2ab + b^{2}.
+\end{align*}
+
+Hence we have
+\begin{Theorem}[\textsc{Rule 2.}] The square of the difference of two numbers is
+the sum of their squares minus twice their product.
+\end{Theorem}
+%% -----File: 071.png---Folio 65-------
+
+\Paragraph{95. Product of the Sum and Difference of Two Numbers.}
+\begin{align*}
+(a + b)(a - b)
+ &= a(a - b) + b(a - b) \\
+ &= a^{2} - ab + ab - b^{2} \\
+ &= a^{2} - b^{2}.
+\end{align*}
+
+Hence, we have
+\begin{Theorem}[\textsc{Rule 3.}] The product of the sum and difference of two
+numbers is the difference of their squares.
+\end{Theorem}
+
+If we put $2x$~for~$a$, and $3$~for~$b$, we have
+\begin{DPalign*}
+\lintertext{\indent Rule 1,} &(2x + 3)^{2} = 4x^{2} + 12x + 9. \\
+\lintertext{\indent Rule 2,} &(2x - 3)^{2} = 4x^{2} - 12x + 9. \\
+\lintertext{\indent Rule 3,} &(2x + 3)(2x - 3) = 4x^{2} - 9.
+\end{DPalign*}
+
+\Exercise{26.}
+
+Write by inspection the value of:
+\begin{multicols}{2}
+\Item{1.} $(m + n)^{2}$.
+
+\Item{2.} $(c - a)^{2}$.
+
+\Item{3.} $(a + 2c)^{2}$.
+
+\Item{4.} $(3a - 2b)^{2}$.
+
+\Item{5.} $(2a + 3b)^{2}$.
+
+\Item{6.} $(a - 3b)^{2}$.
+
+\Item{7.} $(2x - y)^{2}$.
+
+\Item{8.} $(y - 2x)^{2}$.
+
+\Item{9.} $(a + 5b)^{2}$.
+
+\Item{10.} $(2a - 5c)^{2}$.
+
+\Item{11.} $(x + y)(x - y)$.
+
+\Item{12.} $(4a - b)(4a + b)$.
+
+\Item{13.} $(2b - 3c)(2b + 3c)$.
+
+\Item{14.} $(x + 5b)(x + 5b)$.
+
+\Item{15.} $(y - 2z)(y - 2z)$.
+
+\Item{16.} $(y + 3z)(y - 3z)$.
+
+\Item{17.} $(2a - 3b)(2a + 3b)$.
+
+\Item{18.} $(2a - 3b)(2a - 3b)$.
+
+\Item{19.} $(2a + 3b)(2a + 3b)$.
+
+\Item{20.} $(5x + 3a)(5x - 3a)$.
+\end{multicols}
+%% -----File: 072.png---Folio 66-------
+
+\Paragraph{96. Product of Two Binomials of the Form $x + a$, $x + b$.}
+The product of two binomials which have the form $x + a$,
+$x + b$, should be carefully noticed and remembered.
+\begin{DPalign*}
+\lintertext{\Item{1.}}
+(x + 5)(x + 3)
+ &= x(x + 3) + 5(x + 3) \\
+ &= x^{2} + 3x + 5x + 15 \\
+ &= x^{2} + 8x + 15. \displaybreak[1] \\
+%
+\lintertext{\Item{2.}}
+(x - 5)(x - 3)
+ &= x(x - 3) - 5(x - 3) \\
+ &= x^{2} - 3x - 5x + 15 \\
+ &= x^{2} - 8x + 15. \displaybreak[1] \\
+%
+\lintertext{\Item{3.}}
+(x + 5)(x - 3)
+ &= x(x - 3) + 5(x - 3) \\
+ &= x^{2} - 3x + 5x - 15 \\
+ &= x^{2} + 2x - 15. \displaybreak[1] \\
+%
+\lintertext{\Item{4.}}
+(x - 5)(x + 3)
+ &= x(x + 3) - 5(x + 3) \\
+ &= x^{2} + 3x - 5x - 15 \\
+ &= x^{2} - 2x - 15.
+\end{DPalign*}
+
+\Item{1.} Each of these results has three terms.
+
+\Item{2.} The first term of each result is the product of the first
+terms of the binomials.
+
+\Item{3.} The last term of each result is the product of the
+second terms of the binomials.
+
+\Item{4.} The middle term of each result has for a coefficient
+the \emph{algebraic sum} of the second terms of the binomials.
+
+\Paragraph{97.} The intermediate step given above may be omitted,
+and the products written at once by \emph{inspection}. Thus,
+
+\Item{1.} Multiply $x + 8$ by $x + 7$.
+\begin{align*}
+&8 + 7 = 15,\quad 8 × 7 = 56. \\
+\therefore\ &(x + 8)(x + 7) = x^{2} + 15x + 56.
+\end{align*}
+%% -----File: 073.png---Folio 67-------
+
+\Item{2.} Multiply $x - 8$ by $x - 7$.
+\begin{align*}
+&(-8) + (-7) = -15,\quad (-8)(-7) = +56. \\
+\therefore\ &(x - 8)(x - 7) = x^{2} - 15x + 56.
+\end{align*}
+
+\Item{3.} Multiply $x - 7y$ by $x + 6y$.
+\begin{align*}
+&-7 + 6 = -1,\quad (-7) × 6y = -42y^{2}. \\
+\therefore\ &(x - 7y)(x + 6y) = x^{2} - xy - 42y^{2}.
+\end{align*}
+
+\Item{4.} Multiply $x + 6y$ by $x - 5y$.
+\begin{align*}
+&+6 - 5 = 1,\quad 6y × (-5y) = -30y^{2}. \\
+\DPtypo{}{\therefore}\ &(x + 6y)(x - 5y) = x^{2} + xy - 30y^{2}.
+\end{align*}
+
+\Exercise{27.}
+
+Write by inspection the product of:
+\begin{multicols}{2}
+\Item{1.} $(x + 7)(x + 4)$.
+
+\Item{2.} $(x - 3)(x + 7)$.
+
+\Item{3.} $(x - 2)(x - 4)$.
+
+\Item{4.} $(x - 6)(x - 10)$.
+
+\Item{5.} $(x + 7)(x - 4)$.
+
+\Item{6.} $(x + a)(x - 2a)$.
+
+\Item{7.} $(x + 3a)(x - a)$.
+
+\Item{8.} $(a + 3c)(a + 3c)$.
+
+\Item{9.} $(a + 2x)(a - 4x)$.
+
+\Item{10.} $(a - 3b)(a - 4b)$.
+
+\Item{11.} $(a^{2} - c)(a^{2} + 2c)$.
+
+\Item{12.} $(x - 17)(x - 3)$.
+
+\Item{13.} $(x + 6y)(x - 5y)$.
+
+\Item{14.} $(3 + 2x)(3 - x)$.
+
+\Item{15.} $(5 + 2x)(1 - 2x)$.
+
+\Item{16.} $(a - 2b)(a + 3b)$.
+
+\Item{17.} $(a^{2}b^{2} - x^{2})(a^{2}b^{2} - 5x^{2})$.
+
+\Item{18.} $(a^{3}b - ab^{3})(a^{3}b + 5ab^{3})$.
+
+\Item{19.} $(x^{2}y - xy^{2})(x^{2}y - 3xy^{2})$.
+
+\Item{20.} $(x^{2}y + xy^{2})(x^{2}y + xy^{2})$.
+
+\Item{21.} $(x + a)(x + b)$.
+
+\Item{22.} $(x + a)(x - b)$.
+
+\Item{23.} $(x - a)(x + b)$.
+
+\Item{24.} $(x - a)(x - b)$.
+
+\Item{25.} $(x + 2a)(x + 2b)$.
+
+\Item{26.} $(x - 2a)(x + 2b)$.
+
+\Item{27.} $(x + 2a)(x - 2b)$.
+
+\Item{28.} $(x - 2a)(x - 2b)$.
+
+\Item{29.} $(x - a)(x + 3a)$.
+
+\Item{30.} $(x - 2a)(x + 3a)$.
+\end{multicols}
+%% -----File: 074.png---Folio 68-------
+
+\Paragraph{98. Special Rules of Division.} Some results in division
+are so important in abridging algebraic work that they
+should be carefully noticed and remembered.
+
+\Paragraph{99. Difference of Two Squares.}
+
+Since $(a + b)(a - b) = a^{2} - b^{2}$,
+\[
+\therefore
+\frac{a^{2} - b^{2}}{a + b} = a - b;\quad\text{and}\quad
+\frac{a^{2} - b^{2}}{a - b} = a + b. \EqText{Hence\Add{,}}
+\]
+\begin{Theorem}[\textsc{Rule 1.}] The difference of the squares of two numbers is
+divisible by the sum, and by the difference, of the numbers.
+\end{Theorem}
+
+\ScreenBreak
+\Exercise{28.}
+
+Write by inspection the quotient of:
+\begin{multicols}{3}
+\Item{1.} $\dfrac{x^{2} - 4}{x - 2}$.
+
+\Item{2.} $\dfrac{x^{2} - 4}{x + 2}$.
+
+\Item{3.} $\dfrac{a^{2} - 9}{a - 3}$.
+
+\Item{4.} $\dfrac{a^{2} - 9}{a + 3}$.
+
+\Item{5.} $\dfrac{c^{2} - 25}{c - 5}$.
+
+\Item{6.} $\dfrac{c^{2} - 25}{c + 5}$.
+
+\Item{7.} $\dfrac{49x^{2} - y^{2}}{7x - y}$.
+
+\Item{8.} $\dfrac{49x^{2} - y^{2}}{7x + y}$.
+
+\Item{9.} $\dfrac{9b^{2} - 1}{3b - 1}$.
+
+\Item{10.} $\dfrac{9b^{2} - 1}{3b + 1}$.
+
+\Item{11.} $\dfrac{16x^{4} - 25a^{2}}{4x^{2} - 5a}$.
+
+\Item{12.} $\dfrac{16x^{4} - 25a^{2}}{4x^{2} + 5a}$.
+\end{multicols}
+
+\begin{multicols}{2}
+\Item{13.} $\dfrac{9x^{2} - 25y^{2}}{3x - 5y}$.
+
+\Item{14.} $\dfrac{a^{2}-(b - c)^{2}}{a-(b - c)}$.
+
+\Item{15.} $\dfrac{a^{2}-(b - c)^{2}}{a + (b - c)}$.
+
+\Item{16.} $\dfrac{a^{2}-(2b - c)^{2}}{a-(2b - c)}$.
+
+\Item{17.} $\dfrac{(5a - 7b)^{2} - 1}{(5a - 7b) - 1}$.
+
+\Item{18.} $\dfrac{(5a - 7b)^{2} - 1}{(5a - 7b) + 1}$.
+
+\Item{19.} $\dfrac{z^{2}-(x - y)^{2}}{z-(x - y)}$.
+
+\Item{20.} $\dfrac{z^{2}-(x - y)^{2}}{z + (x - y)}$.
+%% -----File: 075.png---Folio 69-------
+
+\Item{21.} $\dfrac{a^{2}-(2b - c)^{2}}{a + (2b - c)}$.
+
+\Item{22.} $\dfrac{(x + 3y)^{2} - z^{2}}{(x + 3y) - z}$.
+
+\Item{23.} $\dfrac{(x + 3y)^{2} - z^{2}}{x + 3y + z}$.
+
+\Item{24.} $\dfrac{(a + 2b)^{2} - 4c^{2}}{(a + 2b) - 2c}$.
+
+\Item{25.} $\dfrac{(a + 2b)^{2} - 4c^{2}}{(a + 2b) + 2c}$.
+
+\Item{26.} $\dfrac{1 - (3x - 2y)^{2}}{1 + (3x - 2y)}$.
+\end{multicols}
+
+\Paragraph{100. Difference of Two Cubes.} By performing the division
+we have
+\[
+\frac{a^{3} - b^{3}}{a - b} = a^{2} + ab + b^{2}. \EqText{Hence,}
+\]
+\begin{Theorem}[\textsc{Rule 2.}] The difference of the cubes of two numbers is
+divisible by the difference of the numbers, and the quotient
+is the sum of the squares of the numbers plus their product.
+\end{Theorem}
+
+\Exercise{29.}
+
+Write by inspection the quotient of:
+\begin{multicols}{3}
+\Item{1.} $\dfrac{1 - x^{3}}{1 - x}$.
+
+\Item{2.} $\dfrac{1 - 8a^{3}}{1 - 2a}$.
+
+\Item{3.} $\dfrac{1 - 27c^{3}}{1 - 2c}$.
+
+\Item{4.} $\dfrac{8a^{3} - b^{3}}{2a - b}$.
+
+\Item{5.} $\dfrac{64b^{3} - 27c^{3}}{4b - 3c}$.
+
+\Item{6.} $\dfrac{27x^{3} - 8y^{3}}{3x - 2y}$.
+
+\Item{7.} $\dfrac{x^{3}y^{3} - z^{3}}{xy - z}$.
+
+\Item{8.} $\dfrac{a^{3}b^{3} - 8}{ab - 2}$.
+
+\Item{9.} $\dfrac{125a^{3} - b^{3}}{5a - b}$.
+
+\Item{10.} $\dfrac{a^{3} - 8b^{3}}{a - 2b}$.
+
+\Item{11.} $\dfrac{a^{3} - 64}{a - 4}$.
+
+\Item{12.} $\dfrac{a^{9} - 27}{a^{3} - 3}$.
+
+\Item{13.} $\dfrac{a^{12} - x^{6}y^{6}}{a^{4} - x^{2}y^{2}}$.
+
+\Item{14.} $\dfrac{x^{15} - a^{9}b^{9}}{x^{5} - a^{3}b^{3}}$.
+
+\Item{15.} $\dfrac{27x^{3}y^{3} - z^{12}}{3xy - z^{4}}$.
+
+\Item{16.} $\dfrac{x^{3}y^{3}z^{3} - 1}{xyz - 1}$.
+
+\Item{17.} $\dfrac{8a^{3}b^{3}c^{3} - 27}{2abc - 3}$.
+
+\Item{18.} $\dfrac{1 - 64x^{3}y^{3}z^{3}}{1 - 4xyz}$.
+\end{multicols}
+%% -----File: 076.png---Folio 70-------
+
+\Paragraph{101. Sum of Two Cubes.} By performing the division,
+we find that
+\[
+\frac{a^{3} + b^{3}}{a + b} = a^{2} - ab + b^{2}. \EqText{Hence,}
+\]
+\begin{Theorem}[\textsc{Rule 3.}] The sum of the cubes of two numbers is divisible
+by the sum of the numbers, and the quotient is the sum
+of the squares of the numbers minus their product.
+\end{Theorem}
+
+\Exercise{30.}
+
+Write by inspection the quotient of:
+\begin{multicols}{3}
+\Item{1.} $\dfrac{1 + x^{3}}{1 + x}$.
+
+\Item{2.} $\dfrac{1 + 8a^{3}}{1 + 2a}$.
+
+\Item{3.} $\dfrac{1 + 27c^{3}}{1 + 3c}$.
+
+\Item{4.} $\dfrac{8a^{3} + b^{3}}{2a + b}$.
+
+\Item{5.} $\dfrac{64b^{3} + 27c^{3}}{4b + 3c}$.
+
+\Item{6.} $\dfrac{27x^{3} + 8y^{3}}{3x + 2y}$.
+
+\Item{7.} $\dfrac{8x^{3} + 125y^{3}}{2x + 5y}$.
+
+\Item{8.} $\dfrac{x^{3}y^{3} + z^{3}}{xy + z}$.
+
+\Item{9.} $\dfrac{a^{3}b^{3} + 8}{ab + 2}$.
+
+\Item{10.} $\dfrac{125a^{3} + b^{3}}{5a + b}$.
+
+\Item{11.} $\dfrac{a^{3} + 8b^{3}}{a + 2b}$.
+
+\Item{12.} $\dfrac{a^{6} + 64}{a^{2} + 4}$.
+
+\Item{13.} $\dfrac{a^{9} + 27}{a^{3} + 3}$.
+
+\Item{14.} $\dfrac{8a^{6} + b^{3}}{2a^{2} + b}$.
+
+\Item{15.} $\dfrac{a^{12} + x^{6}y^{6}}{a^{4} + x^{2}y^{2}}$.
+
+\Item{16.} $\dfrac{x^{15} + a^{9}b^{9}}{x^{5} + a^{3}b^{3}}$.
+
+\Item{17.} $\dfrac{27x^{3}y^{3} + z^{12}}{3xy + z^{4}}$.
+
+\Item{18.} $\dfrac{x^{3}y^{3}z^{3} + 1}{xyz + 1}$.
+
+\Item{19.} $\dfrac{8a^{3}b^{3}c^{3} + 27}{2abc + 3}$.
+
+\Item{20.} $\dfrac{1 + 64x^{3}y^{3}z^{3}}{1 + 4xyz}$.
+
+\Item{21.} $\dfrac{1 + 27a^{6}b^{3}c^{3}}{1 + 3a^{2}bc}$.
+\end{multicols}
+
+Find by division the quotient of:
+\begin{multicols}{3}
+\Item{22.} $\dfrac{x^{4} - y^{4}}{x - y}$.
+
+\Item{23.} $\dfrac{x^{4} - y^{4}}{x + y}$.
+
+\Item{24.} $\dfrac{x^{5} - y^{5}}{x - y}$.
+
+\Item{25.} $\dfrac{x^{5} + y^{5}}{x + y}$.
+
+\Item{26.} $\dfrac{x^{6} - y^{6}}{x - y}$.
+
+\Item{27.} $\dfrac{x^{6} - y^{6}}{x + y}$.
+\end{multicols}
+%% -----File: 077.png---Folio 71-------
+
+
+\Chapter{VII.}{Factors.}
+
+\Paragraph{102. Rational Expressions.} An expression is \emph{rational} when
+none of its terms contain square or other roots.
+
+\Paragraph{103. Factors of Rational and Integral Expressions.} By factors
+of a given integral number in arithmetic we mean
+integral numbers that will divide the given number without
+remainder. Likewise by factors of a rational and integral
+expression in algebra we mean rational and integral
+expressions that will divide the given expression without
+remainder.
+
+\Paragraph{104. Factors of Monomials.} The factors of a monomial
+may be found by inspection. Thus, the factors of~$21a^{2}b$
+are $3$, $7$, $a$, $a$, and~$b$.
+
+\Paragraph{105. Factors of Polynomials.} The form of a polynomial
+that can be resolved into factors often suggests the process
+of finding the factors.
+
+
+\Section{Case I.}
+
+\Paragraph{106. When all the terms have a common factor.}
+
+\Item{1.} Resolve into factors $3a^{2} - 6ab$.
+
+Since $3a$~is seen to be a factor of each term, we have
+\begin{align*}
+\frac{3a^{2} - 6ab}{3a} &= \frac{3a^{2}}{3a} - \frac{6ab}{3a} = a - 2b. \\
+\therefore\ 3a^{2} - 6ab &= 3a(a - 2b).
+\end{align*}
+
+Hence, the required factors are $3a$~and~$a - 2b$.
+%% -----File: 078.png---Folio 72-------
+
+\Item{2.} Resolve into factors $4x^{3} + 12x^{2} - 8x$.
+
+Since $4x$ is seen to be a factor of each term, we have
+\begin{align*}
+\frac{4x^{3} + 12x^{2} - 8x}{4x}
+ &= \frac{4x^{3}}{4x} + \frac{12x^{2}}{4x} - \frac{8x}{4x} \\
+ &= x^{2} + 3x - 2. \\
+\therefore\
+4x^{3} + 12x^{2} - 8x &= 4x(x^{2} + 3x - 2).
+\end{align*}
+
+Hence the required factors are $4x$~and~$x^{2} + 3x - 2$.
+
+\Exercise{31.}
+
+Resolve into two factors:
+\begin{multicols}{2}
+\Item{1.} $2x^{2} - 4x$.
+
+\Item{2.} $3a^{3} - 6a$.
+
+\Item{3.} $5a^{2}b^{2} - 10a^{3}b^{3}$.
+
+\Item{4.} $3x^{2}y + 4xy^{2}$.
+
+\Item{5.} $8a^{3}b^{2} + 4a^{2}b^{3}$.
+
+\Item{6.} $3a^{4} - 12a^{2} - 6a^{3}$.
+
+\Item{7.} $4x^{2} - 8x^{4} - 12x^{5}$.
+
+\Item{8.} $5 - 10x^{2}y^{2} + 15x^{2}y$.
+
+\Item{9.} $7a^{2} + 14a - 21a^{3}$.
+
+\Item{10.} $3x^{3}y^{3} - 6x^{4}y^{4} - 9x^{2}y^{2}$.
+\end{multicols}
+
+\Section{Case II.}
+
+\Paragraph{107. When the terms can be grouped so as to show a common
+factor in each group.}
+
+\Item{1.} Resolve into factors $ac + ad + bc + bd$.
+\begin{align*}
+ac + ad + bc + bd
+ &= (ac + ad) + (bc + bd)
+ \Tag{(1)} \\
+ &= a(c + d) + b(c + d)
+ \Tag{(2)} \\
+ &= (a + b)(c + d).
+ \Tag{(3)}
+\end{align*}
+
+\begin{Remark}[Note.] The first two terms of $ac + ad + bc + bd$ are seen to
+have the common factor~$a$, and the last two terms, the common factor~$b$.
+Hence we bracket the first two terms and also the last two
+terms. Then we take out the factor~$a$ from $(ac + ad)$ and $b$~from
+$(bc + bd)$, and get equation~(2). Since one factor is seen in~(2) to be
+$c + d$, dividing by $c + d$, we obtain the other factor, $a + b$.
+\end{Remark}
+%% -----File: 079.png---Folio 73-------
+
+\Item{2.} Find the factors of $ac + ad - bc - bd$.
+\begin{align*}
+ac + ad - bc - bd
+ &= (ac + ad) - (bc + bd) \\
+ &= a(c + d) - b(c + d) \\
+ &= (a - b)(c + d).
+\end{align*}
+
+\begin{Remark}[Note.] Here the last two terms, $-bc - bd$, being put within a
+parenthesis preceded by the sign~$-$, have their signs changed to~$+$.
+\end{Remark}
+
+\Item{3.} Resolve into factors $2x^{3} - 3x^{2} - 4x + 6$.
+\begin{align*}
+2x^{3} - 3x^{2} - 4x + 6
+ &= (2x^{3} - 3x^{2}) - (4x - 6) \\
+ &= x^{2}(2x - 3) - 2(2x - 3) \\
+ &= (x^{2} - 2)(2x - 3).
+\end{align*}
+
+\Item{4.} Resolve into factors $x^{3} + x^{2} - ax - a$.
+\begin{align*}
+x^{3} + x^{2} - ax - a
+ &= (x^{3} + x^{2}) - (ax + a) \\
+ &= x^{2}(x + 1) - a(x + 1) \\
+ &= (x^{2} - a)(x + 1).
+\end{align*}
+
+\Item{5.} Resolve into factors $x^{3} + 3ax^{2} + x + 3a$.
+\begin{align*}
+x^{3} + 3ax^{2} + x + 3a
+ &= (x^{3} + 3ax^{2}) + (x + 3a) \\
+ &= x^{2}(x + 3a) + 1(x + 3a) \\
+ &= (x^{2} + 1)(x + 3a).
+\end{align*}
+
+\Exercise{32.}
+
+Resolve into factors:
+\begin{multicols}{2}
+\Item{1.} $x^{3} + x^{2} + x + 1$.
+
+\Item{2.} $x^{3} - x^{2} + x - 1$.
+
+\Item{3.} $x^{2} + xy + xz + yz$.
+
+\Item{4.} $ax - bx - ay + by$.
+
+\Item{5.} $a^{2} - ac + ab - bc$.
+
+\Item{6.} $x^{2} - bx + 3x - 3b$.
+
+\Item{7.} $2x^{3} - x^{2} + 4x - 2$.
+
+\Item{8.} $a^{2} - 3a - ab + 3b$.
+
+\Item{9.} $6a^{2} + 2ab - 3ac - bc$.
+
+\Item{10.} $abxy + cxy + abc + c^{2}$.
+
+\Item{11.} $ax - ay - bx + cy - cx + by$.
+
+\Item{12.} $(a - b)^{2} - 2c(a - b)$.
+\end{multicols}
+%% -----File: 080.png---Folio 74-------
+
+
+\Section{Case III.}
+
+\Paragraph{108. When a binomial is the difference of two squares.}
+
+\Item{1.} Resolve into factors $x^{2} - y^{2}$.
+\begin{DPgather*}
+\lintertext{\indent Since,}
+(x + y)(x - y) = x^{2} - y^{2},
+\end{DPgather*}
+the factors of $x^{2} - y^{2}$ are $x + y$ and~$x - y$.
+
+\Dictum{To find the factors of a binomial when it is the difference of
+two squares}, therefore,
+\begin{Theorem}
+Take the square root of the first term and the square root
+of the second term.
+
+The sum of these roots will form the first factor;
+
+The difference of these roots will form the second factor.
+\end{Theorem}
+
+\Paragraph{109.} The \Defn{square root} of a \emph{monomial} is one of the \textbf{two equal
+factors} of the monomial.
+
+Thus $9x^{8}y^{2} = 3x^{4}y × 3x^{4}y$; and $3x^{4}y$ is the square root
+of~$9x^{8}y^{2}$.
+
+The rule for extracting the square root of a \emph{monomial,
+when a perfect square}, is as follows:
+\begin{Theorem}
+Extract the square root of the coefficient, and divide the
+index of each letter by~$2$.
+\end{Theorem}
+
+\Exercise{33.}
+
+Resolve into factors:
+\begin{multicols}{3}
+\Item{1.} $4 - x^{2}$.
+
+\Item{2.} $9 - x^{2}$.
+
+\Item{3.} $9a^{2} - x^{2}$.
+
+\Item{4.} $25 - x^{2}$.
+
+\Item{5.} $25x^{2} - a^{2}$.
+
+\Item{6.} $16a^{4} - 121$.
+
+\Item{7.} $121a^{4} - 16$.
+
+\Item{8.} $4a^{2}b^{2} - c^{2}d^{2}$.
+
+\Item{9.} $1 - x^{2}y^{2}$.
+
+\Item{10.} $81x^{2}y^{2} - 1$.
+
+\Item{11.} $49a^{2}b^{2} - 4$.
+
+\Item{12.} $25a^{4}b^{4} - 9$.
+\end{multicols}
+%% -----File: 081.png---Folio 75-------
+
+\begin{multicols}{2}
+\Item{13.} $9a^{8}b^{6} - 16x^{10}$.
+
+\Item{14.} $144x^{2}y^{2} - 1$.
+
+\Item{15.} $100x^{6}y^{2}z^{4} - 1$.
+
+\Item{16.} $1 - 121a^{4}b^{8}c^{12}$.
+
+\Item{17.} $25a^{2} - 64x^{6}y^{6}$.
+
+\Item{18.} $16x^{16}-25y^{18}$.
+\end{multicols}
+
+Find, by resolving into factors, the value of:
+\begin{multicols}{2}
+\Item{19.} $(375)^{2} - (225)^{2}$.
+
+\Item{20.} $(579)^{2} - (559)^{2}$.
+
+\Item{21.} $(873)^{2} - (173)^{2}$.
+
+\Item{22.} $(101)^{2} - (99)^{2}$.
+
+\Item{23.} $(7244)^{2} - (7242)^{2}$.
+
+\Item{24.} $(3781)^{2} - (219)^{2}$.
+\end{multicols}
+
+\Paragraph{110.} If the squares are compound expressions, the same
+method may be employed.
+
+\Item{1.} Resolve into factors $(x + 3y)^{2} - 16a^{2}$.
+\begin{Soln}
+The square root of the first term is~$x + 3y$.
+
+The square root of the second term is~$4a$.
+
+The sum of these roots is~$x + 3y - 4a$.
+
+The difference of these roots is $x + 3y - 4a$.
+
+Therefore $(x + 3y)^{2} - 16a^{2} = (x + 3y + 4a)(x + 3y - 4a)$.
+\end{Soln}
+
+\Item{2.} Resolve into factors $a^{2} - (3b - 5c)^{2}$.
+\begin{Soln}
+The square roots of the terms are $a$~and~$(3b - 5c)$.
+
+The sum of these roots is $a + (3b - 5c)$, or $a + 3b - 5c$.
+
+The difference of these roots is $a - (3b - 5c)$, or $a - 3b + 5c$.
+
+Therefore $a^{2} - (3b - 5c)^{2} = (a + 3b - 5c)(a - 3b + 5c)$.
+\end{Soln}
+
+\Exercise{34.}
+
+\DPtypo{}{Resolve into factors:}
+\begin{multicols}{2}
+\Item{1.} $(x + y)^{2} - z^{2}$.
+
+\Item{2.} $(x - y)^{2} - z^{2}$.
+
+\Item{3.} $z^{2} - (x + y)^{2}$.
+
+\Item{4.} $z^{2} - (x - y)^{2}$.
+
+\Item{5.} $(x + y)^{2} - 4z^{2}$.
+
+\Item{6.} $4z^{2} - (x - y)^{2}$.
+
+\Item{7.} $(a + 2b)^{2} - c^{2}$.
+
+\Item{8.} $(a - 2b)^{2} - c^{2}$.
+
+\Item{9.} $c^{2} - (a - 2b)^{2}$.
+
+\Item{10.} $(2a + 5c)^{2} - 1$.
+%% -----File: 082.png---Folio 76-------
+
+\Item{11.} $1 - (2a - 5c)^{2}$.
+
+\Item{12.} $(a + 3b)^{2} - 16c^{2}$.
+
+\Item{13.} $(a - 5b)^{2} - 9c^{2}$.
+
+\Item{14.} $16c^{2} - (a - 5b)^{2}$.
+
+\Item{15.} $4a^{2} - (x + y)^{2}$.
+
+\Item{16.} $b^{2} - (a - 2x)^{2}$.
+
+\Item{17.} $4z^{2} - (x + 3y)^{2}$.
+
+\Item{18.} $9 - (3a - 7b)^{2}$.
+
+\Item{19.} $16a^{2} - (2b + 5c)^{2}$.
+
+\Item{20.} $25c^{2} - (3a - 2x)^{2}$.
+
+\Item{21.} $9a^{2} - (3b - 5c)^{2}$.
+
+\Item{22.} $16y^{2} - (a - 3c)^{2}$.
+
+\Item{23.} $49m^{2} - (p + 2q)^{2}$.
+
+\Item{24.} $36n^{2} - (d - 2c)^{2}$.
+
+\Item{25.} $(x + y)^{2} - (a + b)^{2}$.
+
+\Item{26.} $(x - y)^{2} - (a - b)^{2}$.
+
+\Item{27.} $(2x + 3)^{2} - (2a + b)^{2}$.
+
+\Item{28.} $(b - c)^{2} - (a - 2x)^{2}$.
+
+\Item{29.} $(3x - y)^{2} - (2a - b)^{2}$.
+
+\Item{30.} $(x - 3y)^{2} - (a + 2b)^{2}$.
+
+\Item{31.} $(x + 2y)^{2} - (a + 3b)^{2}$.
+
+\Item{32.} $(x + y)^{2} - (a - z)^{2}$.
+\end{multicols}
+
+
+\Section{Case IV.}
+
+\Paragraph{111. When a binomial is the difference of two cubes.}
+\begin{DPgather*}
+\lintertext{\indent Since}
+\frac{a^{3} - b^{3}}{a - b} = a^{2} + ab + b^{2},
+\end{DPgather*}
+the factors of $a^{3} - b^{3}$ are $a - b$ and $a^{2} + ab + b^{2}$.
+
+In like manner we can resolve into factors any expression
+which can be written as the difference of two cubes.
+
+\Paragraph{112.} The rule for extracting the cube root of a \emph{monomial,
+when the monomial is a perfect cube}, is,
+\begin{Theorem}
+Extract the cube root of the coefficient, and divide the index
+of each letter by~$3$.
+\end{Theorem}
+
+\ScreenBreak
+\Item{1.} Resolve into factors $8a^{3} - 27b^{6}$.
+
+Since $8a^{3} = (2a)^{3}$, and $27b^{6} = (3b^{2})^{3}$, we can write
+$8a^{3} - 27b^{6}$ as $(2a)^{3} - (3b^{2})^{3}$.
+%% -----File: 083.png---Folio 77-------
+\begin{DPgather*}
+\lintertext{\indent Since}
+a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}),
+\end{DPgather*}
+we have, by putting $2a$ for~$a$ and $3b^{2}$ for~$b$,
+\begin{align*}
+(2a)^{3} - (3b^{2})^{3}
+ &= (2a - 3b^{2})[(2a)^{2} + 2a × 3b^{2} + (3b^{2})^{2}] \\
+ &= (2a - 3b^{2})(4a^{2} + 6ab^{2} + 9b^{4}).
+\end{align*}
+
+\Item{2.} Resolve into factors $64x^{3} - 1$.
+\begin{align*}
+64x^{3} - 1
+ &= (4x)^{3} - 1 \\
+ &= (4x - 1)[(4x)^{2} + 4x +1] \\
+ &= (4x - 1)(16x^{2} + 4x + 1).
+\end{align*}
+
+\Dictum{To find the factors of a binomial when it is the difference of
+two cubes}, therefore,
+\begin{Theorem}
+Take the difference of the cube roots of the terms for one
+factor, and the sum of the squares of the cube roots of the
+terms plus their product for the other factor.
+\end{Theorem}
+
+\ScreenBreak
+\Exercise{35.}
+
+Resolve into factors:
+\begin{multicols}{3}
+\Item{1.} $8x^{3} - y^{3}$.
+
+\Item{2.} $x^{3} - 1$.
+
+\Item{3.} $x^{3}y^{3} - z^{3}$.
+
+\Item{4.} $x^{3} - 64$.
+
+\Item{5.} $125a^{3} - b^{3}$.
+
+\Item{6.} $a^{3} - 343$.
+
+\Item{7.} $a^{3}b^{3} - 27c^{3}$.
+
+\Item{8.} $x^{3}y^{3}z^{3} - 8$.
+
+\Item{9.} $8a^{3}b^{3} - 27y^{6}$.
+
+\Item{10.} $64x^{3} - y^{9}$.
+
+\Item{11.} $27a^{3} - 64c^{6}$.
+
+\Item{12.} $x^{3}y^{3} - 216z^{3}$.
+
+\Item{13.} $64x^{3} - 729y^{3}$.
+
+\Item{14.} $27a^{3} - 512c^{3}$.
+
+\Item{15.} $8x^{6} - 125y^{3}$.
+
+\Item{16.} $64x^{12} - 27y^{15}$.
+
+\Item{17.} $216 - 8a^{3}$.
+
+\Item{18.} $343 - 27y^{3}$.
+\end{multicols}
+
+
+\Section{Case V.}
+
+\Paragraph{113. When a binomial is the sum of two cubes.}
+\begin{DPgather*}
+\lintertext{\indent Since}
+\frac{a^{3} + b^{3}}{a + b} = a^{2} - ab + b^{2},
+\end{DPgather*}
+the factors of $a^{3} + b^{3}$ are $a + b$ and $a^{2} - ab + b^{2}$.
+%% -----File: 084.png---Folio 78-------
+
+In like manner we can resolve into factors any expression
+which can be written as the sum of two cubes.
+
+\Item{1.} Resolve into factors $8x^{3} + 27y^{3}$.
+
+Since by §~112, $8x^{3} = (2x)^{3}$ and $27y^{3} = (3y)^{3}$, we can
+write $8x^{3} + 27y^{3}$ as $(2x)^{3} + (3y)^{3}$.
+
+\begin{DPgather*}
+\lintertext{\indent Since}
+a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2}),
+\end{DPgather*}
+we have, by putting $2x$ for~$a$, and $3y$ for~$b$,
+\begin{align*}
+(2x)^{3} + (3y)^{3}
+ &= (2x + 3y)[(2x)^{2} - 2x × 3y + (3y)^{2}] \\
+ &= (2x + 3y)(4x^{2} - 6xy + 9y^{2}).
+\end{align*}
+
+\Item{2.} Resolve into factors $125a^{3} + 64x^{6}$\Add{.}
+\begin{gather*}
+125a^{3} = (5a)^{3},\quad 64x^{6} = (4x^{2})^{3}; \\
+\begin{aligned}
+\therefore 125a^{3} + 64x^{6}
+ &= (5a + 4x^{2})[(5a)^{2} - 5a × 4x^{2} + (4x^{2})^{2}] \\
+ &= (5a + 4x^{2})(25a^{2} - 20ax^{2} + 16x^{4})
+\end{aligned}
+\end{gather*}
+
+\Dictum{To find the factors of a binomial when it is the sum of two
+cubes}, therefore,
+\begin{Theorem}
+Take the sum of the cube roots of the terms for one factor,
+and the sum of the squares of the cube roots of the terms
+minus their product for the other factor.
+\end{Theorem}
+
+\PrintBreak
+\Exercise{36.}
+
+Resolve into factors:
+\begin{multicols}{3}
+\Item{1.} $x^{3} + 1$.
+
+\Item{2.} $8x^{3} + y^{3}$.
+
+\Item{3.} $x^{3} + 125$.
+
+\Item{4.} $64a^{3} + 27$.
+
+\Item{5.} $x^{3}y^{3} + z^{3}$.
+
+\Item{6.} $a^{3} + 64$.
+
+\Item{7.} $8a^{6} + b^{3}$.
+
+\Item{8.} $x^{3} + 343$.
+
+\Item{9.} $8 + x^{3}y^{3}z^{3}$.
+
+\Item{10.} $y^{9} + 64x^{3}$.
+
+\Item{11.} $a^{3}b^{3} + 27x^{3}$.
+
+\Item{12.} $8y^{3}z^{3} + x^{6}$.
+
+\Item{13.} $y^{9} + 64x^{6}$.
+
+\Item{14.} $64a^{12} + x^{15}$.
+
+\Item{15.} $27x^{15} + 8a^{6}$.
+
+\Item{16.} $27x^{9} + 512$.
+
+\Item{17.} $343 + 64x^{3}$.
+
+\Item{18.} $125 + 27y^{3}$.
+\end{multicols}
+%% -----File: 085.png---Folio 79-------
+
+
+\Section{Case VI.}
+
+\Paragraph{114. When a trinomial is a perfect square.}
+\begin{DPgather*}
+\lintertext{\indent Since}
+(x + y)^{2} = x^{2} + 2xy + y^{2},
+\end{DPgather*}
+the factors of $x^{2} + 2xy + y^{2}$ are $x + y$ and $x + y$.
+
+\begin{DPgather*}
+\lintertext{\indent Since}
+(x - y)^{2} = x^{2} - 2xy + y^{2},
+\end{DPgather*}
+the factors of $x^{2} - 2xy + y^{2}$ are $x - y$ and $x - y$.
+
+Therefore, a trinomial is a perfect square, if its first and
+last terms are perfect squares and positive, and its middle
+term is twice the product of their square roots.
+
+\Dictum{To find the factors of a trinomial when it is a perfect square},
+therefore,
+\begin{Theorem}
+Extract the square roots of the first and last terms, and
+connect these square roots by the sign of the middle term.
+\end{Theorem}
+
+Thus, if we wish to find the square root of
+\[
+16a^{2} - 24ab + 9b^{2},
+\]
+we take the square roots of $16a^{2}$ and $9b^{2}$, which are $4a$
+and~$3b$, respectively, and connect these square roots by
+the minus sign, the sign of the middle term. The square
+root is therefore
+\[
+4a - 3b.
+\]
+
+Again, if we wish to find the square root of
+\[
+25x^{2} + 40xy + 16y^{2},
+\]
+we take the square roots of $25x^{2}$ and $16y^{2}$ and connect these
+roots by the plus sign, the sign of the middle term. The
+square root is therefore
+\[
+5x + 4y.
+\]
+%% -----File: 086.png---Folio 80-------
+
+\Exercise{37.}
+
+Resolve into factors:
+\begin{multicols}{2}
+\Item{1.} $4x^{2} + 4xy + y^{2}$.
+
+\Item{2.} $x^{2} + 6xy + 9y^{2}$.
+
+\Item{3.} $x^{2} + 16x + 64$.
+
+\Item{4.} $x^{2} + 10ax + 25a^{2}$.
+
+\Item{5.} $a^{2} - 16a + 64$.
+
+\Item{6.} $a^{2} - 10ab + 25b^{2}$.
+
+\Item{7.} $c^{2} - 6cd + 9d^{2}$.
+
+\Item{8.} $4x^{2} - 4x + 1$.
+
+\Item{9.} $4a^{2} - 12ab + 9b^{2}$.
+
+\Item{10.} $9a^{2} - 24ab + 16b^{2}$.
+
+\Item{11.} $x^{2} + 8xy + 16y^{2}$.
+
+\Item{12.} $x^{2} - 8xy + 16y^{2}$.
+
+\Item{13.} $4x^{2} - 20xy + 25y^{2}$.
+
+\Item{14.} $1 + 20a + 100a^{2}$.
+
+\Item{15.} $49a^{2} - 28a + 4$.
+
+\Item{16.} $36a^{2} + 60ab + 25b^{2}$.
+
+\Item{17.} $81x^{2} - 36bx + 4b^{2}$.
+
+\Item{18.} $m^{2}n^{2} + 14mnx^{2} + 49x^{2}$.
+\end{multicols}
+
+
+\PrintBreak
+\Section{Case VII.}
+
+\Paragraph{115. When a trinomial has the form $x^{2} + ax + b$.}
+
+Where $a$ is the \emph{algebraic sum} of two numbers, and is
+either positive or negative; and $b$~is the \emph{product} of these
+two numbers, and is either positive or negative.
+\begin{DPgather*}
+\lintertext{\indent Since}
+(x + 5)(x + 3) = x^{2} + 8x + 15,
+\end{DPgather*}
+the factors of $x^{2} + 8x + 15$ are $x + 5$ and $x + 3$.
+\begin{DPgather*}
+\lintertext{\indent Since}
+(x + 5)(x - 3) = x^{2} + 2x- 15,
+\end{DPgather*}
+the factors of $x^{2} + 2x - 15$ are $(x + 5)$ and $(x - 3)$.
+
+Hence, if a trinomial of the form $x^{2} + ax + b$ is such an
+expression that it can be resolved into two binomial factors,
+it is obvious that the first term of each factor will be~$x$,
+and that the second terms of the factors will be two
+numbers whose product is~$b$, the last term of the trinomial,
+and whose algebraic sum is~$a$, the coefficient of~$x$ in the
+middle term of the trinomial.
+%% -----File: 087.png---Folio 81-------
+
+\Item{1.} Resolve into factors $x^{2} + 11x + 30$.
+\begin{Soln}
+We are required to find two numbers whose product is~$30$ and
+whose sum is~$11$.
+
+Two numbers whose product is $30$ are $1$~and~$30$, $2$~and~$15$, $3$~and~$10$,
+$5$~and~$6$, and the sum of the last two numbers is~$11$. Hence,
+\[
+x^{2} + 11x + 30 = (x + 5)(x + 6).
+\]
+%[** TN: Solutions sometimes printed in normal-size type; using smaller type]
+\end{Soln}
+
+\Item{2.} Resolve into factors $x^{2} - 7x + 12$.
+\begin{Soln}
+We are required to find two numbers whose product is~$12$ and
+whose algebraic sum is~$-7$.
+
+Since the product is~$+12$, the two numbers are \emph{both positive} or \emph{both
+negative}, and since their sum is~$-7$, they must both be negative.
+
+Two negative numbers whose product is~$12$ are $-12$~and~$-1$, $-6$
+and~$-2$, $-4$~and~$-3$, and the sum of the last two numbers is~$-7$.
+Hence,
+\[
+x^{2} - 7x + 12 = (x - 4)(x - 3).
+\]
+\end{Soln}
+
+\Item{3.} Resolve into factors $x^{2} + 2x - 24$.
+\begin{Soln}
+We are required to find two numbers whose product is~$-24$ and
+whose algebraic sum is~$2$.
+
+Since the product is~$-24$, one of the numbers is positive and the
+other negative, and since their sum is~$+2$, the larger number is
+positive.
+
+Two numbers whose product is~$-24$, and the larger number positive,
+are $24$~and~$-1$, $12$~and~$-2$, $8$~and~$-3$, $6$~and~$-4$, and the sum
+of the last two numbers is~$+2$. Hence,
+\[
+x^{2} + 2x - 24 = (x + 6)(x - 4).
+\]
+\end{Soln}
+
+\Item{4.} Resolve into factors $x^{2} - 3x - 18$.
+\begin{Soln}
+Since the product is~$-18$, one of the numbers is positive and the
+other negative, and since their sum is~$-3$, the larger number is
+negative.
+
+Two numbers whose product is~$-18$, and the larger number negative,
+are $-18$~and~$1$, $-9$~and~$2$, $-6$~and~$3$, and the sum of the last
+two numbers is~$-3$. Hence,
+\[
+x^{2} - 3x - 18 = (x - 6)(x + 3).
+\]
+\end{Soln}
+%% -----File: 088.png---Folio 82-------
+
+\Exercise{38.}
+
+Resolve into factors:
+\begin{multicols}{2}
+\Item{1.} $a^{2} + 5a + 6$.
+
+\Item{2.} $a^{2} - 5a + 6$.
+
+\Item{3.} $a^{2} + 6a + 5$.
+
+\Item{4.} $a^{2} - 6a + 5$.
+
+\Item{5.} $a^{2} + 4a - 5$.
+
+\Item{6.} $a^{2} - 4a - 5$.
+
+\Item{7.} $c^{2} - 9c + 18$.
+
+\Item{8.} $c^{2} + 9c + 18$.
+
+\Item{9.} $c^{2} + 3c - 18$.
+
+\Item{10.} $c^{2} - 3c - 18$.
+
+\Item{11.} $x^{2} + 9x + 14$.
+
+\Item{12.} $x^{2} - 9x + 14$.
+
+\Item{13.} $x^{2} - 5x - 14$.
+
+\Item{14.} $x^{2} - 9x + 20$.
+
+\Item{15.} $x^{2} - x - 20$.
+
+\Item{16.} $x^{2} + x - 20$.
+
+\Item{17.} $x^{2} - 10x + 21$.
+
+\Item{18.} $x^{2} - 4x - 21$.
+
+\Item{19.} $x^{2} + 4x - 21$.
+
+\Item{20.} $x^{2} - 15x + 56$.
+
+\Item{21.} $x^{2} - x - 56$.
+
+\Item{22.} $x^{2} - 10x + 9$.
+
+\Item{23.} $x^{2} + 13x + 30$.
+
+\Item{24.} $x^{2} + 7x - 30$.
+
+\Item{25.} $x^{2} - 7x - 30$.
+
+\Item{26.} $a^{2} + ab - 6b^{2}$.
+
+\Item{27.} $a^{2} - ab - 6b^{2}$.
+
+\Item{28.} $a^{2} + 3ab - 4b^{2}$.
+
+\Item{29.} $a^{2} - 3ab - 4b^{2}$.
+
+\Item{30.} $a^{2}x^{2} - 2ax - 63$.
+
+\Item{31.} $a^{2} + 2ax - 63x^{2}$.
+
+\Item{32.} $a^{2} - 9ab + 20b^{2}$.
+
+\Item{33.} $x^{2}y^{2} - 19xyz + 48z^{2}$.
+
+\Item{34.} $a^{2}b^{2} + 15abc + 44c^{2}$.
+
+\Item{35.} $x^{2} - 13xy + 36y^{2}$.
+
+\Item{36.} $x^{2} + 19xy + 84y^{2}$.
+
+\Item{37.} $a^{2}x^{2} - 23axy + 102y^{2}$.
+
+\Item{38.} $x^{4} - 9x^{2}y^{2} + 20y^{4}$.
+
+\Item{39.} $a^{4}x^{4} - 24a^{2}x^{2}y^{2} + 143y^{4}$.
+
+\Item{40.} $a^{6}b^{6} - 23a^{3}b^{3}c^{2} + 132c^{4}$.
+
+\Item{41.} $a^{2} - 20abc - 96b^{2}c^{2}$.
+
+\Item{42.} $a^{2} - 4abc - 96b^{2}c^{2}$.
+
+\Item{43.} $a^{2} - 10abc - 96b^{2}c^{2}$.
+
+\Item{44.} $a^{2} + 29abc - 96b^{2}c^{2}$.
+
+\Item{45.} $a^{2} - 46abc - 96b^{2}c^{2}$.
+
+\Item{46.} $a^{2} + 49abc + 48b^{2}c^{2}$.
+
+\Item{47.} $x^{2} - 18xyz - 243y^{2}z^{2}$.
+
+\Item{48.} $x^{2}y^{2} - xyz - 182z^{2}$.
+\end{multicols}
+%% -----File: 089.png---Folio 83-------
+
+\Exercise{39.}
+
+\Section{Examples For Review.}
+
+Resolve into factors:
+\begin{multicols}{2}
+\Item{1.} $a^{3} - 7a$.
+
+\Item{2.} $3a^{2}b^{2} - 2a^{3}b + 3ab^{3}$.
+
+\Item{3.} $(a - b)^{2} + (a - b)$.
+
+\Item{4.} $(a + b)^{2} - 1$.
+
+\Item{5.} $a^{3} + 8b^{3}$.
+
+\Item{6.} $(x^{2} - 4y^{2}) + (x - 2y)$.
+
+\Item{7.} $(a^{3} - b^{3}) + (a - b)$.
+
+\Item{8.} $a^{2} - 6ab + 9b^{2}$.
+
+\Item{9.} $x^{2} - x -2$.
+
+\Item{10.} $x^{2} - 2x - 3$.
+
+\Item{11.} $x^{2} + 4x - 21$.
+
+\Item{12.} $a^{2} - 11a - 26$.
+
+\Item{13.} $ax^{2} + bx^{2} + 3a + 3b$.
+
+\Item{14.} $x^{2} - 3x- xy + 3y$.
+
+\Item{15.} $x^{2} - 7x + 12$.
+
+\Item{16.} $a^{2} + 5ab + 6b^{2}$.
+
+\Item{17.} $x^{4} + 10x^{2} + 25$.
+
+\Item{18.} $x^{2} - 18x + 81$.
+
+\Item{19.} $x^{2} - 21x + 110$.
+
+\Item{20.} $x^{2} + 19x + 88$.
+
+\Item{21.} $x^{2} - 19x + 88$.
+
+\Item{22.} $x^{3} - x^{2} + x - 1$.
+
+\Item{23.} $9x^{4} - x^{2}$.
+
+\Item{24.} $1 - (a - b)^{2}$.
+
+\Item{25.} $(a^{3} + b^{3}) + (a + b)$.
+
+\Item{26.} $m^{2}x - n^{2}x + m^{2}y - n^{2}y$.
+
+\Item{27.} $(x - y)^{2} - z^{2}$.
+
+\Item{28.} $z^{2} - (x - y)^{2}$.
+
+\Item{29.} $4a^{4} - (3a - 1)^{2}$.
+
+\Item{30.} $8x^{3} - y^{3}$.
+
+\Item{31.} $x^{3} - 3x^{2}y$.
+
+\Item{32.} $x^{3} - 27y^{3}$.
+
+\Item{33.} $x^{2} + 3x - 40$.
+
+\Item{34.} $x^{2} + 3xy - 10y^{2}$.
+
+\Item{35.} $1 - 16x^{2}$.
+
+\Item{36.} $a^{6} - 9a^{2}b^{4}$.
+
+\Item{37.} $x^{3} + 3x^{2}y + 2xy^{2}$.
+
+\Item{38.} $x^{4} + 4x^{3}y + 3x^{2}y^{2}$.
+
+\Item{39.} $x^{2} - 4xy^{2} + 4y^{4}$.
+
+\Item{40.} $16x^{4} + 8x^{2} + 1$.
+
+\Item{41.} $9a^{4} - 4a^{2}c^{2}$.
+
+\Item{42.} $a^{3}b - a^{2}b^{2} - 2ab^{3}$.
+
+\Item{43.} $x^{4} - x^{3} + 8x - 8$.
+
+\Item{44.} $a^{4} - a^{3}x + ay^{3} - xy^{3}$.
+\end{multicols}
+%% -----File: 090.png---Folio 84-------
+
+
+\Chapter{VIII.}{Common Factors and Multiples.}
+
+\Paragraph{116. Common Factors.} A \Defn{common factor} of two or more
+\emph{integral numbers} is an integral number which divides each
+of them without a remainder.
+
+\Paragraph{117.} A \Defn{common factor} of two or more integral and rational
+\emph{expressions} is an integral and rational expression which
+divides each of them without a remainder.
+
+\begin{Remark}
+Thus $5a$~is a common factor of $20a$~and~$25a$, $3x^{2}y^{2}$ is a common
+factor of~$12x^{2}y^{2}$ and~$15x^{3}y^{3}$.
+\end{Remark}
+
+\Paragraph{118.} Two \emph{numbers} are said to be \Defn{prime} to each other
+when they have no common factor except~$1$.
+
+\Paragraph{119.} Two \emph{expressions} are said to be \Defn{prime} to each other
+when they have no common factor except~$1$.
+
+\Paragraph{120.} The \Defn{highest common factor} of two or more integral
+\emph{numbers} is the greatest number that will divide each of
+them without a remainder.
+
+\Paragraph{121.} The \Defn{highest common factor} of two or more integral
+and rational \emph{expressions} is an integral and rational expression
+of highest degree that will divide each of them without
+a remainder.
+
+\begin{Remark}
+Thus $3a^{2}$ is the highest common factor of $3a^{2}$, $6a^{3}$, and~$12a^{4}$,
+$5x^{2}y^{2}$ is the highest common factor of $10x^{3}y^{2}$ and~$15x^{2}y^{2}$.
+\end{Remark}
+
+For brevity, we use \HCF\ for ``highest common factor.''
+%% -----File: 091.png---Folio 85-------
+
+\Paragraph{122. To Find the Highest Common Factor of Two or More
+Algebraic Expressions.}
+
+\Item{1.} Find the \HCF\ of $42a^{3}b^{2}$ and~$30a^{2}b^{4}$.
+\begin{alignat*}{2}
+&42a^{3}b^{2} &&= 2 × 3 × 7 × aaa × bb; \\
+&30a^{2}b^{4} &&= 2 × 3 × 5 × aa × bbbb. \\
+\therefore\ &\text{the \HCF} &&= 2 × 3 × aa × bb,
+\quad\text{or}\quad 6a^{2}b^{2}.
+\end{alignat*}
+
+\Item{2.} Find the \HCF\ of $x^{2} - 9y^{2}$ and $x^{2} + 6xy + 9y^{2}$.
+\begin{alignat*}{2}
+&x^{2} - 9y^{2} &&= (x + 3y)(x - 3y); \\
+&x^{2} + 6xy + 9y^{2} &&= (x + 3y)(x + 3y). \\
+\therefore\ &\text{the \HCF} &&= (x + 3y).
+\end{alignat*}
+
+\Item{3.} Find the \HCF\ of $4x^{2} - 4x - 80$, $2x^{2} - 18x + 40$.
+\begin{alignat*}{3}
+&4x^{2} -& 4x &- 80 &&= 4(x^{2} - x-20) \\
+&&& &&= 4(x - 5)(x + 4); \\
+&2x^{2} -& 18x &+ 40 &&= 2(x^{2} - 9x + 20) \\
+&&& &&= 2(x - 5)(x - 4). \\
+\therefore\ &\rlap{\text{the \HCF}} &&&&= 2(x - 5).
+\end{alignat*}
+
+\Dictum{To find the \HCF\ of two or more expressions}, therefore,
+\begin{Theorem}
+Resolve each expression into its simplest factors.
+
+Find the product of all the common factors, taking each
+factor the least number of times it occurs in any of the given
+expressions.
+\end{Theorem}
+
+\begin{Remark}[Note.] The \emph{highest common factor} in Algebra corresponds to the
+\emph{greatest common measure}, or \emph{greatest common divisor} in Arithmetic.
+We cannot apply the terms \emph{greatest} and \emph{least} to an algebraic expression
+in which particular values have not been given to the letters
+contained in the expression. Thus $a$~is \emph{greater} than~$a^{2}$, if $a$~stands
+for~$\frac{1}{4}$.
+\end{Remark}
+%% -----File: 092.png---Folio 86-------
+
+\Exercise{40.}
+
+Find the \HCF\ of:
+\begin{multicols}{2}
+\Item{1.} $330$ and $546$.
+
+\Item{2.} $20x^{3}$ and $15x^{4}$.
+
+\Item{3.} $42ax^{2}$ and $60a^{2}x$.
+
+\Item{4.} $35a^{2}b^{2}$ and $49ab^{3}$.
+
+\Item{5.} $28x^{4}$ and $63y^{4}$.
+
+\Item{6.} $54a^{2}b^{2}$ and $56a^{3}b^{3}$.
+
+\Item{7.} $x^{3} + 3x^{2}y$ and $x^{3} + 27y^{3}$.
+
+\Item{8.} $x^{2} + 3x$ and $x^{2} - 9$.
+
+\Item{9.} $2ax^{3} + x^{3}$ and $8a^{3} + 1$.
+
+\Item{10.} $(x + y)^{2}$ and $x^{2} - y^{2}$.
+
+\Item{11.} $a^{3} + a^{2}x$ and $a^{2} - x^{2}$.
+
+\Item{12.} $a^{2} - 4b^{2}$ and $a^{2} + 2ab$.
+\end{multicols}
+
+\Item{13.} $x^{2} - 1$ and $x^{2} + 2x - 3$.
+
+\Item{14.} $x^{2} + 5x + 6$ and $x^{2} + 4x + 3$.
+
+\Item{15.} $x^{2} - 9x + 18$ and $x^{2} - 10x + 24$.
+
+\Item{16.} $x^{3} + 1$ and $x^{2} - x + 1$.
+
+\Item{17.} $x^{2} - 3x + 2$ and $x^{2} - 4x + 3$.
+
+\Item{18.} $x^{2} - 3xy + 2y^{2}$ and $x^{2} - 2xy + y^{2}$.
+
+\Item{19.} $x^{2} - 4x - 5$ and $x^{2} - 25$.
+
+\Item{20.} $(a - b)^{2} - c^{2}$ and $ab - b^{2} - bc$.
+
+\Item{21.} $x^{2} + xy -2y^{2}$ and $x^{2} + 5xy + 6y^{2}$.
+
+\Item{22.} $x^{2} + 7xy + 12y^{2}$ and $x^{2} + 3xy - 4y^{2}$.
+
+\Item{23.} $x^{3} - 8y^{3}$ and $x^{2} + 2xy + 4y^{2}$.
+
+\Item{24.} $x^{3} - 2x^{2} - x + 2$ and $x^{2} - 4x + 4$.
+
+\Item{25.} $1 - 5a + 6a^{2}$ and $1 - 7a + 12a^{2}$.
+
+\Item{26.} $x^{2} - 8xy + 7y^{2}$ and $x^{2} - 3xy - 28y^{2}$.
+
+\Item{27.} $8a^{3} + b^{3}$ and $4a^{2} + 4ab + b^{2}$.
+
+\Item{28.} $x^{2} - (y - z)^{2}$ and $(x + y)^{2} - z^{2}$.
+%% -----File: 093.png---Folio 87-------
+
+\Paragraph{123. Common Multiples.} A \Defn{common multiple} of two or
+more integral \emph{numbers} is a number which is exactly divisible
+by each, of the numbers.
+
+A \Defn{common multiple} of two or more \emph{expressions} is an expression
+which is exactly divisible by each of the expressions.
+
+\Paragraph{124.} The \Defn{lowest common multiple} of two or more \emph{numbers}
+is the least number that is exactly divisible by each of the
+given numbers.
+
+The \Defn{lowest common multiple} of two or more \emph{expressions} is
+the expression of lowest degree that is exactly divisible by
+each of the given expressions.
+
+We use \LCM\ for ``lowest common multiple.''
+
+\Paragraph{To find the lowest common multiple of two or more algebraic
+expressions.}
+
+\Item{1.} Find the \LCM\ of $42a^{3}b^{2}$, $30a^{2}b^{4}$, and~$66ab^{3}$.
+\begin{align*}
+42a^{3}b^{2} &= 2 × 3 × 7 × a^{3} × b^{2}; \\
+30a^{2}b^{4} &= 2 × 3 × 5 × a^{2} × b^{4}; \\
+66ab^{3} &= 2 × 3 × 11 × a × b^{3}.
+\end{align*}
+
+\begin{Soln}
+The \LCM\ must evidently contain each factor the greatest number
+of times that it occurs in any expression.
+\begin{align*}
+\therefore\ \text{\LCM}
+ &= 2 × 3 × 7 × 5 × 11a^{3} × b^{4}, \\
+ &= 2310a^{3}b^{4}.
+\end{align*}
+\end{Soln}
+
+\Item{2.} Find the \LCM\ of $4x^{2} - 4x - 80$ and $2x^{2} - 18x + 40$.
+\begin{Soln}
+\begin{alignat*}{3}
+&4x^{2} -& 4x &- 80 &&= 4(x^{2} - x - 20) = 4(x - 5)(x + 4); \\
+&2x^{2} -& 18x &+ 40 &&= 2(x^{2} - 9x + 20) = 2(x - 5)(x - 4). \\
+\therefore\ &\rlap{\text{\LCM}}&&& &= 4(x - 5)(x + 4)(x - 4).
+\end{alignat*}
+\end{Soln}
+
+\Dictum{To find the \LCM\ of two or more expressions}, therefore,
+%% -----File: 094.png---Folio 88-------
+\begin{Theorem}
+Resolve each expression into its simplest factors.
+
+Find the product of all the different factors, taking each
+factor the greatest number of times it occurs in any of the
+given expressions.
+\end{Theorem}
+
+\Exercise{41.}
+
+Find the \LCM\ of:
+\begin{multicols}{2}
+\Item{1.} $9xy^{3}$ and $6x^{2}y$.
+
+\Item{2.} $3abc^{2}$ and $2a^{2}bc^{3}$.
+
+\Item{3.} $4a^{3}b$ and $10ab^{3}$.
+
+\Item{4.} $6a^{3}b^{3}$ and $15a^{2}b^{4}$.
+
+\Item{5.} $21xy^{3}$ and $27x^{3}y^{5}$.
+
+\Item{6.} $xy^{3}z^{2}$ and $x^{2}y^{2}z^{3}$.
+
+\Item{7.} $a^{2}$ and $a^{2} + a$.
+
+\Item{8.} $x^{2}$ and $x^{3} - 3x^{2}$.
+
+\Item{9.} $x^{2} - 1$ and $x^{2} + x$.
+
+\Item{10.} $x^{2} - 1$ and $x^{2} - x$.
+
+\Item{11.} $x^{2} + xy$ and $xy + y^{2}$.
+
+\Item{12.} $x^{2} + 2x$ and $(x + 2)^{2}$.
+\end{multicols}
+
+\Item{13.} $a^{2} + 4a + 4$ and $a^{2} + 5a + 6$.
+
+\Item{14.} $c^{2} + c - 20$ and $c^{2} - c - 30$.
+
+\Item{15.} $b^{2} + b - 42$ and $b^{2} - 11b + 30$.
+
+\Item{16.} $y^{2} - 10y + 24$ and $y^{2} + y -20$.
+
+\Item{17.} $z^{2} + 2z - 35$ and $z^{2} - 11z + 30$.
+
+\Item{18.} $x^{2} - 64; x^{3} - 64$; and $x + 8$.
+
+\Item{19.} $a^{2} - b^{2}; (a + b)^{2}$; and $(a - b)^{2}$.
+
+\Item{20.} $4ab(a + b)^{2}$ and $2a^{2}(a^{2} - b^{2})$.
+
+\Item{21.} $y^{2} + 7y + 12; y^{2} + 6y + 8$; and $y^{2} + 5y +6$.
+
+\Item{22.} $x^{2} - 1; x^{3} + x^{2} + x + 1$; and $x^{3} - x^{2} + x - 1$.
+
+\Item{23.} $1 - x^{2}; 1 - x^{3}$; and $1 + x$.
+
+\Item{24.} $x^{2} + 2xy + y^{2}; x^{2} - y^{2}$; and $x^{2} - 2xy + y^{2}$.
+
+\Item{25.} $x^{3} - 27; x^{2} + 2x - 15; x^{2} + 5x$.
+
+\Item{26.} $(a + b)^{2} - c^{2}; (a + b + c)^{2}$; and $a + b - c$.
+
+\Item{27.} $x^{2} - (a + b)x + ab$ and $x^{2} - (a + c)x + ac$.
+
+\Item{28.} $(a + b)^{2} - c^{2}$ and $a^{2} + ab + ac$.
+%% -----File: 095.png---Folio 89-------
+
+
+\Chapter{IX.}{Fractions.}
+
+\Paragraph{125.} An \Defn{algebraic fraction} is the indicated quotient of
+two expressions, written in the form~$dfrac{a}{b}$.
+
+The dividend~$a$ is called the \Defn{numerator}, and the divisor~$b$
+is called the \Defn{denominator}; and the numerator and denominator
+are called the \Defn{terms} of the fraction.
+
+\Paragraph{126.} The introduction of the same factor into the dividend
+and divisor does not alter the value of the quotient,
+and the rejection of the same factor from the dividend and
+divisor does not alter the value of the quotient.
+\begin{DPgather*}
+\lintertext{\indent Thus}
+\frac{12}{4} = 3;\quad
+\frac{2 × 12}{2 × 4} = 3; \frac{12÷2}{4÷2} = 3. \EqText{Hence,}
+\end{DPgather*}
+\begin{Theorem}
+The value of a fraction is not altered if the numerator and
+denominator are both multiplied, or both divided, by the
+same factor.
+\end{Theorem}
+
+
+\Section{Reduction of Fractions.}
+
+\Paragraph{127.} To reduce a fraction is to change its \emph{form} without
+altering its \emph{value}.
+
+
+\Section{Case I.}
+
+\Paragraph{128. To Reduce a Fraction to its Lowest Terms.}
+
+A fraction is in its \emph{lowest terms} when the numerator and
+denominator have no common factor. We have, therefore,
+the following rule:
+%% -----File: 096.png---Folio 90-------
+\begin{Theorem}
+Resolve the numerator and denominator into their prime
+factors, and cancel all the common factors.
+\end{Theorem}
+
+Reduce the following fractions to their lowest terms:
+
+\Item{1.} $\dfrac{38a^{2}b^{3}c^{4}}{57a^{3}bc^{2}} = \dfrac{2 × 19a^{2}b^{3}c^{4}}{3 × 19a^{3}bc^{2}} = \dfrac{2b^{2}c^{2}}{3a}$.
+
+\Item{2.} $\dfrac{a^{3} - x^{3}}{a^{2} - x^{2}} = \dfrac{(a - x)(a^{2} + ax + x^{2})}{(a - x)(a + x)} = \dfrac{a^{2} + ax + x^{2}}{a + x}$.
+
+\Item{3.} $\dfrac{a^{2} + 7a + 10}{a^{2} + 5a + 6} = \dfrac{(a + 5)(a + 2)}{(a + 3)(a + 2)} = \dfrac{a + 5}{a + 3}$.
+
+\Exercise{42.}
+
+Reduce to lowest terms:
+\begin{multicols}{3}
+\Item{1.} $\dfrac{2a}{6ab}$.
+
+\Item{2.} $\dfrac{12m^{2}n}{15mn^{2}}$.
+
+\Item{3.} $\dfrac{21m^{2}p^{2}}{28mp^{4}}$.
+
+\Item{4.} $\dfrac{3x^{3}y^{2}z}{6xy^{3}z^{2}}$.
+
+\Item{5.} $\dfrac{5a^{3}b^{3}c^{3}}{15c^{5}}$.
+
+\Item{6.} $\dfrac{34x^{3}y^{4}z^{5}}{51x^{2}y^{3}z^{5}}$.
+
+\Item{7.} $\dfrac{46m^{2}np^{3}}{69mnp^{4}}$.
+
+\Item{8.} $\dfrac{39a^{2}b^{3}c^{4}}{52a^{5}bc^{3}}$.
+
+\Item{9.} $\dfrac{58xy^{4}z^{6}}{87xy^{2}z^{2}}$.
+\end{multicols}
+
+\begin{multicols}{2}
+\Item{10.} $\dfrac{abx - bx^{2}}{acx - cx^{2}}$.
+
+\Item{11.} $\dfrac{4a^{2} - 9b^{2}}{4a^{2} + 6ab}$.
+
+\Item{12.} $\dfrac{3a^{2} + 6a}{a^{2} + 4a + 4}$.
+
+\Item{13.} $\dfrac{x^{2} + 5x}{x^{2} + 4x-5}$.
+
+\Item{14.} $\dfrac{xy - 3y^{2}}{x^{3} - 27y^{3}}$.
+
+\Item{15.} $\dfrac{x^{2} + 5x + 4}{x^{2} - x-20}$.
+
+\Item{16.} $\dfrac{x^{2} + 2x + 1}{x^{2} - x-2}$.
+
+\Item{17.} $\dfrac{(a + b)^{2} - c^{2}}{a^{2} + ab-ac}$.
+
+\Item{18.} $\dfrac{x^{2} + 9x + 20}{x^{2} + 7x + 12}$.
+
+\Item{19.} $\dfrac{x^{2} - 14x - 15}{x^{2} - 12x - 45}$.
+\end{multicols}
+%% -----File: 097.png---Folio 91-------
+
+
+\PrintBreak
+\Section{Case II.}
+
+\Paragraph{129. To Reduce a Fraction to an Integral or Mixed Expression.}
+
+\Item{1.} Reduce $\dfrac{x^{3} - 1}{x - 1}$ to an integral or mixed expression.
+
+By division, $\dfrac{x^{3} - 1}{x - 1} = x^{2} + x + 1$.
+
+\Item{2.} Reduce $\dfrac{x^{3} - 1}{x + 1}$ to an integral or mixed expression.
+
+By division, $\dfrac{x^{3} - 1}{x + 1} = x^{2} - x + 1 - \dfrac{2}{x + 1}$.
+
+\ScreenBreak
+\Dictum{To reduce a fraction to an integral or mixed expression},
+therefore,
+\begin{Theorem}
+Divide the numerator by the denominator.
+\end{Theorem}
+
+\begin{Remark}[Note.] If there is a remainder, this remainder must be written
+as the numerator of a fraction of which the divisor is the denominator,
+and this fraction with its proper sign must be annexed to the integral
+part of the quotient.
+\end{Remark}
+
+\Exercise{43.}
+
+Reduce to integral or mixed expressions:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{a^{2} - b^{2} + 2}{a - b}$.
+
+\Item{2.} $\dfrac{a^{2} - b^{2} - 2}{a + b}$.
+
+\Item{3.} $\dfrac{a^{3} - 2a^{2} + 2a + 1}{a^{2} - a - 1}$.
+
+\Item{4.} $\dfrac{2x^{2} - 2x + 1}{x + 1}$.
+
+\Item{5.} $\dfrac{8x^{3}}{2x + 1}$.
+
+\Item{6.} $\dfrac{5x^{3} + 9x^{2} + 3}{x^{2} + x - 1}$.
+
+\Item{7.} $\dfrac{a^{3} + a^{2} + 7a - 2}{a^{2} + a + 2}$.
+
+\Item{8.} $\dfrac{y^{4} + y^{2}x^{2} + x^{4}}{y^{2} + yx + x^{2}}$.
+
+\Item{9.} $\dfrac{x^{4} - 3x^{3} + x - 1}{x^{2} + x + 1}$.
+
+\Item{10.} $\dfrac{x^{5} - x^{4} + 1}{x^{2} - x - 1}$.
+\end{multicols}
+%% -----File: 098.png---Folio 92-------
+
+
+\ScreenBreak
+\Section{Case III.}
+
+\Paragraph{130. To Reduce a Mixed Expression to a Fraction.}
+
+The process is precisely the same as in Arithmetic. Hence,
+\begin{Theorem}
+Multiply the integral expression by the denominator, to
+the product add the numerator, and under the result write
+the denominator.
+\end{Theorem}
+
+Reduce to a fraction $a - b - \dfrac{a^{2} - ab - b^{2}}{a + b}$.
+\begin{align*}
+a - b - \frac{a^{2} - ab - b^{2}}{a + b}
+ &= \frac{(a - b)(a + b) - (a^{2} - ab - b^{2})}{a + b} \\
+ &= \frac{a^{2} - b^{2} - a^{2} + ab + b^{2}}{a + b} \\
+ &= \frac{ab}{a + b}.
+\end{align*}
+
+\begin{Remark}[Note.] The dividing line between the terms of a fraction has the
+force of a vinculum affecting the numerator. If, therefore, a \emph{minus
+sign} precedes the dividing line, as in the preceding Example, and
+this line is removed, the numerator of the given fraction must be
+enclosed in a parenthesis preceded by the minus sign, or the sign of
+every term of the numerator must be changed.
+\end{Remark}
+
+\ScreenBreak
+\Exercise{44.}
+
+Reduce to a fraction:
+\begin{multicols}{2}
+\Item{1.} $x - y + \dfrac{2xy}{x - y}$.
+
+\Item{2.} $x + y - \dfrac{2xy}{x + y}$.
+
+\Item{3.} $1 - \dfrac{x - y}{x + y}$.
+
+\Item{4.} $a - x - \dfrac{a^{2} + x^{2}}{a - x}$.
+
+\Item{5.} $x + 2 - \dfrac{x^{2} - 4}{x - 3}$.
+
+\Item{6.} $\dfrac{x - 3}{x - 2} - 2x + 1$.
+
+\Item{7.} $\dfrac{x + 3}{x + 2} + x^{2} - x - 1$.
+
+\Item{8.} $2a - 1 + \dfrac{3 - 4a}{a - 3}$.
+
+\Item{9.} $1 - 2a^{2} - \dfrac{a^{2} - a + 2}{a - 1}$.
+
+\Item{10.} $a^{2} + 2a - 5 - \dfrac{2a - 1}{3a^{2} + 1}$.
+\end{multicols}
+%% -----File: 099.png---Folio 93-------
+
+
+\Section{Case IV.}
+
+\Paragraph{131. To Reduce Fractions to their Lowest Common Denominator.}
+
+The process is the same as in Arithmetic. Hence:
+\begin{Theorem}
+Find the lowest common multiple of the denominators;
+this will be the required denominator. Divide this denominator
+by the denominator of each fraction.
+
+Multiply the first numerator by the first quotient, the second
+numerator by the second quotient, and so on.
+
+The products will be the respective numerators of the
+equivalent fractions.
+\end{Theorem}
+
+\begin{Remark}[Note.] Every fraction should be in its lowest terms before the
+common denominator is found.
+\end{Remark}
+
+\Item{1.} Reduce $\dfrac{3x}{4a^{2}}$, $\dfrac{2y}{3a}$, and $\dfrac{5}{6a^{3}}$ to equivalent fractions
+having the lowest common denominator.
+\begin{Soln}
+The \LCM\ of $4a^{2}$, $3a$, and $6a^{3} = 12a^{3}$.
+
+The respective quotients are $3a$, $4a^{2}$, and~$2$.
+
+The products are $9ax$, $8a^{2}y$, and~$10$.
+
+Hence, the required fractions are
+\[
+\frac{9ax}{12a^{3}},\quad
+\frac{8a^{2}y}{12a^{3}}, \quad\text{and}\quad
+\frac{10}{12a^{3}}.
+\]
+\end{Soln}
+
+\Item{2.} Express $\dfrac{1}{x^{2} + 5x + 6}$ and $\dfrac{1}{x^{2} + 4x + 3}$ with lowest
+common denominator.
+\begin{Soln}
+The factors of the denominators are $x + 3$, $x + 2$; and $x + 3$, $x + 1$.
+
+Hence the lowest common denominator (\LCD) is $(x + 3)(x + 2)(x + 1)$,
+and the required numerators are $x + 1$ and $x + 2$. Hence the required
+fractions are
+\[
+%[** TN: Equations not displayed in the original]
+\frac{x + 1}{(x + 3)(x + 2)(x + 1)} \quad\text{and}\quad
+\frac{x + 2}{(x + 3)(x + 2)(x + 1)}.
+\]
+\end{Soln}
+%% -----File: 100.png---Folio 94-------
+
+\ScreenBreak
+\Exercise{45.}
+
+Express with lowest common denominator:
+
+\begin{multicols}{2}
+\Item{1.} $\dfrac{x}{x - a}$, $\dfrac{x^{2}}{x^{2} - a^{2}}$.
+
+\Item{2.} $\dfrac{a}{a + b}$, $\dfrac{a^{2}}{a^{2} - b^{2}}$.
+
+\Item{3.} $\dfrac{1}{1 + 2a}$, $\dfrac{1}{1 - 4a^{2}}$.
+
+\Item{4.} $\dfrac{9}{16 - x^{2}}$, $\dfrac{4 - x}{4 + x}$.
+
+\Item{5.} $\dfrac{a^{2}}{27 - a^{3}}$, $\dfrac{a}{3 - a}$.
+
+\Item{6.} $\dfrac{1}{x^{2} - 5x + 6}$, $\dfrac{1}{x^{2} - x-6}$.
+\end{multicols}
+
+
+\Section{Addition and Subtraction of Fractions.}
+
+\Paragraph{132.} The algebraic sum of two or more fractions which
+have the same denominator, is a fraction whose numerator
+is the algebraic sum of the numerators of the given fractions,
+and whose denominator is the common denominator
+of the given fractions. Hence,
+
+\Dictum{To add fractions},
+\begin{Theorem}
+Reduce the fractions to equivalent fractions having the
+same denominator; and write the algebraic sum of the
+numerators of these fractions over the common denominator.
+\end{Theorem}
+
+\Paragraph{133. When the denominators are simple expressions.}
+
+\Item{1.} Simplify $\dfrac{3a - 4b}{4} - \dfrac{2a - b + c}{3} + \dfrac{a - 4c}{12}$.
+\begin{Soln}
+The $\text{\LCD} = 12$.
+
+The multipliers, that is, the quotients obtained by dividing $12$ by
+$4$, $3$, and $12$, are $3$,~$4$, and~$1$.
+
+Hence the sum of the fractions equals
+\begin{align*}
+&\frac{9a - 12b}{12} - \frac{8a - 4b + 4c}{12} + \frac{a - 4c}{12} \\
+&\quad= \frac{9a - 12b - 8a + 4b - 4c + a - 4c}{12} \\
+&\quad= \frac{2a - 8b-8c}{12} = \frac{a - 4b - 4c}{6}.
+\end{align*}
+\end{Soln}
+%% -----File: 101.png---Folio 95-------
+
+The preceding work may be arranged as follows:
+\begin{Soln}
+The $\text{\LCD} = 12$.
+
+The multipliers are $3$,~$4$, and~$1$, respectively.
+\begin{gather*}
+\begin{array}{l*{5}{cr}cl}
+3(3a &-& 4b & & ) &=& 9a &-&12b & & &=& \text{1st numerator.} \\
+\llap{$-$}
+4(2a &-& b &+& c) &=&-8a &+& 4b &-& 4c &=& \text{2d numerator.} \\
+1( a &-& & &4c) &=& a & & &-& 4c &=& \text{3d numerator.} \\
+\cline{7-11}
+ & & & & & & 2a &-& 8b &-& 8c \\
+ & & & & &\rlap{or}& 2(a &-& 4b &-& 4c) &=& \text{the sum of the numerators.}
+\end{array} \\
+\therefore\ \text{sum of fractions} = \frac{2(a - 4b - 4c)}{12} = \frac{a - 4b - 4c}{6}.
+\end{gather*}
+\end{Soln}
+
+\Exercise{46.}
+
+Find the sum of:
+
+\Item{1.} $\dfrac{x + 1}{2} + \dfrac{x - 3}{5} + \dfrac{x + 5}{10}$.
+
+\Item{2.} $\dfrac{2x - 1}{3} + \dfrac{x + 5}{4} + \dfrac{x - 4}{6}$.
+
+\Item{3.} $\dfrac{7x - 1}{6} - \dfrac{3x - 2}{7} + \dfrac{x - 5}{3}$.
+
+\Item{4.} $\dfrac{3x - 2}{9} - \dfrac{x - 2}{6} + \dfrac{5x + 3}{4}$.
+
+\Item{5.} $\dfrac{x - 1}{6} - \dfrac{x - 3}{3} + \dfrac{x - 5}{2}$.
+
+\Item{6.} $\dfrac{x - 2y}{2x} + \dfrac{x + 5y}{4x} - \dfrac{x + 7y}{8x}$.
+
+\Item{7.} $\dfrac{5x - 11}{3} - \dfrac{2x - 1}{10} - \dfrac{11x - 5}{15}$.
+
+\Item{8.} $\dfrac{x - 3}{3x} - \dfrac{x^{2} - 6x}{5x^{2}} - \dfrac{7x^{2} - x^{3}}{15x^{3}}$.
+
+\Item{9.} $\dfrac{ac - b^{2}}{ac} - \dfrac{ab - c^{2}}{ab} + \dfrac{a^{2} - bc}{bc}$.
+%% -----File: 102.png---Folio 96-------
+
+\PrintBreak
+\Paragraph{134. When the denominators have compound expressions,
+arranged in the same order.}
+
+\Item{1.} Simplify $\dfrac{a + b}{a - b} - \dfrac{a - b}{a + b} - \dfrac{4ab}{a^{2} - b^{2}}$.
+\begin{Soln}
+The \LCD\ is $(a - b)(a + b)$.
+
+The multipliers are $a + b$, $a - b$, and~$1$, respectively.
+\begin{gather*}
+\begin{array}{l*{3}{cr}cl}
+ (a + b)(a + b) &=& a^{2} &+& 2ab &+& b^{2} &=& \text{1st numerator.} \\
+\llap{$-$}
+ (a - b)(a - b) &=&-a^{2} &+& 2ab &-& b^{2} &=& \text{2d numerator.} \\
+\llap{$-$}
+ 1(4ab) &=& &-& 4ab & & &=& \text{3d numerator.} \\
+\cline{3-7}
+ & & \multicolumn{5}{c}{0} &=& \text{sum of numerators.}
+\end{array} \\
+\therefore\ \text{Sum of fractions${} = 0$.}
+\end{gather*}
+\end{Soln}
+
+\Exercise{47.}
+
+Find the sum of:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{1}{x + 3} + \dfrac{1}{x - 2}$.
+
+\Item{2.} $\dfrac{1}{x + 1} + \dfrac{1}{x - 1}$.
+
+\Item{3.} $\dfrac{4}{x - 8} - \dfrac{1}{x + 2}$.
+
+\Item{4.} $\dfrac{a + x}{a - x} - \dfrac{a - x}{a + x}$.
+
+\Item{5.} $\dfrac{x}{x - a} - \dfrac{x^{2}}{x^{2} - a^{2}}$.
+
+\Item{6.} $\dfrac{4a^{2} + b^{2}}{4a^{2} - b^{2}} - \dfrac{2a + b}{2a - b}$.
+
+\Item{7.} $\dfrac{7}{9 - a^{2}} - \dfrac{1}{3 + a} - \dfrac{1}{3 - a}$.
+
+\Item{8.} $\dfrac{1}{a - b} - \dfrac{1}{a + b} - \dfrac{b}{a^{2} - b^{2}}$.
+\end{multicols}
+%[** TN: Adjusted layout]
+
+\Item{9.} $\dfrac{2}{x - 2} - \dfrac{2}{x + 2} + \dfrac{5x}{x^{2} - 4}$.
+
+\Item{10.} $\dfrac{3 - x}{1 - 3x} - \dfrac{3 + x}{1 + 3x} - \dfrac{15x - 1}{1 - 9x^{2}}$.
+
+\begin{multicols}{2}
+\Item{11.} $\dfrac{1}{a} - \dfrac{1}{a + 3} + \dfrac{3}{a + 1}$.
+
+\Item{12.} $\dfrac{x}{x - 1} - \dfrac{1} - \dfrac{1}{x + 1}$.
+\end{multicols}
+
+\Item{13.} $\dfrac{x + 1}{x + 2} + \dfrac{x - 2}{x - 3} + \dfrac{2x + 7}{x^{2} - x - 6}$.
+
+\Item{14.} $\dfrac{1}{x(x - 1)} - \dfrac{2}{x^{2} - 1} + \dfrac{1}{x(x + 1)}$.
+%% -----File: 103.png---Folio 97-------
+
+\Exercise{48.}
+
+Find the sum of:
+
+\Item{1.} $\dfrac{1}{2x + 1} + \dfrac{1}{2x - 1} - \dfrac{4x}{4x^{2} - 1}$.
+
+\Item{2.} $\dfrac{a^{2} + b^{2}}{a^{2} - b^{2}} + \dfrac{a}{a + b} - \dfrac{b}{a - b}$.
+
+\Item{3.} $\dfrac{3a}{1 - a^{2}} + \dfrac{2}{1 - a} - \dfrac{2}{1 + a}$.
+
+\Item{4.} $\dfrac{1}{2x + 5y} - \dfrac{3x}{4x^{2} - 25y^{2}} + \dfrac{1}{2x + 5y}$.
+
+\Item{5.} $\dfrac{1}{x + 4y} - \dfrac{8y}{x^{2} - 16y^{2}} + \dfrac{1}{x - 4y}$.
+
+\Item{6.} $\dfrac{3}{2x - 3} - \dfrac{2}{2x + 3} - \dfrac{3}{4x^{2} - 9}$.
+
+
+\Section{Multiplication and Division of Fractions.}
+
+\Paragraph{135.} Find the product of $\dfrac{a}{b} × \dfrac{c}{d}$.
+
+Let $\dfrac{a}{b} = x$, and $\dfrac{c}{d} = y$.
+
+Then $a = bx$, and $c = dy$.
+
+The product of these two equations is
+\begin{DPalign*}
+ac &= bdxy. \\
+\lintertext{\indent Divide by~$bd$,}
+\frac{ac}{bd} &= xy. \displaybreak[1] \\
+\lintertext{\indent But}
+\frac{a}{b} × \frac{c}{d} = xy. \displaybreak[1] \\
+\lintertext{\indent Therefore}
+\frac{a}{b} × \frac{c}{d} = \frac{ac}{bd}.
+\end{DPalign*}
+%% -----File: 104.png---Folio 98-------
+
+\Dictum{To find the product of two fractions}, therefore,
+\begin{Theorem}
+Find the product of the numerators for the required
+numerator, and the product of the denominators for the
+required denominator.
+\end{Theorem}
+
+In like manner,
+\[
+\frac{a}{b} × \frac{c}{d} × \frac{e}{f} = \frac{ac}{bd} × \frac{e}{f} = \frac{ace}{bdf}.
+\]
+
+\Paragraph{136. Reciprocals.} If the product of two numbers is equal
+to~$1$, each of the numbers is called the \Defn{reciprocal} of the
+other.
+
+The reciprocal of $\dfrac{a}{b}$ is $\dfrac{b}{a}$, for $\dfrac{b}{a} × \dfrac{a}{b} = \dfrac{ba}{ab} = 1$.
+
+The reciprocal of a fraction, therefore, is the fraction
+inverted.
+
+%[** TN: Next line broken in the original]
+Since $\dfrac{a}{b} ÷ \dfrac{a}{b} = 1$, and $\dfrac{b}{a} × \dfrac{a}{b} = 1$,
+it follows that
+\begin{Theorem}
+To divide by a fraction is the same as to multiply by its
+reciprocal.
+\end{Theorem}
+
+\Paragraph{137.} \Dictum{To Divide by a Fraction}, therefore,
+\begin{Theorem}
+Invert the divisor and multiply.
+\end{Theorem}
+
+\begin{Remark}[Note.] Every mixed expression should first be reduced to a fraction,
+and every integral expression should be written as a fraction
+having $1$~for the denominator. Both terms of each fraction should
+be expressed in their prime factors, and if a factor is common to a
+numerator and denominator, it should be cancelled, as the cancelling
+of a common factor \emph{before} the multiplication is evidently equivalent
+to cancelling it \emph{after} the multiplication.
+\end{Remark}
+%% -----File: 105.png---Folio 99-------
+
+\Item{1.} Find the product of $\dfrac{3a^{2}b}{2x^{2}y} × \dfrac{6xy^{2}}{7ab} × \dfrac{7abc}{9a^{2}by^{2}}$.
+\[
+\frac{3a^{2}b}{2x^{2}y} × \frac{6xy^{2}}{7ab} × \frac{7abc}{9a^{2}by^{2}}
+ = \frac{3 × 6 × 7a^{3}b^{2}cxy^{2}}{2 × 7 × 9a^{3}b^{2}x^{2}y^{3}}
+ = \frac{c}{xy}.
+\]
+
+\Item{2.} Find the product of $\dfrac{ab - b^{2}}{a + b} × \dfrac{ab + b^{2}}{a^{2} - b^{2}}$.
+\[
+\frac{ab - b^{2}}{a + b} × \frac{ab + b^{2}}{a^{2} - b^{2}}
+ = \frac{b(a - b)}{(a + b)} × \frac{b(a + b)}{(a - b)(a + b)}
+ = \frac{b^{2}}{a + b}.
+\]
+
+\Item{3.} Find quotient of $\dfrac{ab}{(a - b)^{2}} ÷ \dfrac{ac}{a^{2} - b^{2}}$.
+\begin{align*}
+\frac{ab}{(a - b)^{2}} ÷ \frac{ac}{a^{2} - b^{2}}
+ &= \frac{ab}{(a - b)(a - b)} × \frac{(a - b)(a + b)}{ac} \\
+ &= \frac{b(a + b)}{c(a - b)}.
+\end{align*}
+
+\Item{4.} Find the result of $\dfrac{1}{x} × \dfrac{x^{2} - 1}{x^{2} - 4x - 5} ÷ \dfrac{x^{2} + 2x - 3}{x^{2} - 25}$.
+\begin{align*}
+&\frac{1}{x} × \frac{x^{2} - 1}{x^{2} - 4x - 5} ÷ \frac{x^{2} + 2x - 3}{x^{2} - 25} \\
+&\qquad= \frac{1}{x} × \frac{x^{2} - 1}{x^{2} - 4x - 5} × \frac{x^{2} - 25}{x^{2} + 2x - 3} \\
+&\qquad= \frac{1}{x} × \frac{(x - 1)(x + 1)}{(x - 5)(x + 1)} × \frac{(x - 5)(x + 5)}{(x + 3)(x - 1)} \\
+&\qquad= \frac{x + 5}{x(x + 3)}.
+\end{align*}
+%% -----File: 106.png---Folio 100-------
+
+\Exercise{49.}
+
+Express in the simplest form:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{15a^{2}}{7b^{2}} × \dfrac{28ab}{9a^{3}c}$.
+
+\Item{2.} $\dfrac{3x^{2}y^{2}z^{3}}{4a^{2}b^{2}c^{2}} × \dfrac{8a^{3}b^{2}c^{2}}{9x^{2}yz^{3}}$.
+
+\Item{3.} $\dfrac{5m^{2}n^{2}p^{4}}{3x^{2}yz^{3}} × \dfrac{21xyz^{2}}{20m^{2}n^{2}p^{2}}$.
+
+\Item{4.} $\dfrac{16a^{4}b^{2}c^{3}}{21m^{2}x^{3}y^{4}} × \dfrac{3m^{3}x^{3}y^{4}}{8a^{2}b^{2}c^{2}}$.
+
+\Item{5.} $\dfrac{2a}{bc} × \dfrac{3b}{ac} × \dfrac{5c}{ab}$.
+
+\Item{6.} $\dfrac{2a^{3}}{3bc} × \dfrac{3b^{3}}{5ac} × \dfrac{5c^{3}}{2ab}$.
+
+\Item{7.} $\dfrac{5abc^{3}}{3x^{2}} ÷ \dfrac{10ac^{3}}{6bx^{2}}$.
+
+\Item{8.} $\dfrac{x^{2} - a^{2}}{x^{2} - 4a^{2}} × \dfrac{x + 2a}{x - a}$.
+
+\Item{9.} $\dfrac{x^{2}y^{2} + 3xy}{4c^{2} - 1} × \dfrac{2c + 1}{xy + 3}$.
+
+\Item{10.} $\dfrac{a^{2} - 100}{a^{2} - 9} × \dfrac{a - 3}{a - 10}$.
+
+\Item{11.} $\dfrac{9x^{2} - 4y^{2}}{x^{2} - 4} × \dfrac{x + 2}{3x - 2y}$.
+
+\Item{12.} $\dfrac{25a^{2} - b^{2}}{16a^{2} - 9b^{2}} ÷ \dfrac{5a - b}{4a - 3b}$.
+\end{multicols}
+%[** TN: Moved end of two-column layout up two questions]
+
+\Item{13.} $\dfrac{x^{2} - 49}{(a + b)^{2} - c^{2}} ÷ \dfrac{x + 7}{(a + b) - c}$.
+
+\Item{14.} $\dfrac{x^{2} + 2x + 1}{x^{2} - 25} ÷ \dfrac{x + 1}{x^{2} + 5x}$.
+
+\Item{15.} $\dfrac{a^{2} + 3a + 2}{a^{2} + 5a + 6} × \dfrac{a^{2} + 7a + 12}{a^{2} + 9a + 20}$.
+
+\Item{16.} $\dfrac{y^{2} - y-30}{y^{2} - 36} × \dfrac{y^{2} - y-2}{y^{2} + 3y-10} × \dfrac{y^{2} + 6y}{y^{2} + y}$.
+
+\Item{17.} $\dfrac{x^{2} - 2x + 1}{x^{2} - y^{2}} × \dfrac{x^{2} + 2xy + y^{2}}{x - 1} ÷ \dfrac{x^{2} - 1}{x^{2} - xy}$.
+
+\Item{18.} $\dfrac{a^{2} - b^{2}}{a^{2} - 3ab + 2b^{2}} × \dfrac{ab - 2b^{2}}{a^{2} + ab} ÷ \dfrac{(a - b)^{2}}{a(a - b)}$.
+
+\Item{19.} $\dfrac{(a + b)^{2} - c^{2}}{a^{2} + ab-ac} × \dfrac{a^{2}b^{2}c^{2}}{a^{2} + ab + ac} ÷ \dfrac{b^{2}c^{2}}{abc}$.
+
+\Item{20.} $\dfrac{x^{2} + 7xy + 10y^{2}}{x^{2} + 6xy + 5y^{2}} × \dfrac{x + 1}{x^{2} + 4x + 4} ÷ \dfrac{1}{x + 2}$.
+%% -----File: 107.png---Folio 101-------
+
+\Paragraph{138. Complex Fractions.} A complex fraction is one that
+has a fraction in the numerator, or in the denominator, or
+in both.
+
+The shortest way to reduce to its simplest form a complex
+fraction is to multiply both terms of the fraction by
+the \LCD\ of the fractions contained in the numerator and
+denominator.
+
+\Item{1.} Simplify $\dfrac{3x}{x - \frac{1}{4}}$.
+
+Multiply both terms by~$4$, and we have
+\[
+\frac{12x}{4x - 1}.
+\]
+
+\Item{2.} Simplify $\dfrac{\dfrac{a + x}{a - x} - \dfrac{a - x}{a + x}}{\dfrac{a + x}{a - x} + \dfrac{a - x}{a + x}}$.
+
+The \LCD\ of the fractions in the numerator and denominator
+is
+\[
+(a - x)(a + x).
+\]
+
+Multiply by $(a - x)(a + x)$, and the result is
+\begin{align*}
+&\frac{(a + x)^{2} - (a - x)^{2}}{(a + x)^{2} + (a - x)^{2}} \\
+&\qquad= \frac{(a^{2} + 2ax + x^{2}) - (a^{2} - 2ax + x^{2})}
+ {(a^{2} + 2ax + x^{2}) + (a^{2} - 2ax + x^{2})} \\
+&\qquad= \frac{a^{2} + 2ax + x^{2} - a^{2} + 2ax - x^{2}}
+ {a^{2} + 2ax + x^{2} + a^{2} - 2ax + x^{2}} \\
+&\qquad= \frac{4ax}{2a^{2} + 2x^{2}} \\
+&\qquad= \frac{2ax}{a^{2} + x^{2}}.
+\end{align*}
+%% -----File: 108.png---Folio 102-------
+
+\Exercise{50.}
+
+Reduce to the simplest form:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{\dfrac{x}{b} + \dfrac{y}{b}}{\dfrac{z}{b}}$.
+
+\Item{2.} $\dfrac{x + \dfrac{y}{4}}{x - \dfrac{y}{3}}$.
+
+\Item{3.} $\dfrac{\dfrac{ab}{7} - 3d}{3c - \dfrac{ab}{d}}$.
+
+\Item{4.} $\dfrac{1 + \dfrac{1}{x + 1}}{1 - \dfrac{1}{x - 1}}$.
+
+\Item{5.} $\dfrac{\dfrac{2m + x}{m + x} - 1}{1 - \dfrac{x}{m + x}}$.
+
+\Item{6.} $\dfrac{\dfrac{x + y}{x^{2} - y^{2}}}{\dfrac{x - y}{x + y}}$.
+
+\Item{7.} $\dfrac{a + \dfrac{ab}{a - b}}{a - \dfrac{ab}{a + b}}$.
+
+\Item{8.} $\dfrac{9a^{2} - 64}{a - 1 - \dfrac{a + 4}{4}}$.
+
+\Item{9.} $\dfrac{\dfrac{1}{x} + \dfrac{1}{y}}{\dfrac{1}{x} - \dfrac{1}{y}}$.
+
+\Item{10.} $\dfrac{x + 3 + \dfrac{2}{x}}{1 + \dfrac{3}{x} + \dfrac{2}{x^{2}}}$.
+
+\Item{11.} $\dfrac{\dfrac{1}{x} - \dfrac{2}{x^{2}} + \dfrac{1}{x^{3}}}{\dfrac{(1 - x)^{2}}{x^{2}}}$.
+
+\Item{12.} $\dfrac{x^{2} - x-6}{1 - \dfrac{4}{x^{2}}}$.
+
+\Item{13.} $\dfrac{a^{2} - a + \dfrac{a - 1}{a + 1}}{a + \dfrac{1}{a + 1}}$.
+
+\Item{14.} $\dfrac{\dfrac{4a(a - x)}{a^{2} - x^{2}}}{\dfrac{a - x}{a + x}}$.
+\end{multicols}
+%% -----File: 109.png---Folio 103-------
+
+
+\Chapter{X.}{Fractional Equations.}
+
+\Paragraph{139. To Reduce Equations containing Fractions.}
+
+\Item{1.} Solve $\dfrac{x}{3} - \dfrac{x - 1}{11} = x - 9$.
+\begin{Soln}
+Multiply by~$33$, the \LCM\ of the denominators.
+\begin{DPalign*}
+\lintertext{\indent Then,}
+11x - 3x + 3 &= 33x - 297. \\
+\lintertext{\indent Transpose,}
+11x - 3x - 33x &= - 297 - 3. \\
+\lintertext{\indent Combine,}
+- 25x &= - 300. \\
+\lintertext{\indent Divide by~$-25$,}
+x &= 12.
+\end{DPalign*}
+\end{Soln}
+
+\begin{Remark}[Note.] Since the minus sign precedes the second fraction, in removing
+the denominator, the~$+$ (understood) before~$x$, the first term
+of the numerator, is changed to~$-$, and the~$-$ before~$1$, the second
+term of the numerator, is changed to~$+$.
+\end{Remark}
+
+\Dictum{To clear an equation of fractions}, therefore,
+\begin{Theorem}
+Multiply each term by the \LCM\ of the denominators.
+\end{Theorem}
+
+If a fraction is preceded by a \textbf{minus sign}, \emph{the sign of
+every term of the numerator must be changed when the
+denominator is removed}.
+
+\Item{2.} Solve $\dfrac{x + 1}{4} - \frac{1}{5}(x - 1) = 1$.
+\begin{Soln}
+Multiply by~$20$, the \LCD
+\begin{DPalign*}
+5x + 5 - 4(x - 1) &= 20. \\
+5x + 5 - 4x + 4 &= 20. \\
+\lintertext{\indent Transpose,}
+5x - 4x &= 20 - 5 - 4. \\
+\lintertext{\indent Combine,}
+x &= 11.
+\end{DPalign*}
+\end{Soln}
+%% -----File: 110.png---Folio 104-------
+
+\Item{3.} Solve
+\[
+7x - \frac{(2x - 3)(3x - 5)}{5} = \frac{153}{10} - \frac{(4x - 5)(3x - 1)}{10}.
+\]
+\begin{Soln}
+Multiply by~$10$, the \LCD, and we have
+\[
+70x - 2(2x - 3)(3x - 5) = 153 - (4x - 5) (3x - 1).
+\]
+
+Find the products of $(2x - 3)(3x - 5)$ and $(4x - 5)(3x - 1)$.
+\[
+70x - 2(6x^{2} - 19x + 15) = 153 - (12x^{2} - 19x + 5).
+\]
+
+Remove the parentheses,
+\[
+70x - 12x^{2} + 38x - 30 = 153 - 12x^{2} + 19x - 5.
+\]
+
+Cancel the~$-12x^{2}$ on each side and transpose,
+\begin{DPalign*}
+70x + 38x - 19x &= 153 + 30 - 5. \\
+\lintertext{\indent Combine,}
+89x &= 178. \\
+\lintertext{\indent Divide by~$89$,}
+x &= 2.
+\end{DPalign*}
+\end{Soln}
+
+\Item{4.} Solve $\dfrac{2x + 1}{2x - 1} - \dfrac{2x - 1}{2x + 1} = \dfrac{8}{4x^{2} - 1}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Since}
+4x^{2} - 1 &= (2x + 1)(2x - 1), \\
+\lintertext{the \LCD}
+ &= (2x + 1)(2x - 1).
+\end{DPalign*}
+Multiply by the \LCD, and we have,
+\begin{DPalign*}
+4x^{2} + 4x + 1-(4x^{2} - 4x + 1) &= 8. \\
+\therefore 4x^{2} + 4x + 1 - 4x^{2} + 4x - 1 &= 8. \\
+\therefore 8x &= 8. \\
+\therefore x &= 1.
+\end{DPalign*}
+\end{Soln}
+
+\Item{5.} Solve $\dfrac{4}{x + 1} - \dfrac{x + 1}{x - 1} + \dfrac{x^{2} - 3}{x^{2} - 1} = 0$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Since}
+x^{2} - 1 &= (x + 1)(x - 1) \\
+\lintertext{the \LCD}
+ &= (x + 1)(x - 1).
+\end{DPalign*}
+
+Multiply by the \LCD, $x^{2} - 1$, and we have,
+\begin{DPalign*}
+4(x - 1) - (x + 1)(x + 1) + x^{2} - 3 &= 0. \\
+\therefore 4x - 4 - x^{2} - 2x - 1 + x^{2} - 3 &= 0. \\
+\therefore 2x &= 8. \\
+\therefore x &= 4.
+\end{DPalign*}
+\end{Soln}
+%% -----File: 111.png---Folio 105-------
+
+%[** TN: Force page break in both print and screen layout]
+\newpage
+\Exercise{51.}
+
+Solve:
+\begin{multicols}{2}
+\Item{1.} $\dfrac{x - 1}{2} = \dfrac{x + 1}{3}$.
+
+\Item{2.} $\dfrac{3x - 1}{4} = \dfrac{2x + 1}{3}$.
+
+\Item{3.} $\dfrac{6x - 19}{2} = \dfrac{2x - 11}{3}$.
+
+\Item{4.} $\dfrac{7x - 40}{8} = \dfrac{9x - 80}{10}$.
+\end{multicols}
+%[** TN: Move end of two-column layout up six questions]
+
+\Item{5.} $\dfrac{3x - 116}{4} + \dfrac{180 - 5x}{6} = 0$.
+
+\Item{6.} $\dfrac{3x - 4}{2} - \dfrac{3x - 1}{16} = \dfrac{6x - 5}{8}$.
+
+\Item{7.} $\dfrac{x - 1}{8} - \dfrac{x + 1}{18} = 1$.
+
+\Item{8.} $\dfrac{60 - x}{14} - \dfrac{3x - 5}{7} = \dfrac{3x}{4}$.
+
+\Item{9.} $\dfrac{3x - 1}{11} - \dfrac{2 - x}{10} = \dfrac{6}{5}$.
+
+\Item{10.} $\dfrac{4x}{x + 1} - \dfrac{x}{x - 2} = 3$.
+
+\Item{11.} $\dfrac{2x + 1}{4} - \dfrac{4x - 1}{10} + 1 - \frac{1}{4} = 0$.
+
+\Item{12.} $\dfrac{x - 1}{5} - \dfrac{43 - 5x}{6} - \dfrac{3x - 1}{8} = 0$.
+
+\Item{13.} $\dfrac{1}{x + 7} = \dfrac{2}{x + 1} - \dfrac{1}{x + 3}$.
+
+\Item{14.} $\dfrac{1}{x + 4} + \dfrac{2}{x + 6} - \dfrac{3}{x + 5} = 0$.
+
+\Item{15.} $\dfrac{4}{x^{2} - 1} + \dfrac{1}{x - 1} + \dfrac{1}{x + 1} = 0$.
+
+\Item{16.} $\dfrac{3x + 1}{4} - \dfrac{5x - 4}{7} = 12 - 2x - \dfrac{x - 2}{3}$.
+
+\Item{17.} $\frac{1}{8}(5x + 3) - \frac{1}{3}(3 - 4x) + \frac{1}{6}(9 - 5x) = \frac{1}{2}(31 - x)$.
+
+\Item{18.} $\frac{1}{15} (34x - 56) - \frac{1}{5}(7x - 3) - \frac{1}{3}(7x - 5) = 0$.
+%% -----File: 112.png---Folio 106-------
+
+\Exercise{52.}
+
+Solve:
+
+\Item{1.} $\frac{2}{3}(x + 1) - \frac{1}{7}(x + 5) = 1$.
+
+\Item{2.} $\frac{6}{7}(x - 9) - \frac{1}{3}(5 - x) + 3x + 1 = 0$.
+
+\Item{3.} $\frac{1}{3}(5x - 24) + \frac{1}{7}(x - 2) - 2(x - 1) = 0$.
+
+\Item{4.} $\dfrac{x + 3}{4} + \dfrac{7x - 2}{5} = \dfrac{5x - 1}{4} + \dfrac{5x + 4}{9}$.
+
+\Item{5.} $\dfrac{x + 1}{3} - \dfrac{x - 1}{4} = \dfrac{x - 2}{5} - \dfrac{x - 3}{6} + \dfrac{31}{60}$.
+
+\Item{6.} $\dfrac{(2x - 1)(2 - x)}{2} + x^{2} - \dfrac{1 + 3x}{2} = 0$.
+
+\Item{7.} $\dfrac{6x - 11}{4} - \dfrac{3 - 4x}{6} = \dfrac{4}{3} - \dfrac{x}{8}$.
+
+\Item{8.} $\dfrac{x + 6}{4} - \dfrac{16 - 3x}{12} = 4\frac{1}{6}$.
+
+\Item{9.} $x - \dfrac{x - 2}{3} = \dfrac{x + 23}{4} - \dfrac{10 + x}{5}$.
+
+\Item{10.} $\dfrac{5x + 3}{x - 1} + \dfrac{2x - 3}{2x - 1} = 6$.
+
+\Item{11.} $\dfrac{3x}{4x + 1} + 1 = 2 - \dfrac{x}{2(2x - 1)}$.
+
+\Item{12.} $\dfrac{8x + 7}{5x + 4} - 1 = 1 - \dfrac{2x}{5x + 1}$.
+
+\Item{13.} $\dfrac{x + 1}{2(x - 1)} - \dfrac{x - 1}{x + 1} = \dfrac{17 - x^{2}}{2(x^{2} - 1)}$.
+%% -----File: 113.png---Folio 107-------
+
+\Paragraph{140.} If the denominators contain both simple and compound
+expressions, it is generally best to remove the simple
+expressions first, and then the compound expressions. After
+each multiplication the result should be reduced to the
+simplest form.
+
+\Item{1.} Solve $\dfrac{4x + 3}{10} - \dfrac{2x + 3}{5x - 1} = \dfrac{2x - 1}{5}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Multiply by~$10$,}
+4x + 3 - \frac{10(2x + 3)}{5x - 1} &= 4x - 2. \\
+\lintertext{\indent Transpose,}
+4x + 3 - 4x + 2 &= \frac{10(2x + 3)}{5x - 1}. \\
+\lintertext{\indent Combine,}
+5 &= \frac{10(2x + 3)}{5x - 1}. \displaybreak[1] \\
+\lintertext{\indent Divide by~$5$,}
+1 &= \frac{2(2x + 3)}{5x - 1}. \\
+\lintertext{\indent Multiply by $5x - 1$,}
+5x - 1 &= 4x + 6. \\
+\lintertext{\indent Transpose and combine,}
+x &= 7.
+\end{DPalign*}
+\end{Soln}
+
+\Exercise{53.}
+
+Solve:
+
+\Item{1.} $\dfrac{10x + 13}{18} - \dfrac{x + 2}{x - 3} = \dfrac{5x - 4}{9}$.
+
+\Item{2.} $\dfrac{6x + 7}{10} - \dfrac{3x + 1}{5} = \dfrac{x - 1}{3x - 4}$.
+
+\Item{3.} $\dfrac{11x - 12}{14} - \dfrac{11x - 7}{19x + 7} = \dfrac{22x - 36}{28}$.
+
+\Item{4.} $\dfrac{2x - 1}{5} + \dfrac{2x - 3}{17x - 12} = \dfrac{4x - 3}{10}$.
+
+\Item{5.} $\dfrac{11x - 13}{7} - \dfrac{13x + 7}{3x + 7} = \dfrac{22x - 75}{14}$.
+
+\Item{6.} $\dfrac{6x - 13}{2x + 3} + \dfrac{6x + 7}{9} - \dfrac{2x + 4}{3} = 0$.
+%% -----File: 114.png---Folio 108-------
+
+\Paragraph{141. Literal Equations.} Literal equations are equations
+in which some or all of the known numbers are represented
+by letters; the numbers regarded as known numbers are
+usually represented by the \emph{first} letters of the alphabet.
+
+\Item{1.} Solve $\dfrac{x + a}{x - b} + \dfrac{x + b}{x - a} = 2$.
+\begin{Soln}
+Multiply by $(x - a)(x - b)$,
+\begin{DPalign*}
+\llap{$(x + a)(x - a) + (x + b)(x - b)$} &= 2(x - a)(x - b), \\
+\lintertext{or}
+x^{2} - a^{2} + x^{2} - b^{2} &= 2x^{2} - 2ax - 2bx + 2ab. \displaybreak[1] \\
+\lintertext{\indent Transpose,}
+x^{2} + x^{2} - 2x^{2} + 2ax + 2bx &= a^{2} + 2ab + b^{2}\Add{.} \displaybreak[1] \\
+\lintertext{\indent Combine,}
+2ax + 2bx &= a^{2} + 2ab + b^{2}, \\
+\lintertext{or}
+2(a + b)x &= a^{2} + 2ab + b^{2}. \displaybreak[1] \\
+\lintertext{\indent \rlap{Divide by~$a + b$,}}
+2x &= a + b\Add{,} \\
+\therefore x &= \frac{a + b}{2}.
+\end{DPalign*}
+\end{Soln}
+
+\Exercise{54.}
+
+Solve:
+
+\Item{1.} $a(x - a) = b(x - b)$.
+
+\Item{2.} $(a + b)x + (a - b)x = a^{2}$.
+
+\Item{3.} $(a + b)x - (a - b)x = b^{2}$.
+
+\Item{4.} $(2x - a) + (x - 2a) = 3a$.
+
+\Item{5.} $(x + a + b) + (x + a - b) = 2b$.
+
+\Item{6.} $(x - a)(x - b) = x(x + c)$.
+
+\Item{7.} $x^{2} + b^{2} = (a - x)(a - x)$.
+
+\Item{8.} $(a + b)(2 - x) = (a - b)(2 + x)$.
+
+\Item{9.} $(x - a)(2x - a) = 2(x - b)^{2}$.
+
+\Item{10.} $(a + bx)(c + d) = (a + b)(c + dx)$.
+
+\Item{11.} $\dfrac{x}{a - b} - \dfrac{3a}{a + b} = \dfrac{bx}{a^{2} - b^{2}}$.
+%% -----File: 115.png---Folio 109-------
+
+\PrintBreak
+\Paragraph{142. Problems involving Fractional Equations.}
+
+\Exercise{55.}
+
+Ex. The sum of the third and fifth parts of a certain
+number exceeds two times the difference of the fourth and
+sixth parts by~$22$. Find the number.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number\Add{.}} \\
+\lintertext{\indent Then}
+\frac{x}{3} + \frac{x}{5} &= \text{the sum of its third and fifth parts,} \\
+\frac{x}{4} - \frac{x}{6} &= \text{the difference of its fourth and sixth parts,} \\
+2\left(\frac{x}{4} - \frac{x}{6}\right)
+ &= \text{$2$~times the difference of} \\
+ &\qquad\text{its fourth and sixth parts,}
+\end{DPalign*}
+\begin{DPalign*}
+\frac{x}{3} + \frac{x}{5} - 2\left(\frac{x}{4} - \frac{x}{6}\right)
+ &= \text{the given excess.} \\
+\lintertext{\indent But}
+22 &= \text{the given excess.} \\
+\therefore \frac{x}{3} + \frac{x}{5} - 2\left(\frac{x}{4} - \frac{x}{6}\right)
+ &= 22.
+\end{DPalign*}
+
+Multiply by~$60$ the \LCD\ of the fractions.
+\begin{DPalign*}
+20x + 12x - 30x + 20x &= 60 × 22. \\
+\lintertext{\indent Combining,}
+22x &= 60 × 22\Add{,} \\
+\therefore x &= 60.
+\end{DPalign*}
+
+The required number, therefore, is~$60$.
+\end{Soln}
+
+\Item{1.} The difference between the fifth and seventh parts of
+a certain number is~$2$. Find the number.
+
+\Item{2.} One-half of a certain number exceeds the sum of its
+fifth and seventh parts by~$11$. Find the number.
+
+\Item{3.} The sum of the third and sixth parts of a certain
+number exceeds the difference of its sixth and ninth parts
+by~$16$. Find the number.
+
+\Item{4.} There are two consecutive numbers, $x$~and~$x + 1$, such
+that one-half the larger exceeds one-third the smaller
+number by~$10$. Find the numbers.
+%% -----File: 116.png---Folio 110-------
+
+\Exercise{56.}
+
+Ex. The sum of two numbers is~$63$, and if the greater
+is divided by the smaller number, the quotient is~$2$ and the
+remainder~$3$. Find the numbers.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the greater number.} \\
+\lintertext{\indent Then}
+63 - x &= \text{the smaller number.} \\
+\text{Since the quotient}
+ &= \frac{\text{Dividend} - \text{Remainder}}{\text{Divisor}},
+\end{DPalign*}
+and since, in this problem, the dividend is~$x$, the remainder is~$3$,
+and the divisor is~$63 - x$, we have
+\begin{DPalign*}
+\frac{x - 3}{63 - x} = 2. \\
+\lintertext{\indent Solving,}
+x &= 43.
+\end{DPalign*}
+
+The two numbers, therefore, are $43$~and~$20$.
+\end{Soln}
+
+\Item{1.} The sum of two numbers is~$100$, and if the greater is
+divided by the smaller number, the quotient is~$4$ and the
+remainder~$5$. Find the numbers.
+
+\Item{2.} The sum of two numbers is~$124$, and if the greater is
+divided by the smaller number, the quotient is~$4$ and the
+remainder~$4$. Find the numbers.
+
+\Item{3.} The difference of two numbers is~$49$, and if the greater
+is divided by the smaller, the quotient is~$4$ and the remainder~$4$.
+Find the numbers.
+
+\Item{4.} The difference of two numbers is~$91$, and if the
+greater is divided by the smaller, the quotient is~$8$ and the
+remainder~$7$. Find the numbers.
+
+\Item{5.} Divide $320$ into two parts such that the smaller part
+is contained in the larger part $11$~times, with a remainder
+of~$20$.
+%% -----File: 117.png---Folio 111-------
+
+\Exercise{57.}
+
+Ex. Eight years ago a boy was one-fourth as old as he
+will be one year hence. How old is he now?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of years old he is now.} \\
+\lintertext{\indent Then}
+x - 8 &= \text{the number of years old he was eight years ago,} \\
+\lintertext{and}
+x + 1 &= \text{the number of years old he will be one year hence.}
+\end{DPalign*}
+\begin{DPalign*}
+\therefore x - 8 &= \tfrac{1}{4}(x + 1). \\
+\lintertext{\indent Solving,}
+x &= 11.
+\end{DPalign*}
+
+Therefore the boy is $11$~years old.
+\end{Soln}
+
+\Item{1.} A son is one-fourth as old as his father. In $24$~years
+he will be one-half as old. Find the age of the son.
+
+\Item{2.} B's~age is one-sixth of A's~age. In $15$~years B's~age
+will be one-third of A's~age. Find their ages.
+
+\Item{3.} The sum of the ages of A~and~B is $30$~years, and $5$~years
+hence B's~age will be one-third of~A's. Find their
+ages.
+
+\Item{4.} A father is $35$~years old, and his son is one-fourth of
+that age. In how many years will the son be half as old
+as his father?
+
+\Item{5.} A is $60$~years old, and B's~age is two-thirds of~A's.
+How many years ago was B's~age one-fifth of~A's?
+
+\Item{6.} A son is one-third as old as his father. Four years
+ago he was only one-fourth as old as his father. What is
+the age of each?
+
+\Item{7.} A is $50$~years old, and B~is half as old as~A\@. In how
+many years will B be two-thirds as old as~A?
+
+\Item{8.} B~is one-half as old as~A\@. Ten years ago he was
+one-fourth as old as~A\@. What are their present ages?
+
+\Item{9.} The sum of the ages of a father and his son is $80$~years.
+The son's age increased by $5$~years is one-fourth of
+the father's age. Find their ages.
+%% -----File: 118.png---Folio 112-------
+
+\Exercise{58.}
+
+Ex. A~can do a piece of work in $2$~days, and B~can do
+it in $3$~days. How long will it take both together to do
+the work?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of days it will take both together.} \\
+\lintertext{\indent Then}
+\frac{1}{x} &= \text{\emph{the part both together can do in one day},} \\
+\tfrac{1}{2} &= \text{the part A can do in one day,} \\
+\tfrac{1}{3} &= \text{the part B can do in one day,} \\
+\lintertext{and}
+\tfrac{1}{2} + \tfrac{1}{3}
+ &= \text{\emph{the part both together can do in one day}.}
+\end{DPalign*}
+\begin{DPalign*}
+\therefore \frac{1}{2} + \frac{1}{3} &= \frac{1}{x}. \\
+\lintertext{\indent Solving,}
+x &= 1\tfrac{1}{5}.
+\end{DPalign*}
+
+Therefore they together can do the work in $1\frac{1}{5}$~days.
+\end{Soln}
+
+\Item{1.} A~can do a piece of work in $3$~days, B~in $5$~days, and
+C~in $6$~days. How long will it take them to do it working
+together?
+
+\Item{2.} A~can do a piece of work in $5$~days, B~in $4$~days, and
+C~in $3$~days. How long will it take them together to do
+the work?
+
+\Item{3.} A~can do a piece of work in $2\frac{1}{2}$~days, B~in $3\frac{1}{2}$~days,
+and C~in $3\frac{3}{4}$~days. How long will it take them together to
+do the work?
+
+\Item{4.} A~can do a piece of work in $10$~days, B~in $12$~days;
+A~and~B together, with the help of~C, can do the work in
+$4$~days. How long will it take C~alone to do the work?
+
+\Item{5.} A~and~B together can mow a field in $10$~hours, A~and~C
+in $12$~hours, and A~alone in $20$~hours. In what time
+can B~and~C together mow the field?
+
+\Item{6.} A~and~B together can build a wall in $12$~days, A~and~C
+in $15$~days, B~and~C in $20$~days. In what time can they
+build the wall if they all work together?
+
+\begin{Remark}[Hint.] By working \emph{$2$~days each} they build $\frac{1}{12} + \frac{1}{15} + \frac{1}{20}$ of it.
+\end{Remark}
+%% -----File: 119.png---Folio 113-------
+
+\Exercise{59.}
+
+Ex. A cistern can be filled by three pipes in $15$, $20$, and
+$30$~hours, respectively. In what time will it be filled by
+all the pipes together?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of hours it will take all together.} \\
+\lintertext{\indent Then}
+\frac{1}{x} &= \text{the part all together can fill in one hour\Add{.}} \\
+\llap{$\tfrac{1}{15} + \tfrac{1}{20}$} + \tfrac{1}{30}
+ &= \text{the part all together can fill in one hour\Add{.}}
+\end{DPalign*}
+\begin{DPalign*}
+\frac{1}{15} + \frac{1}{20} + \frac{1}{30} &= \frac{1}{x}\Add{.} \\
+\lintertext{\indent Solving,}
+x &= 6 \tfrac{2}{3}\Add{.}
+\end{DPalign*}
+
+Therefore the pipes together can fill it in $6 \frac{2}{3}$~hours.
+\end{Soln}
+
+\Item{1.} A cistern can be filled by three pipes in $16$, $24$, and
+$32$~hours, respectively. In what time will it be filled by
+all the pipes together?
+
+\Item{2.} A tank can be filled by two pipes in $3$~hours and $4$~hours,
+respectively, and can be emptied by a third pipe in
+$6$~hours. In what time will the cistern be filled if the pipes
+are all running together?
+
+\Item{3.} A tank can be filled by three pipes in $1$~hour and $40$
+minutes, $3$~hours and $20$ minutes, and $5$~hours, respectively.
+In what time will the tank be filled if all three pipes are
+running together?
+
+\Item{4.} A cistern can be filled by three pipes in $2\frac{1}{3}$~hours, $3\frac{1}{2}$~hours,
+and $4\frac{2}{3}$~hours, respectively. In what time will the
+cistern be filled if all the pipes are running together?
+
+\Item{5.} A cistern has three pipes. The first pipe will fill the
+cistern in $12$~hours, the second in $20$~hours, and all three
+pipes together will fill it in $6$~hours. How long will it take
+the third pipe alone to fill it?
+%% -----File: 120.png---Folio 114-------
+
+\Exercise{60.}
+
+Ex. A courier who travels $6$~miles an hour is followed,
+after $2$~hours, by a second courier who travels $7\frac{1}{2}$~miles an
+hour. In how many hours will the second courier overtake
+the first?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of hours the first travels.} \\
+\lintertext{\indent Then}
+x - 2 &= \text{the number of hours the second travels,} \\
+6x &= \text{the number of miles the first travels,} \\
+\lintertext{and}
+(x - 2) 7\tfrac{1}{2} &= \text{the number of miles the second travels.}
+\displaybreak[1] \\
+\intertext{\indent They both travel the same distance.}
+\therefore 6x &= (x - 2) 7\tfrac{1}{2}, \\
+\lintertext{or}
+12x &= 15x - 30. \\
+\therefore x &= 10.
+\end{DPalign*}
+
+Therefore the second courier will overtake the first in $10 - 2$, or
+$8$~hours.
+\end{Soln}
+
+\Item{1.} A sets out from Boston and walks towards Portland
+at the rate of $3$~miles an hour. Three hours afterward B
+sets out from the same place and walks in the same direction
+at the rate of $4$~miles an hour. How far from Boston
+will B~overtake~A?
+
+\Item{2.} A courier who goes at the rate of $6\frac{1}{2}$~miles an hour is
+followed, after $4$~hours, by another who goes at the rate of
+$7\frac{1}{2}$~miles an hour. In how many hours will the second
+overtake the first?
+
+\Item{3.} A person walks to the top of a mountain at the rate
+of two miles an hour, and down the same way at the rate
+of $4$~miles an hour. If he is out $6$~hours, how far is it to
+the top of the mountain?
+
+\Item{4.} In going a certain distance, a train travelling at the
+rate of $40$~miles an hour takes $2$~hours less than a train
+travelling $30$~miles an hour. Find the distance.
+%% -----File: 121.png---Folio 115-------
+
+\Exercise{61.}
+
+Ex. A hare takes $4$~leaps to a greyhound's~$3$; but $2$~of
+the greyhound's leaps are equivalent to $3$~of the hare's.
+The hare has a start of $50$~leaps. How many leaps must
+the greyhound take to catch the hare?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+3x &= \text{the number of leaps taken by the greyhound.} \\
+\lintertext{\indent Then}
+4x &= \text{the number of leaps of the hare in the same time.} \\
+%[** TN: Hack to coax spacing]
+\lintertext{\indent Also, l\rlap{et}}
+a &= \text{the number of feet in one leap of the hare.} \displaybreak[1] \\
+\lintertext{\indent Then}
+\frac{3a}{2} &= \text{the number of feet in one leap of the hound.}
+\displaybreak[1] \\
+\lintertext{\indent \rlap{Therefore,}}
+&\quad 3x x \frac{3a}{2} \quad\text{or}\quad
+\frac{9ax}{2} = \text{the whole distance}.
+\end{DPalign*}
+
+As the hare has a start of $50$~leaps, and takes $4x$~leaps more before
+she is caught, and as each leap is $a$~feet,
+\begin{DPalign*}
+(50 + 4x)a &= \text{the whole distance.} \\
+\therefore \frac{9ax}{2} &= (50 + 4x)a. \\
+\lintertext{\indent Multiply by~$2$,}
+9ax &= (100 + 8x)a, \\
+\lintertext{\indent Divide by~$a$,}
+9x &= 100 + 8x, \\
+x &= 100, \\
+\therefore 3x &= 300.
+\end{DPalign*}
+
+Therefore the greyhound must take $300$~leaps.
+\end{Soln}
+
+\Item{1.} A hound makes $3$~leaps while a rabbit makes~$5$; but
+$1$~of the hound's leaps is equivalent to $2$~of the rabbit's.
+The rabbit has a start of $120$~leaps. How many leaps
+will the rabbit take before she is caught?
+
+\Item{2.} A rabbit takes $6$~leaps to a dog's~$5$, and $7$~of the dog's
+leaps are equivalent to $9$~of the rabbit's. The rabbit has
+a start of~$60$ of her own leaps. How many leaps must the
+dog take to catch the rabbit?
+
+\Item{3.} A dog makes $4$~leaps while a rabbit makes~$5$; but $3$~of
+the dog's leaps are equivalent to $4$~of the rabbit's. The
+rabbit has a start of $90$~of the \emph{dog's leaps}. How many
+leaps will each take before the rabbit is caught?
+%% -----File: 122.png---Folio 116-------
+
+\Exercise{62.}
+
+Ex. Find the time between $2$ and $3$~o'clock when the
+hands of a clock are together.
+\begin{Soln}
+At 2 o'clock the hour-hand is 10 minute-spaces ahead of the
+minute-hand.
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{\emph{the number of spaces the minute-hand moves over}.} \\
+\lintertext{\indent The\rlap{n}}
+x - 10 &= \text{the number of spaces the hour-hand moves over.}
+\displaybreak[1] \\
+\intertext{\indent Now, as the minute-hand moves $12$~times as fast as the hour-hand,}
+\llap{$12(x - 10)$} &= \text{\emph{the number of spaces the minute-hand moves over}.}
+\end{DPalign*}
+\begin{DPalign*}
+\therefore 12(x - 10) &= x, \\
+\lintertext{and}
+11x &= 120. \\
+\therefore x &= 10\tfrac{10}{11}.
+\end{DPalign*}
+
+Therefore the time is $10\frac{10}{11}$~minutes past $2$~o'clock.
+\end{Soln}
+
+\Item{1.} Find the time between $5$ and $6$~o'clock when the
+hands of a clock are together.
+
+\Item{2.} Find the time between $2$ and $3$~o'clock when the
+hands of a clock are at right angles to each other.
+
+\begin{Remark}[Hint.] In this case the minute-hand is $15$~minutes ahead of the
+hour-hand.
+\end{Remark}
+
+\Item{3.} Find the time between $2$ and $3$~o'clock when the
+hands of a clock point in opposite directions.
+
+\begin{Remark}[Hint.] In this case the minute-hand is $30$~minutes ahead of the
+hour-hand.
+\end{Remark}
+
+\Item{4.} Find the time between $1$ and $2$~o'clock when the
+hands of a clock are at right angles to each other.
+
+\Item{5.} Find the time between $1$ and $2$~o'clock when the
+hands of a clock point in opposite directions.
+
+\Item{6.} At what time between $7$ and $8$~o'clock are the hands
+of a watch together?
+%% -----File: 123.png---Folio 117-------
+
+\Exercise{63.}
+
+Ex. A rectangle has its length $6$~feet more and its width
+$5$~feet less than the side of its equivalent square. Find the
+dimensions of the rectangle.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of feet in a side of the square.} \\
+\lintertext{\indent Then}
+x + 6 &= \text{the number of feet in the length of the rectangle,} \\
+\lintertext{and}
+x - 5 &= \text{the number of feet in the width of the rectangle.}
+\intertext{Since the area of a rectangle is equal to the product of the number
+of units of length in the length and width of the rectangle,}
+\llap{$(x + 6)(x - 5)$} &= \text{the area of the rectangle in square feet,} \\
+\lintertext{and}
+x × x &= \text{the area of the square in square feet.}
+\end{DPalign*}
+
+But these areas are equal.
+\begin{DPalign*}
+\therefore (x + 6)(x - 5) &= x^{2}. \\
+\lintertext{\indent Solving,}
+x &= 30.
+\end{DPalign*}
+
+Therefore the dimensions of the rectangle are $36$~feet and $25$~feet.
+\end{Soln}
+
+\Item{1.} A rectangle has its length and breadth respectively $7$~feet
+longer and $6$~feet shorter than the side of the equivalent
+square. Find its area.
+
+\Item{2.} The length of a floor exceeds the breadth by $5$~feet.
+If each dimension were $1$~foot more, the area of the floor
+would be $42$~sq.~ft.\ more. Find its dimensions.
+
+\Item{3.} A rectangle whose length is $6$~feet more than its
+breadth, would have its area $35$~sq.~ft.\ more, if each dimension
+were $1$~foot more. Find its dimensions.
+
+\Item{4.} The length of a rectangle exceeds its width by $3$~feet.
+If the length is increased by $3$~feet and the width diminished
+by $2$~feet, the area will not be altered. Find its
+dimensions.
+
+\Item{5.} The length of a floor exceeds its width by $10$~feet
+If each dimension were $2$~feet more, the area would be $144$~sq.~ft.\
+more. Find its dimensions.
+%% -----File: 124.png---Folio 118-------
+
+\Paragraph{143. Formulas and Rules.} When the \emph{given} numbers of a
+problem are represented by letters, the result obtained from
+solving the problem is a general expression which includes
+all problems of that class. Such an expression is called a
+\Defn{formula}, and the translation of this formula into words is
+called a \Defn{rule}.
+
+\Paragraph{144.} We will illustrate by examples.
+
+\Item{1.} The sum of two numbers is~$s$, and their difference~$d$.
+Find the numbers.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the smaller number;} \\
+\lintertext{then}
+x + d &= \text{the larger number.} \displaybreak[1] \\
+\lintertext{\indent Hence}
+x + x + d &= s, \\
+\lintertext{or}
+2x &= s - d. \\
+\therefore x &= \frac{s - d}{2}, \displaybreak[1] \\
+\lintertext{and}
+x + d &= \frac{s - d}{2} + d = \frac{s - d + 2d}{2}, \\
+ &= \frac{s + d}{2}.
+\end{DPalign*}
+
+Therefore the numbers are $\dfrac{s + d}{2}$ and $\dfrac{s - d}{2}$.
+\end{Soln}
+
+As these formulas hold true whatever numbers $s$~and~$d$
+stand for, we have the general rule for finding two numbers
+when their sum and difference are given:
+\begin{Theorem}
+Add the difference to the sum and take half the result for
+the greater number.
+
+Subtract the difference from the sum and take half the
+result for the smaller number.
+\end{Theorem}
+
+\Item{2.} If A~can do a piece of work in $a$~days, and B~can
+do the same work in $b$~days, in how many days can both
+together do it?
+%% -----File: 125.png---Folio 119-------
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the required number of days\Add{.}} \\
+\lintertext{\indent Then,}
+\frac{1}{x} &= \text{\emph{the part both together can do in one day}\Add{.}}
+\displaybreak[1] \\
+\lintertext{\indent Now}
+\frac{1}{a} &= \text{the part A can do in one day,} \\
+\lintertext{and}
+\frac{1}{b} &= \text{the part B can do in one day\Add{,}} \\
+\lintertext{therefore}
+\frac{1}{a} + \frac{1}{b}
+ &= \text{\emph{the part both together can do in one day}}
+\end{DPalign*}
+\begin{DPalign*}
+\frac{1}{a} + \frac{1}{b} &= \frac{1}{x}\Add{.} \\
+\lintertext{\indent Whence}
+x &= \frac{ab}{a + b}\Add{.}
+\end{DPalign*}
+\end{Soln}
+
+The translation of this formula gives the following rule
+for finding the time required by two agents together to
+produce a given result when the time required by each
+agent separately is known.
+\begin{Theorem}
+Divide the product of the numbers which express the units
+of time required by each to do the work by the sum of these
+numbers, the quotient is the time required by both together.
+\end{Theorem}
+
+\Paragraph{145. Interest Formulas.} The elements involved in computation
+of interest are the \emph{principal}, \emph{rate}, \emph{time}, \emph{interest},
+and \emph{amount}.
+\begin{DPalign*}
+\lintertext{\indent Let}
+p &= \text{the principal,} \\
+r &= \text{the interest of \$$1$ for $1$~year, at the given rate,} \\
+t &= \text{the time expressed in years,} \\
+i &= \text{the interest for the given time and rate,} \\
+a &= \text{the amount (sum of principal and interest).}
+\end{DPalign*}
+
+\Paragraph{146. Given the Principal, Rate, and Time. Find the Interest.}
+
+Since $r$ is the interest of~\$$1$ for $1$~year, $pr$~is the interest
+of~\$$p$ for $1$~year, and $prt$~is the interest of~\$$p$ for $t$~years
+\begin{DPgather*}
+i = prt.
+\rintertext{(Formula 1.)}
+\end{DPgather*}
+
+\begin{Theorem}[\textsc{Rule.}] Find the product of the principal, rate, and time\Add{.}
+\end{Theorem}
+%% -----File: 126.png---Folio 120-------
+
+\Paragraph{147. Given the Interest, Rate, and Time. Find the Principal.}
+\begin{DPalign*}
+\lintertext{\indent By formula 1,}
+prt &= i. \\
+\lintertext{\indent Divide by~$rt$,}
+p &= \frac{i}{rt}.
+\rintertext{(Formula 2.)}
+\end{DPalign*}
+
+\begin{Theorem}[\textsc{Rule.}] Divide the interest by the product of the rate and
+time.
+\end{Theorem}
+
+\Paragraph{148. Given the Amount, Rate, and Time. Find the Principal.}
+\begin{DPalign*}
+\lintertext{\indent From formula 1,}
+p + prt &= a, \\
+\lintertext{or}
+p(1 + rt) &= a. \\
+\lintertext{\indent Divide by $1 + rt$,}
+p &= \frac{a}{1 + rt}.
+\rintertext{(Formula 3.)}
+\end{DPalign*}
+
+\begin{Theorem}[\textsc{Rule.}] Divide the amount by $1$~plus the product of the
+rate and time.
+\end{Theorem}
+
+\Paragraph{149. Given the Amount, Principal, and Rate. Find the Time.}
+\begin{DPalign*}
+\lintertext{\indent From formula 1,}
+p + prt &= a. \\
+\lintertext{\indent Transpose~$p$,}
+prt &= a - p. \\
+\lintertext{\indent Divide by~$pr$,}
+t &= \frac{a - p}{pr}.
+\rintertext{(Formula 4.)}
+\end{DPalign*}
+
+\begin{Theorem}[\textsc{Rule.}] Subtract the principal from the amount, and
+divide the result by the product of the principal and rate.
+\end{Theorem}
+
+\Paragraph{150. Given the Amount, Principal, and Time. Find the Rate.}
+\begin{DPalign*}
+\lintertext{\indent From formula 1,}
+p + prt &= a. \\
+\lintertext{\indent Transpose~$p$,}
+prt &= a - p. \\
+\lintertext{\indent Divide by~$pt$,}
+r &= \frac{a - p}{pt}.
+\rintertext{(Formula 5.)}
+\end{DPalign*}
+
+\begin{Theorem}[\textsc{Rule.}] Subtract the principal from the amount, and
+divide the result by the product of the principal and time.
+\end{Theorem}
+%% -----File: 127.png---Folio 121-------
+
+\Exercise{64.}
+
+Solve the following examples by the preceding formulas:
+
+\Item{1.} The sum of two angles is $120°\, 30'\, 30''$ and their difference
+$59°\, 30'\, 30''$. Find the angles.
+
+\Item{2.} Find the interest of \$$1000$ for $3$~years and $4$~months
+at~$4$\%.
+
+\Item{3.} Find the principal that will amount to \$$2280$ in $3$~years
+and $6$~months at~$4$\%.
+
+\Item{4.} Find the principal that will produce \$$280$ interest in
+$2$~years and $4$~months at~$3$\%.
+
+\Item{5.} Find the principal that will produce \$$270$ interest
+in $1$~year and $6$~months at~$6$\%.
+
+\Item{6.} Find the principal that will amount to \$$590$ in $4$~years
+at~$4\frac{1}{2}$\%.
+
+\Item{7.} Find the rate if the amount of \$$250$ for $4$~years
+is~\$$300$.
+
+\Item{8.} Find the rate if \$$1000$ amounts to \$$2000$ in $16$~years
+and $8$~months.
+
+\Item{9.} Find the time required for the interest on \$$400$ to
+be \$$54$ at~$4\frac{1}{2}$\%.
+
+\Item{10.} Find the time required for \$$160$ to amount to \$$250$
+at~$6$\%.
+
+\Item{11.} How much money must be invested at~$5$\% to yield
+an annual income of~\$$1250$?
+
+\Item{12.} Find the principal that will produce \$$100$ a month
+if invested at $6$\%~per annum.
+
+\Item{13.} Find the rate if the interest on \$$1000$ for $8$~months
+is~\$$40$.
+
+\Item{14.} Find the time for a sum of money on interest at~$5$\%
+to double itself.
+%% -----File: 128.png---Folio 122-------
+
+
+\Chapter{XI.}{Simultaneous Equations of the First
+Degree.}
+
+\Paragraph{151.} If we have two unknown numbers and but one relation
+between them, we can find an unlimited number of
+pairs of values for which the given relation will hold true.
+Thus, if $x$~and~$y$ are unknown, and we have given only the
+one relation $x + y = 10$, we can \emph{assume} any value for~$x$,
+and then from the relation $x + y = 10$ find the corresponding
+value of~$y$. For from $x + y = 10$ we find $y = 10 - x$.
+If $x$~stands for~$1$, $y$~stands for~$9$; if $x$~stands for~$2$, $y$~stands
+for~$8$; if $x$~stands for~$-2$, $y$~stands for~$12$; and so on without
+end.
+
+\Paragraph{152.} We may, however, have two equations that express
+\emph{different} relations between the two unknown numbers.
+Such equations are called \Defn{independent equations}. Thus,
+$x + y = 10$ and $x - y = 2$ are independent equations, for
+they evidently express \emph{different} relations between $x$~and~$y$.
+
+\Paragraph{153.} Independent equations involving the \emph{same} unknown
+numbers are called \Defn{simultaneous equations}.
+
+If we have two unknown numbers, and two independent
+equations involving them, there is but \emph{one} pair of values
+which will hold true for both equations. Thus, if besides
+the relation $x + y = 10$, we have also the relation $x - y = 2$,
+the only pair of values for which both equations will hold
+true is the pair $x = 6$, $y = 4$.
+
+Observe that in this problem $x$~stands for the same number
+in \emph{both} equations; so also does~$y$.
+%% -----File: 129.png---Folio 123-------
+
+\Paragraph{154.} Simultaneous equations are solved by combining
+the equations so as to obtain a single equation with one
+unknown number.
+
+This process is called \Defn{Elimination}.
+
+\Paragraph{155. Elimination by Addition or Subtraction.}
+
+%[** TN: Omitted large brace for grouping, horizontal bar indicating summation]
+\Item{1.} Solve:
+\begin{alignat*}{2}
+5x &- 3y &&= 20
+\Tag{(1)} \\
+2x &+ 5y &&= 39
+\Tag{(2)}
+\end{alignat*}
+\begin{Soln}
+Multiply (1) by~$5$, and (2) by~$3$,
+\begin{DPalign*}
+25x - 15y &= 100
+\Tag{(3)} \\
+ 6x + 15y &= 117
+\Tag{(4)} \\
+\lintertext{\indent Add (3) and (4),}
+31x \PadTo{{} + 15y}{} &= 217 \\
+\therefore x &= 7.
+\intertext{\indent Substitute the value of~$x$ in~(2),}
+14 + 5y &= 39. \\
+5y &= 25. \\
+\therefore y &= 5.
+\end{DPalign*}
+
+In this solution $y$~is eliminated by \emph{addition}.
+\end{Soln}
+
+\Item{2.} Solve:
+\begin{alignat*}{2}
+6x &+ 35y &&= 177
+\Tag{(1)} \\
+8x &- 21y &&= \Z33
+\Tag{(2)}
+\end{alignat*}
+\begin{Soln}
+Multiply (1) by~$4$, and (2) by~$3$,
+\begin{DPalign*}
+24x + 140y &= 708
+\Tag{(3)} \\
+24x - \Z63y &= \Z99
+\Tag{(4)} \\
+\lintertext{\indent Subtract,}
+203y &= 609 \\
+\therefore y &= 3. \\
+\intertext{\indent Substitute the value of~$y$ in (2),}
+8x - 63 &= 33. \\
+8x &= 96. \\
+\therefore x &= 12.
+\end{DPalign*}
+
+In this solution $x$~is eliminated by \emph{subtraction}.
+\end{Soln}
+%% -----File: 130.png---Folio 124-------
+
+\Paragraph{156.} \Dictum{To eliminate by addition or subtraction}, therefore,
+\begin{Theorem}
+Multiply the equations by such numbers as will make the
+coefficients of one of the unknown numbers equal in the
+resulting equations.
+
+Add the resulting equations if these equal coefficients have
+unlike signs; subtract one from the other if these equal coefficients
+have like signs.
+\end{Theorem}
+
+\begin{Remark}[Note.] It is generally best to select the letter to be eliminated
+which requires the smallest multipliers to make its coefficients equal;
+and the smallest multiplier for each equation is found by dividing
+the \LCM\ of the coefficients of this letter by the given coefficient
+in that equation. Thus, in example~2, the \LCM\ of $6$~and~$8$ (the
+coefficients of~$x$) is~$24$, and hence the smallest multipliers of the two
+equations are $4$~and~$3$, respectively.
+\end{Remark}
+
+Sometimes the solution is simplified by first adding the
+given equations, or by subtracting one from the other.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Ex.}
+x + 49y &= 51
+\Tag{(1)} \\
+49x + \PadTo{49y}{y} &= 99
+\Tag{(2)} \displaybreak[1] \\
+\lintertext{\indent Add (1) and (2),}
+50x + 50y &= 150
+\Tag{(3)} \displaybreak[1] \\
+\lintertext{\indent Divide (3) by~$50$,}
+x + y &= 3.
+\Tag{(4)} \displaybreak[1] \\
+\lintertext{\indent \rlap{Subtract (4) from (1),}}
+48y &= 48. \\
+\therefore y &= 1. \displaybreak[1] \\
+\lintertext{\indent \rlap{Subtract (4) from (2),}}
+48x &= 96. \\
+\therefore x &= 2.
+\end{DPalign*}
+\end{Soln}
+
+\Exercise{65.}
+
+Solve by addition or subtraction:
+\begin{multicols}{2}
+\Item{1.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 5x &+ 4y &&= 14 \\
+17x &- 3y &&= 31
+\end{alignedat}\right\}$}
+
+\Item{2.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 3x &- 2y &&= \Z5 \\
+ 2x &+ 5y &&= 16
+\end{alignedat}\right\}$}
+
+\Item{3.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 2x &- 3y &&= \Z7 \\
+ 5x &+ 2y &&= 27
+\end{alignedat}\right\}$}
+
+\Item{4.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 7x &+ 6y &&= 20 \\
+ 2x &+ 5y &&= \Z9
+\end{alignedat}\right\}$}
+
+\Item{5.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ x &+ 5y &&= 11 \\
+ 3x &+ 2y &&= \Z7
+\end{alignedat}\right\}$}
+
+\Item{6.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 3x &- 5y &&= 13 \\
+ 4x &- 7y &&= 17
+\end{alignedat}\right\}$}
+%% -----File: 131.png---Folio 125-------
+
+\Item{7.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 8x &- \Z y &&= \Z3 \\
+ 7x &+ 2y &&= 63
+\end{alignedat}\right\}$}
+
+\Item{8.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 5x &- 4y &&= \Z7 \\
+ 7x &+ 3y &&= 70
+\end{alignedat}\right\}$}
+
+\Item{9.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ x &+ 21y &&= \Z2 \\
+ 2x &+ 27y &&= 19
+\end{alignedat}\right\}$}
+
+\Item{10.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 6x &- 13y &&= -1 \\
+ 5x &- 12y &&= -2
+\end{alignedat}\right\}$}
+
+\Item{11.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 7x &+ \Z y &&= 265 \\
+ 3x &- 5y &&= \Z\Z5
+\end{alignedat}\right\}$}
+
+\Item{12.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 2x &+ 3y &&= \Z7 \\
+ 8x &- 5y &&= 11
+\end{alignedat}\right\}$}
+
+\Item{13.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 5x &+ 7y &&= 19 \\
+ 7x &+ 4y &&= 15
+\end{alignedat}\right\}$}
+
+\Item{14.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+11x &- 12y &&= \Z9 \\
+ 4x &+ \Z5y &&= 22
+\end{alignedat}\right\}$}
+
+\Item{15.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ x &+ 8y &&= 17 \\
+ 7x &- 3y &&= \Z1
+\end{alignedat}\right\}$}
+
+\Item{16.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ 4x &+ 3y &&= 25 \\
+ 5x &- 4y &&= \Z8
+\end{alignedat}\right\}$}
+\end{multicols}
+
+Clear of fractions and solve:
+\begin{multicols}{2}
+\Item{17.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{2x}{3} &- \frac{5y}{4} &&= 3 \\
+ \frac{7x}{4} &- \frac{5y}{3} &&= \frac{43}{3}
+\end{alignedat}\right\}$}
+
+\Item{18.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{7x}{6} &+ \frac{6y}{7} &&= 32 \\
+ \frac{5x}{4} &- \frac{2y}{3} &&= 1
+\end{alignedat}\right\}$}
+
+\Item{19.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned}
+ \frac{x + y}{4} - \frac{7x - 5y}{11} &= 3 \\
+ \frac{x}{5} - \frac{2y}{7} + 1 &= 0
+\end{aligned}\right\}$}
+
+\Item{20.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned}
+ \frac{ 6x + 7y}{2} &= 22 \\
+ \frac{55y - 2x}{5} &= 20
+\end{aligned}\right\}$}
+\end{multicols}
+
+\Item{21.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{x + y}{2} &- \frac{x - y}{3} &&= \Z8 \\
+ \frac{x + y}{3} &+ \frac{x - y}{4} &&= 11
+\end{alignedat}\right\}$}
+
+\Item{22.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned}
+ \frac{8x - 5y}{7} + \frac{11y - 4x}{5} &= 4 \\
+ \frac{17x - 13y}{5} + \frac{2x}{3} &= 7
+\end{aligned}\right\}$}
+%% -----File: 132.png---Folio 126-------
+
+\Item{23.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{ 5x - 3y}{3} &+ \frac{7x - 5y}{11} &&= 4 \\
+ \frac{15y - 3x}{7} &+ \frac{7y - 3x}{5} &&= 4
+ \end{alignedat}\right\}$}
+
+\Item{24.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned}
+ \frac{2x - 3}{4} - \frac{y - 8}{5} &= \frac{y + 3}{4} \\
+ \frac{x - 7}{3} + \frac{4y + 1}{11} &= 3
+ \end{aligned}\right\}$}
+
+\Item{25.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{x - 2y}{6} &- \frac{x + 3y}{4} &&= \frac{3}{2} \\
+ \frac{2x - y}{6} &- \frac{3x + y}{4} &&= \frac{5y}{4}
+ \end{alignedat}\right\}$}
+
+\Item{26.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2}
+ \frac{x}{a + b} &+ \frac{y}{a - b} &&= \frac{1}{a - b} \\
+ \frac{x}{a + b} &- \frac{y}{a - b} &&= \frac{1}{a + b}
+ \end{alignedat}\right\}$}
+
+\begin{Remark}[Note.] To find $x$ in problem~26, add the equations; to find~$y$,
+subtract one from the other. Do not clear of fractions.
+\end{Remark}
+
+\Paragraph{157. Problems involving Two Unknown Numbers.}
+
+Ex. If A gives B \$$10$, B~will have three times as much
+money as~A\@. If B gives A \$$10$, A~will have twice as
+much money as~B\@. How much has each?
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of dollars A has,} \\
+\lintertext{and}
+y &= \text{the number of dollars B has.} \displaybreak[1] \\
+\intertext{\indent Then, after A gives B \$$10,$}
+x - 10 &= \text{the number of dollars A has,} \\
+y + 10 &= \text{the number of dollars B has.} \displaybreak[1] \\
+\intertext{\indent Since B's money is now $3$~times A's, we have,}
+y + 10 &= 3(x - 10).
+\Tag{(1)} \displaybreak[1] \\
+%% -----File: 133.png---Folio 127-------
+\intertext{\indent If B gives A \$$10$,}
+x + 10 &= \text{the number of dollars A has,} \\
+y - 10 &= \text{the number of dollars B has.} \displaybreak[1] \\
+\intertext{\indent Since A's money is now $2$~times B's, we have}
+x + 10 &= 2(y - 10).
+\Tag{(2)}
+\end{DPalign*}
+
+From the solution of equations (1) and (2), $x = 22$, and $y = 26$.
+
+Therefore A has \$$22$, and B has~\$$26$.
+\end{Soln}
+
+\Exercise{66.}
+
+\Item{1.} If A gives B \$$200$, A~will then have half as much
+money as~B; but if B gives A \$$200$, B~will have one-third
+as much as A\@. How much has each?
+
+\Item{2.} Half the sum of two numbers is~$20$, and three times
+their difference is~$18$. Find the numbers.
+
+\Item{3.} The sum of two numbers is~$36$, and their difference
+is equal to one-eighth of the smaller number increased by~$2$.
+Find the numbers.
+
+\Item{4.} If $4$~yards of velvet and $3$~yards of silk are sold for~\$$33$,
+and $5$~yards of velvet and $6$~yards of silk for~\$$48$,
+what is the price per yard of the velvet and of the silk?
+
+\Item{5.} If $7$~bushels of wheat and $10$~of rye are sold for~\$$15$,
+and $4$~bushels of wheat and $5$~of rye are sold for~\$$8$, what
+is the price per bushel of the wheat and of the rye?
+
+\Item{6.} If $12$~pounds of tea and $4$~pounds of coffee cost~\$$7$,
+and $4$~pounds of tea and $12$~pounds of coffee cost~\$$5$, what is
+the price per pound of tea and of coffee?
+
+\Item{7.} Six horses and $7$~cows can be bought for~\$$1000$,
+and $11$~horses and $13$~cows for~\$$1844$. Find the value of
+a horse and of a cow.
+%% -----File: 134.png---Folio 128-------
+
+\Exercise{67.}
+
+Ex. A certain fraction becomes equal to~$\frac{1}{2}$ if $2$~is added
+to its numerator, and equal to~$\frac{1}{3}$ if $3$~is added to its denominator.
+Find the fraction.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+\frac{x}{y} &= \text{the required fraction.} \\
+\lintertext{\indent Then}
+\frac{x + 2}{y} &= \frac{1}{2}, \\
+\lintertext{and}
+\frac{x}{y + 3} &= \frac{1}{3}.
+\end{DPalign*}
+
+The solution of these equations gives $7$ for~$x$, and $18$ for~$y$.
+
+Therefore the required fraction is~$\frac{7}{18}$.
+\end{Soln}
+
+\Item{1.} If the numerator of a certain fraction is increased
+by~$2$ and its denominator diminished by~$2$, its value will
+be~$1$. If the numerator is increased by the denominator
+and the denominator is diminished by~$5$, its value will be~$5$.
+Find the fraction.
+
+\Item{2.} If $1$~is added to the denominator of a fraction, its
+value will be~$\frac{1}{2}$. If $2$~is added to its numerator, its value
+will be~$\frac{3}{5}$. Find the fraction.
+
+\Item{3.} If $1$~is added to the numerator of a fraction, its value
+will be~$\frac{1}{5}$. If $1$~is added to its denominator, its value will
+be~$\frac{1}{7}$. Find the fraction.
+
+\Item{4.} If the numerator of a fraction is doubled and its
+denominator diminished by~$1$, its value will be~$\frac{1}{2}$. If its
+denominator is doubled and its numerator increased by~$1$,
+its value will be~$\frac{1}{7}$. Find the fraction.
+
+\Item{5.} In a certain proper fraction the difference between
+the numerator and the denominator is~$15$. If the numerator
+is multiplied by~$4$ and the denominator increased by~$6$,
+its value will be~$1$. Find the fraction.
+%% -----File: 135.png---Folio 129-------
+
+\Exercise{68.}
+
+The expression $64$ means $60 + 4$, that is, $10$~\emph{times} $6 + 4$,
+and has for its \emph{digits} $6$~and~$4$. If the digits were unknown
+and represented by $x$~and~$y$, the number would be represented
+by~$10x + y$.
+
+Ex. The sum of the two digits of a number is~$10$, and if
+$18$~is added to the number, the digits will be reversed.
+Find the number.
+\begin{Soln}
+\begin{DPalign*}[m]
+\lintertext{\indent Let}
+x &= \text{the tens' digit,} \\
+\lintertext{and}
+y &= \text{the units' digit.} \\
+\lintertext{\indent Then}
+10x + y &= \text{the number.} \displaybreak[1] \\
+\lintertext{\indent Hence}
+x + y &= 10,
+\Tag{(1)} \\
+\lintertext{and}
+10x + y + 18 &= 10y + x.
+\Tag{(2)} \displaybreak[1] \\
+\lintertext{\indent From (2),}
+9x - 9y &= -18, \\
+\lintertext{or}
+x - y &= -2.
+\Tag{(3)} \displaybreak[1] \\
+\lintertext{\indent \rlap{Add (1) and (3),}}
+2x &= 8, \\
+\lintertext{and therefore}
+x &= 4. \\
+\lintertext{\indent \rlap{Subtract (3) from (1),}}
+2y &= 12, \\
+\lintertext{and therefore}
+y &= 6.
+\end{DPalign*}
+
+Therefore the number is~$46$.
+\end{Soln}
+
+\Item{1.} The sum of the two digits of a number is~$9$, and if $9$
+is added to the number, the digits will be reversed. Find
+the number.
+
+\Item{2.} A certain number of two digits is equal to eight times
+the sum of its digits, and if $45$~is subtracted from the
+number, the digits will be reversed. Find the number.
+
+\Item{3.} The sum of a certain number of two digits and the
+number formed by reversing the digits is~$132$, and the
+difference of these numbers is~$18$. Find the numbers.
+
+\Item{4.} The sum of the two digits of a number is~$9$, and if
+the number is divided by the sum of its digits, the quotient
+is~$6$. Find the number.
+%% -----File: 136.png---Folio 130-------
+
+\Exercise{69.}
+
+Ex. A sum of money, at simple interest, amounted to
+\$$2480$ in $4$~years, and to \$$2600$ in $5$~years. Find the sum
+and the rate of interest.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of dollars in the principal,} \\
+\lintertext{and}
+y &= \text{the rate of interest.}
+\end{DPalign*}
+
+The interest for one year is $\dfrac{y}{100}$ of the principal; that is, $\dfrac{xy}{100}$.
+For $4$~years the interest is~$\dfrac{4xy}{100}$, and for $5$~years~$\dfrac{5xy}{100}$. The amount
+is principal $+$~interest,
+\begin{DPalign*}
+\lintertext{or}
+x + \frac{4xy}{100} &= 2480. \\
+x + \frac{5xy}{100} &= 2600. \\
+\lintertext{\indent Hence}
+100x + 4xy &= 248,000.
+\Tag{(1)} \\
+100x + 5xy &= 260,000.
+\Tag{(2)} \displaybreak[1] \\
+\intertext{\indent Divide (1) by~$4$ and (2) by~$5$, and we have}
+25x + xy &= 62,000 \\
+20x + xy &= 52,000 \displaybreak[1] \\
+\lintertext{\indent Subtract,}
+5x \PadTo{{}+ xy}{} &= 10,000. \displaybreak[1] \\
+\lintertext{\indent Therefore}
+\PadTo{5x}{x} \PadTo{{}+ xy}{} &= \PadTo{10,000}{2000}.
+\end{DPalign*}
+
+Substitute the value of~$x$ in~(1), $y = 6$.
+
+Therefore the sum is \$$2000$, and the rate~$6$%.
+\end{Soln}
+
+\Item{1.} A sum of money, at simple interest, amounted in $5$~years
+to~\$$3000$, and in $6$~years to~\$$3100$. Find the sum
+and the rate of interest.
+
+\Item{2.} A sum of money, at simple interest, amounted in $10$~months
+to~\$$1680$, and in $18$~months to~\$$1744$. Find the
+sum and the rate of interest.
+
+\Item{3.} A man has \$$10,000$ invested, a part at~$4$\%, and the
+remainder at~$5$\%. The annual income from his $4$\%~investment
+is \$$40$~more than from his $5$\%~investment. Find the
+sum invested at~$4$\% and at~$5$\%.
+%% -----File: 137.png---Folio 131-------
+
+\Exercise{70.}
+
+\Section{Miscellaneous Examples.}
+
+\Item{1.} Half the sum of two numbers is~$20$; and $5$~times
+their difference is~$20$. Find the numbers.
+
+\Item{2.} A certain number when divided by a second number
+gives $7$ for a quotient and $4$ for a remainder. If three
+times the first number is divided by twice the second
+number, the quotient is~$11$ and the remainder~$4$. Find
+the numbers.
+
+\Item{3.} A fraction becomes $\frac{4}{5}$ in value by the addition of~$2$ to
+its numerator and $3$~to its denominator. If $2$~is subtracted
+from its numerator and $1$~from its denominator, the value
+of the fraction is~$\frac{3}{4}$. Find the fraction.
+
+\Item{4.} A farmer sold $50$~bushels of wheat and $30$~of barley
+for $74$~dollars; and at the same prices he sold $30$~bushels
+of wheat and $50$~bushels of barley for $70$~dollars. What
+was the price of the wheat and of the barley per bushel?
+
+\Item{5.} If A gave \$$10$ to~B, he would then have three times
+as much money as~B; but if B gave \$$5$ to~A, A~would
+have four times as much as~B\@. How much has each?
+
+\Item{6.} A and B have together \$$100$. If A~were to spend
+one-half of his money, and B~one-third of his, they would
+then have only \$$55$ between them. How much money
+has each?
+
+\Item{7.} A fruit-dealer sold $6$~lemons and $3$~oranges for $21$~cents,
+and $3$~lemons and $8$~oranges for $30$~cents. What
+was the price of each?
+
+\Item{8.} If A gives me $10$~apples, he will have just twice as
+many as~B\@. If he gives the $10$~apples to~$B$ instead of to
+me, A~and~B will each have the same number. How
+many apples has each?
+%% -----File: 138.png---Folio 132-------
+
+
+\Chapter{XII.}{Quadratic Equations.}
+
+\Paragraph{158.} An equation which contains the \emph{square} of the
+unknown number, but no higher power, is called a \Defn{quadratic
+equation}.
+
+\Paragraph{159.} A quadratic equation which involves but one unknown
+number as~$x$, can contain only:
+
+1. Terms involving the square of~$x$.
+
+2. Terms involving the first power of~$x$.
+
+3. Terms which do not involve~$x$.
+
+Collecting similar terms, every quadratic equation can be
+made to assume the form
+\[
+ax^{2} + bx + c = 0,
+\]
+where $a$,~$b$, and~$c$ are known numbers, and $x$~the unknown
+number.
+
+If $a$,~$b$,~$c$ are numbers expressed by figures, the equation
+is a \Defn{numerical quadratic}. If $a$,~$b$,~$c$ are numbers represented
+wholly or in part by letters, the equation is a \Defn{literal quadratic}.
+
+\Paragraph{160.} In the equation $ax^{2} + bx + c = 0$, $a$,~$b$, and~$c$ are
+called the \Defn{coefficients} of the equation. The third term,~$c$, is
+called the \Defn{constant term}.
+
+If the first power of~$x$ is wanting, the equation is a \Defn{pure
+quadratic}; in this case $b = 0$.
+
+If the first power of~$x$ is present, the equation is an
+\Defn{affected} or \Defn{complete quadratic}.
+%% -----File: 139.png---Folio 133-------
+
+
+\Section{Pure Quadratic Equations.}
+
+\Paragraph{161. Examples.}
+
+\Item{1.} Solve the equation $5x^{2} - 48 = 2x^{2}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent We have}
+5x^{2} - 48 &= 2x^{2}. \\
+\lintertext{\indent Collect the terms,}
+3x^{2} &= 48. \displaybreak[1] \\
+\lintertext{\indent Divide by~$3$,}
+x^{2} &= 16. \\
+\lintertext{\indent Extract the square root,}
+x &= ±4.
+\end{DPalign*}
+
+The sign~$±$ before the~$4$, read \emph{plus or minus}, shows that the root
+is either $+$~or~$-$. For $(+4) × (+4) = 16$, and $(-4) × (-4) = 16$
+
+The square root of any number is positive or negative. Hitherto
+we have given only the positive value. In this chapter we shall
+give both values. This sign~$\surd$, called the \Defn{radical sign}, is used to
+indicate that a root is to be extracted. Thus $\sqrt{4}$~means the square
+root of~$4$ is required. $\sqrt[3]{4}$~means the third root of~$4$ is required; the
+small figure placed over the radical sign is called the \Defn{index} of the
+root, and shows the root required.
+\end{Soln}
+
+\Item{2.} Solve the equation $3x^{2} - 15 = 0$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent We have}
+3x^{2} &= 15, \\
+\lintertext{or}
+x^{2} &= 5. \\
+\lintertext{\indent Extract the square root,}
+x &= ±\sqrt{5}.
+\end{DPalign*}
+
+The roots cannot be found exactly, since the square root of~$5$ cannot
+be found exactly; it can, however, be determined approximately
+to any required degree of accuracy; for example, the roots lie between
+$2.23606$ and $2.23607$; and between $-2.23606$ and~$-2.23607$.
+\end{Soln}
+
+\Item{3.} Solve the equation $3x^{2} + 15 = 0$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent We have}
+3x^{2} &= -15, \\
+\lintertext{or}
+x^{2} &= -5. \\
+\lintertext{\indent Extract the square root,}
+x &= ±\sqrt{-5}.
+\end{DPalign*}
+
+There is no square root of a negative number, since the square of
+any number, positive or negative, is positive; $(-5) × (-5) = +25$.
+
+The square root of~$-5$ differs from the square root of~$+5$ in that
+the latter can be found as accurately as we please, while the former
+cannot be found at all.
+\end{Soln}
+%% -----File: 140.png---Folio 134-------
+
+\Paragraph{162.} A root which can be found exactly is called an \Defn{exact}
+or \Defn{rational} root. Such roots are either whole numbers or
+fractions.
+
+A root which is indicated but can be found only approximately
+is called a \Defn{surd}. Such roots involve the roots of
+imperfect powers.
+
+Rational and surd roots are together called \Defn{real} roots.
+
+A root which is indicated but cannot be found, either
+exactly or approximately, is called an \Defn{imaginary} root. Such
+roots involve the even roots of negative numbers.
+
+\Exercise{71.}
+
+Solve:
+\begin{multicols}{2}
+\Item{1.} $5x^{2} - 2 = 3x^{2} + 6$.
+
+\Item{2.} $3x^{2} + 1 = 2x^{2} + 10$.
+
+\Item{3.} $4x^{2} - 50 = x^{2} + 25$.
+
+\Item{4.} $(x - 6)(x + 6) = 28$.
+\end{multicols}
+
+\Item{5.} $(x - 5)(x + 5) = 24$.
+
+\Item{6.} $3(x^{2} - 11) + 2(x^{2} - 5) = 82$.
+
+\Item{7.} $11(x^{2} + 5) + 6(3 - x^{2}) = 198$.
+
+\Item{8.} $5x^{2} + 3 - 2(17 - x^{2}) = 32$.
+
+\Item{9.} $4(x + 1) - 4(x - 1) = x^{2} - 1$.
+
+\Item{10.} $86 - 52x = 2(8 - x)(2 - 3x)$.
+
+\Item{11.} Find two numbers that are to each other as $3$~to~$4$,
+and the difference of whose squares is~$112$.
+
+\begin{Remark}[Hint.] Let $3x$~stand for the smaller and $4x$~for the larger number.
+\end{Remark}
+
+\Item{12.} A boy bought a number of oranges for $36$~cents.
+The price of an orange was to the number bought as $1$~to~$4$.
+How many oranges did he buy, and how many cents
+did each orange cost?
+
+\Item{13.} A certain street contains $144$~square rods, and the
+length is $16$~times the width. Find the width.
+%% -----File: 141.png---Folio 135-------
+
+\Item{14.} Find the number of rods in the length, and in the
+width of a rectangular field containing $3\frac{3}{5}$~acres, if the
+length is $4$~times the width.
+
+
+\Section{Affected Quadratic Equations.}
+
+\Paragraph{163.} Since
+\[
+(x + b)^{2} = x^{2} + 2bx + b^{2}, \quad\text{and}\quad
+(x - b)^{2} = x^{2} - 2bx + b^{2},
+\]
+it is evident that the expression $x^{2} + 2bx$ or $x^{2} - 2bx$ lacks
+only the \emph{third term},~$b^{2}$, of being a perfect square.
+
+This third term is the square of half the coefficient of~$x$.
+
+Every affected quadratic may be made to assume the
+form $x^{2} + 2bx = c$ or $x^{2} - 2bx = c$, by dividing the equation
+through by the coefficient of~$x^{2}$.
+
+To \textbf{solve} such an equation:
+
+The first step is to add to both members \emph{the square of
+half the coefficient of~$x$}. This is called \emph{completing the square}.
+
+The second step is to \emph{extract the square root} of each member
+of the resulting equation.
+
+The third step is to \emph{reduce} the two resulting simple
+equations.
+
+\Item{1.} Solve the equation $x^{2} - 8x = 20$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent We have}
+x^{2} - 8x &= 20. \\
+\lintertext{\indent Complete the square,}
+x^{2} - 8x + 16 &= 36. \\
+\lintertext{\indent Extract the square root,}
+x - 4 &= ±6. \displaybreak[1] \\
+\lintertext{\indent Reduce, using the upper \rlap{sign,}}
+x &= 4 + 6 = 10, \\
+\lintertext{or using the lower sign,}
+x &= 4 - 6 = -2.
+\end{DPalign*}
+
+The roots are $10$ and~$-2$.
+
+Verify by putting these numbers for~$x$ in the given equation.
+\[
+\begin{array}{rcl<{\qquad}|>{\qquad}rcl}
+ x &=& 10, & x &=& -2, \\
+10^{2} - 8(10) &=& 20, & (-2)^{2} - 8(-2) &=& 20, \\
+ 100 - 80 &=& 20. & 4 + 16 &=& 20. \\
+\end{array}
+\]
+\end{Soln}
+%% -----File: 142.png---Folio 136-------
+
+\Item{2.} Solve the equation $\dfrac{x + 1}{x - 1} = \dfrac{4x - 3}{x + 9}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Free from fractions,}
+(x + 1)(x + 9) &= (x - 1)(4x - 3). \\
+\lintertext{\indent Therefore,}
+-3x^{2} + 17x &= -6.
+\end{DPalign*}
+
+Since the square root of a negative number cannot be taken, the
+coefficient of~$x^{2}$ must be changed to~$+$.
+\begin{DPalign*}
+\lintertext{\indent Divide by~$-3$,}
+x^{2} - \tfrac{17}{3}x &= 2. \displaybreak[1] \\
+\intertext{\indent
+Half the coefficient of~$x$ is $\frac{1}{2}$~of $-\frac{17}{3} = -\frac{17}{6}$, and the square of~$-\frac{17}{6}$
+is~$\frac{289}{36}$. Add the square of~$-\frac{17}{6}$ to both sides, and we have}
+x^{2} - \frac{17x}{3} + \left(\frac{17}{6}\right)^{2} &= 2 + \frac{289}{36}. \displaybreak[1] \\
+\lintertext{\indent Now}
+2 + \frac{289}{36} = \frac{72}{36} + \frac{289}{36} &= \frac{361}{36}, \\
+\lintertext{therefore,}
+x^{2} - \tfrac{17}{3}x + \left(\frac{17}{6}\right)^{2} &= \frac{361}{36}. \displaybreak[1] \\
+\lintertext{\indent \rlap{Extract the root,}}
+x - \frac{17}{6} &= ±\frac{19}{6}. \displaybreak[1] \\
+\lintertext{\indent Reduce,}
+x - \frac{17}{6} &= ±\frac{19}{6}. \\
+\therefore x &= \frac{17}{6} + \frac{19}{6} = \frac{36}{6} = 6, \\
+\lintertext{or}
+x &= \frac{17}{6} - \frac{19}{6} = -\frac{2}{6} = -\frac{1}{3}.
+\end{DPalign*}
+
+The roots are $6$~and~$-\dfrac{1}{3}$.
+
+Verify by putting these numbers for~$x$ in the original equation.
+\[
+\begin{array}[t]{rcl<{\qquad}|}
+x &=& 6. \\
+\dfrac{6 + 1}{6 - 1} &=& \dfrac{24 - 3}{6 + 9}. \\
+\dfrac{7}{5} &=& \dfrac{21}{15} \\
+\dfrac{7}{5} &=& \dfrac{7}{5} \\
+\end{array}
+\begin{array}[t]{>{\qquad}rcl}
+x &=& -\dfrac{1}{3} \\
+\dfrac{-\dfrac{1}{3} + 1}{-\dfrac{1}{3} - 1}
+ &=& \dfrac{-\dfrac{4}{3} - 3}{-\dfrac{1}{3} + 9}. \\
+-\dfrac{2}{4} &=& -\dfrac{13}{26}.
+\end{array}
+\]
+\end{Soln}
+%% -----File: 143.png---Folio 137-------
+
+\PrintBreak
+\Exercise{72.}
+
+Solve:
+\begin{multicols}{2}
+\Item{1.} $x^{2} - 12x + 27 = 0$.
+
+\Item{2.} $x^{2} - 6x + 8 = 0$.
+
+\Item{3.} $x^{2} - 4 = 4x - 7$.
+
+\Item{4.} $5x^{2} - 4x-1 = 0$.
+
+\Item{5.} $4x - 3 = 2x - x^{2}$.
+
+\Item{6.} $9x^{2} - 24x + 16 = 0$.
+
+\Item{7.} $6x^{2} - 5x-1 = 0$.
+
+\Item{8.} $4x + 3 = x^{2} + 2x$.
+
+\Item{9.} $16x^{2} - 16x + 3 = 0$.
+
+\Item{10.} $3x^{2} - 10x + 3 = 0$.
+
+\Item{11.} $x^{2} - 14x - 51 = 0$.
+
+\Item{12.} $34x - x^{2} - 225 = 0$.
+
+\Item{13.} $x^{2} + x - 20 = 0$.
+
+\Item{14.} $x^{2} - x - 12 = 0$.
+
+\Item{15.} $2x^{2} - 12x = - 10$.
+
+\Item{16.} $3x^{2} + 12x - 36 = 0$.
+
+\Item{17.} $(2x - 1)^{2} + 9 = 6(2x - 1)$.
+
+\Item{18.} $6(9x^{2} - x) = 55(x^{2} - 1)$.
+
+\Item{19.} $32 - 3x^{2} - 10x = 0$.
+
+\Item{20.} $9x^{2} - 6x - 143 = 0$.
+
+\Item{21.} $\dfrac{x}{x - 1} - \dfrac{x - 1}{x} = \dfrac{3}{2}$.
+
+\Item{22.} $\dfrac{1}{x - 2} + \dfrac{2}{x + 2} = \dfrac{5}{6}$.
+
+\Item{23.} $\dfrac{5x + 7}{x - 1} = 3x + 11$.
+
+\Item{24.} $\dfrac{7}{x + 4} - \dfrac{1}{4 - x} = \dfrac{2}{3}$.
+
+\Item{25.} $\dfrac{2}{x + 3} + \dfrac{x + 3}{2} = \dfrac{10}{3}$.
+
+\Item{26.} $\dfrac{2x}{x + 2} + \dfrac{x + 2}{2x} = 2$.
+
+\Item{27.} $\dfrac{3(x - 1)}{x + 1} - \dfrac{2(x + 1)}{x - 1} = 5$.
+
+\Item{28.} $\dfrac{2x + 5}{2x - 5} = \dfrac{7x - 5}{2x}$.
+
+\Item{29.} $\dfrac{3x - 1}{4x + 7} = \dfrac{x + 1}{x + 7}$.
+
+\Item{30.} $\dfrac{2x - 1}{x + 3} = \dfrac{x + 3}{2x - 1}$.
+
+\Item{31.} $\dfrac{x + 4}{x - 4} - \dfrac{x + 2}{x - 3} = 1$.
+
+\Item{32.} $\dfrac{4}{x - 1} - \dfrac{5}{x + 2} = \dfrac{1}{2}$.
+
+\Item{33.} $\dfrac{2}{x - 1} = \dfrac{3}{x - 2} + \dfrac{2}{x - 4}$.
+
+\Item{34.} $\dfrac{5}{x - 2} - \dfrac{3}{x - 1} = \dfrac{1}{2}$.
+
+\Item{35.} $\dfrac{x}{7 - x} + \dfrac{7 - x}{x} = \dfrac{29}{10}$.
+
+\Item{36.} $\dfrac{2x - 1}{x - 1} + \dfrac{1}{6} = \dfrac{2x - 3}{x - 2}$.
+\end{multicols}
+%% -----File: 144.png---Folio 138-------
+
+\ScreenBreak
+\Paragraph{164. Problems involving Quadratics.} Problems which involve
+quadratic equations apparently have two solutions,
+since a quadratic equation has two roots.
+
+When both roots of the quadratic equation are positive
+integers, they will, in general, both be admissible solutions.
+Fractional and negative roots will in some problems give
+admissible solutions; in other problems they will not give
+admissible solutions.
+
+The reason that every root of the equation will not
+always satisfy the conditions of the problem is that the
+problem may have certain restrictions, expressed or implied,
+that cannot be expressed in the equation.
+
+No difficulty will be found in selecting the result which
+belongs to the particular problem we are solving. Sometimes,
+by a change in the statement of the problem, we
+may form a new problem which corresponds to the result
+that was inapplicable to the original problem.
+
+Here as in simple equations x stands for an unknown
+\emph{number}.
+
+\Item{1.} The sum of the squares of two consecutive numbers is~$41$.
+Find the numbers.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{one number,} \\
+\lintertext{and}
+x + 1 &= \text{the other.} \\
+\lintertext{\indent Then}
+x^{2} + (x + 1)^{2} &= \text{the sum of the squares;} \\
+\lintertext{but}
+41 &= \text{the sum of the squares.}
+\end{DPalign*}
+\begin{align*}
+\therefore x^{2} + (x + 1)^{2} &= 41. \\
+x^{2} + x^{2} + 2x + 1 &= 41. \\
+2x^{2} + 2x &= 40. \\
+x^{2} + x &= 20.
+\end{align*}
+
+The solution of this equation gives $x = 4$, or~$-5$.
+
+The positive root~$4$ gives for the numbers $4$~and~$5$.
+\end{Soln}
+
+The negative root~$-5$ is inapplicable to the problem, as
+\emph{consecutive numbers} are understood to be integers which
+follow each other in the common scale: $1$,~$2$, $3$, $4\dots$.
+%% -----File: 145.png---Folio 139-------
+
+\Item{2.} In a certain nest seven times the number of birds in
+the nest is equal to twice the square of the number increased
+by~$3$. Find the number.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of birds\Add{.}} \\
+\lintertext{\indent Then}
+7x &= \text{$7$~times the number} \\
+\lintertext{and}
+2x^{2} + 3 &= \text{twice the square of the number plus~$3$.}
+\intertext{\indent As these two expressions are equal we have}
+2x^{2} + 3 &= 7x\Add{.}
+\end{DPalign*}
+
+The solution of this \emph{equation} gives $x = 3$ or $x = \frac{1}{2}$.
+
+The value $\frac{1}{2}$ is not applicable to the \emph{problem} for the number of
+birds must be a whole number.
+\end{Soln}
+
+\Item{3.} A cistern has two pipes. By one of them it can be
+filled $6$~hours sooner than by the other, and by both
+together in $4$~hours. Find the time it will take each pipe
+alone to fill it.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of hours it takes the smaller pipe.} \\
+\lintertext{\indent Then}
+x - 6 &= \text{the number of hours it takes the larger pipe.}
+\end{DPalign*}
+\begin{DPalign*}
+\lintertext{\indent Therefore}
+\frac{1}{x} + \frac{1}{x - 6} &= \text{the part both can fill in one hour.} \\
+\lintertext{\indent But}
+\frac{1}{4} &= \text{the part both can fill in one hour.} \\
+\frac{1}{x} + \frac{1}{x - 6} &= \frac{1}{4}
+\end{DPalign*}
+
+The solution of this \emph{equation} gives $x = 12$ or $x = 2$.
+
+The value~$2$ is not applicable to the \emph{problem}.
+
+Therefore it takes one pipe $12$~hr.\ and the other $6$~hr.
+\end{Soln}
+
+\Item{4.} A rug is $1$~yard longer than it is broad. The number
+of sq.~yds.\ in the rug is~$12$. Find its length and breadth.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the number of yards in the breadth\Add{.}} \\
+\lintertext{\indent Then}
+x + 1 &= \text{the number of yards in the length} \\
+\lintertext{and}
+x(x + 1) &= \text{the number of sq yds in the rug\Add{.}} \\
+\lintertext{\indent Hence}
+x(x + 1) &= 12\Add{.}
+\end{DPalign*}
+
+The solution of this equation gives $x = 3$ or $x = -4$.
+
+The dimensions are therefore $3$~yards and $4$~yards.
+\end{Soln}
+%% -----File: 146.png---Folio 140-------
+
+\Exercise{73.}
+
+\Item{1.} Find two numbers whose sum is~$11$, and whose
+product is~$30$.
+
+\Item{2.} Find two numbers whose difference is~$10$, and the
+sum of whose squares is~$250$.
+
+\Item{3.} A man is five times as old as his son, and the square
+of the son's age diminished by the father's age is~$24$. Find
+their ages.
+
+\Item{4.} A number increased by its square is equal to nine
+times the next higher number. Find the number.
+
+\Item{5.} The square of the sum of any two consecutive numbers
+lacks~$1$ of being twice the sum of the squares of the
+numbers. Show that this statement is true.
+
+\Item{6.} The length of a rectangular court exceeds its breadth
+by $2$~rods. If the length and breadth were each increased
+by $3$~rods, the area of the court would be $80$~square rods.
+Find the dimensions of the court.
+
+\Item{7.} The area of a certain square will be doubled, if its
+dimensions are increased by $6$~feet and $4$~feet respectively.
+Find its dimensions.
+
+\Item{8.} The perimeter of a rectangular floor is $76$~feet and
+the area of the floor is $360$~square feet. Find the dimensions
+of the floor.
+
+\Item{9.} The length of a rectangular court exceeds its breadth
+by $2$~rods, and its area is $120$~square rods. Find the
+dimensions of the court.
+
+\Item{10.} The combined ages of a father and son amount to
+$64$~years. Twice the father's age exceeds the square of the
+son's age by $8$~years. Find their respective ages.
+%% -----File: 147.png---Folio 141-------
+
+\Exercise{74.}
+
+Ex. A boat sails $30$~miles at a uniform rate. If the
+rate had been $1$~mile an hour more, the time of the sailing
+would have been $1$~hour less. Find the rate of the sailing.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Let}
+x &= \text{the rate in miles per hour.} \\
+\lintertext{\indent Then}
+\frac{30}{x} &= \text{the number of hours.}
+\end{DPalign*}
+
+On the other supposition the rate would have been $x + 1$~miles
+an hour and the time~$\dfrac{30}{x + 1}$.
+\begin{DPalign*}
+\lintertext{\indent Hence}
+\frac{30}{x} - \frac{30}{x + 1} &= \text{the difference in hours for the sailing.} \\
+\lintertext{\indent But}
+1 &= \text{the difference in hours for the sailing.} \\
+\frac{30}{x} - \frac{30}{x + 1} &= 1\Add{.}
+\end{DPalign*}
+
+The solution of this equation gives $x = 5$, or $x = -6$.
+
+Therefore, the rate of the sailing is $5$~miles an hour.
+\end{Soln}
+
+\Item{1.} A boat sails $30$~miles at a uniform rate. If the rate
+had been $1$~mile an hour less, the time of the sailing would
+have been $1$~hour more. Find the rate of the sailing.
+
+\Item{2.} A laborer built $35$~rods of stone wall. If he had
+built $2$~rods less each day, it would have taken him $2$~days
+longer. How many rods did he build a day on the
+average?
+
+\Item{3.} A man bought flour for~\$$30$. Had he bought $1$~barrel
+more for the same sum, the flour would have cost
+him \$$1$~less per barrel. How many barrels did he buy?
+
+\Item{4.} A man bought some knives for~\$$6$. Had he bought
+$2$~less for the same money, he would have paid $25$~cents
+more for each knife. How many knives did he buy?
+
+\Item{5.} What number exceeds its square root by~$30$?
+
+\begin{Remark}[Hint.] Let $x^{2}$ denote the number.
+\end{Remark}
+%% -----File: 148.png---Folio 142-------
+
+
+\Chapter{XIII.}{Arithmetical Progression.}
+
+\Paragraph{165.} A series of numbers is said to form an \Defn{Arithmetical
+Progression} if the difference between any term and the preceding
+term is the same throughout the series.
+
+\begin{Remark}
+Thus $a$, $b$, $c$, $d$, etc., are in arithmetical progression if $b - a$, $c - b$,
+$d - c$,~etc., are all equal.
+\end{Remark}
+
+\Paragraph{166.} This difference is called the \Defn{common difference} of the
+progression, and is represented by~$d$. If $d$~is positive, the
+progression is an \emph{increasing} series; if $d$~is negative, the progression
+is a \emph{decreasing} series.
+
+What is the common difference in each of the following
+series?
+\[
+\begin{array}{r*{4}{>{\quad}r}}
+ 1, & \Neg4, & 7, & 10, & \dots \\
+ 5, & 7, & 9, & 11, & \dots \\
+10, & 9, & 8, & 7, & \dots \\
+ 7, & 3, & -1, & -5, & \dots \\
+\end{array}
+\]
+
+\Paragraph{167.} If the first term of an arithmetical progression is
+represented by~$a$ and the common difference by~$d$, then
+\begin{alignat*}{2}
+&\text{the \emph{second} term will be } && a + d, \\
+&\text{the \emph{third} term will be } && a + 2d, \\
+&\text{the \emph{fourth} term will be } && a + 3d,
+\end{alignat*}
+and so on, the coefficient of~$d$ in each term being always
+less by~$1$ than the \emph{number of the term}.
+
+Hence the $n$th~term will be $a + (n - 1)d$.
+
+If we represent the $n$th~term by~$l$, we have
+\[
+l = a + (n - 1)d.
+\Tag{Formula (1)}
+\]
+%% -----File: 149.png---Folio 143-------
+
+\Paragraph{168.} We can, therefore, find any term of an arithmetical
+progression if the first term and common difference are
+given, or if any \emph{two} terms are given.
+
+\Item{1.} Find the 10th~term of an arithmetical progression if
+the 1st~term is~$3$ and the common difference is~$4$.
+\begin{Soln}
+By formula~(1), the 10th~term is~$3 + (10 - 1)4$, or~$39$.
+\end{Soln}
+
+\Item{2.} If the 8th~term of an arithmetical progression is~$25$,
+and the 23d~term~$70$, find the series.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent By formula (1),}
+&\text{the 23d term is $a + 22d$,} \\
+\lintertext{and}
+&\text{the 8th term is $a + 7d$.}
+\end{DPalign*}
+\begin{DPalign*}
+\lintertext{\indent Therefore,}
+a + 22d &= 70 \\
+\lintertext{and}
+a + \Z7d &= 25\Add{.} \displaybreak[1] \\
+\lintertext{\indent Subtract,}
+15d &= 45 \\
+\lintertext{and}
+d &= 3, \\
+\lintertext{whence}
+a &= 4.
+\end{DPalign*}
+
+The series is therefore $4$, $7$, $10$, $13$,~etc.
+\end{Soln}
+
+\Paragraph{169. Arithmetical Mean.} If three numbers are in arithmetical
+progression, the middle number is called the arithmetical
+mean of the other two numbers.
+
+If $a$, $A$, $b$ are in arithmetical progression, $A$~is the arithmetical
+mean of $a$~and~$b$. Hence, by the definition of an
+arithmetical series,
+\begin{DPalign*}
+A - a &= b - A, \\
+\lintertext{whence}
+A &= \frac{a + b}{2}.
+\rintertext{Formula (2)}
+\end{DPalign*}
+\begin{Theorem}
+Hence, the arithmetical mean of any two numbers is found
+by taking half their sum.
+\end{Theorem}
+
+\Paragraph{170.} Sometimes it is required to insert several arithmetical
+means between two numbers.
+%% -----File: 150.png---Folio 144-------
+
+If $m = {}$the number of means, and $n = {}$the whole number
+of terms, then $m + 2 = n$. If $m + 2$ is substituted for~$n$
+in formula~(1),
+\begin{DPalign*}
+l &= a + (n - 1)d, \\
+\lintertext{the result is}
+l &= a + (m + 1)d. \displaybreak[1] \\
+\lintertext{\indent By transposing~$a$,}
+l - a &= (m + 1) d. \\
+\therefore \frac{l - a}{m + 1} &= d.
+\Tag{\llap{Formula (3)}}
+\end{DPalign*}
+\begin{Remark}
+Thus, if it be required to insert six means between $3$~and~$17$,
+the value of~$d$ is found to be $\dfrac{17 - 3}{6 + 1} = 2$; and the series will be $3$,~$5$,
+$7$, $9$, $11$, $13$, $15$,~$17$.
+\end{Remark}
+
+\Exercise{75.}
+
+\Item{1.} Find the 25th~term in the series $3$, $6$, $9$,~$\dots$.
+
+\Item{2.} Find the 13th~term in the series $50$, $49$, $48$,~$\dots$.
+
+\Item{3.} Find the 15th~term in the series $\frac{1}{7}$, $\frac{3}{7}$, $\frac{5}{7}$,~$\dots$.
+
+\Item{4.} Find the 19th~term in the series $\frac{1}{4}$, $-\frac{1}{4}$, $-\frac{3}{4}$,~$\dots$.
+
+\Item{5.} Find the 10th~term in an arithmetical progression
+whose 1st~term is~$5$ and 3d~term~$9$.
+
+\Item{6.} Find the 11th~term in an arithmetical progression
+whose 1st~term is~$10$ and whose 6th~term is~$5$.
+
+\Item{7.} If the 3d~term of an arithmetical progression is~$20$
+and the 13th~term is~$100$, what is the 20th~term?
+
+\Item{8.} Which term of the series $5$, $7$, $9$, $11$,~$\dots$, is~$43$?
+
+\Item{9.} Which term of the series $\frac{4}{3}$, $\frac{3}{2}$, $\frac{5}{3}$,~$\dots$, is~$18$?
+
+\Item{10.} What is the arithmetical mean of $20$~and~$32$?
+
+\Item{11.} What is the arithmetical mean of $a + b$ and $a - b$?
+
+\Item{12.} Insert $8$ arithmetical means between $20$~and~$29$.
+%% -----File: 151.png---Folio 145-------
+
+\Paragraph{171. To Find the Sum of Any Number of Terms of an Arithmetical
+Series.}
+
+If $l$ denote the last term, $a$~the first term, $n$~the number
+of terms, $d$~the common difference, and $s$~the sum of the
+terms, it is evident that the series beginning with the first
+term will be $a$, $a + d$, $a + 2d$,~etc., and beginning with the
+last term will be $l$, $l - d$, $l - 2d$,~etc. Therefore,
+\begin{gather*}
+\begin{array}{r*{12}{c}}
+s &=& a &+& (a + d) &+& (a + 2d) &+& \Add{\dots} &+& (l - d) &+& l, \rlap{\quad\text{or}} \\
+s &=& l &+& (l - d) &+& (l - 2d) &+& \Add{\dots} &+& (a + d) &+& a \\
+\hline
+2s &=& (a + l) &+& (a + l) &+& (a + l) &+& \Add{\dots} &+& (a + l) &+& (a + l) \\
+2s &=& \multicolumn{11}{l}{\text{$(a + l)$ taken as many times as there are \emph{terms},}}
+\end{array} \displaybreak[1] \\
+\begin{aligned}[b]
+2s &= n(a + l), \\
+\text{and } s &= \frac{n}{2}(a + l)\Add{.}
+\end{aligned}
+\Tag{Formula (4)}
+\end{gather*}
+
+Putting for $l$~its value $a + (n - 1)d$, in formula~(4), we
+have
+\begin{align*}
+s &= \frac{n}{2}\bigl\{a + a + (n - 1)d\bigr\} \\
+ &= \frac{n}{2}\bigl\{2a + (n - 1)d\bigr\}
+\Tag{Formula (5)}
+\end{align*}
+
+\Item{1.} Find the sum of the first $16$~terms of the series $5$, $7$,
+$9$,~$11$\DPtypo{,}{.}
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Here}
+a &= 5,\quad d = 2,\quad n = 16\Add{.} \\
+\intertext{\indent Putting these values in formula~(5) we have}
+s &= \tfrac{16}{2}(10 + 15 × 2) \\
+ &= 320
+\end{DPalign*}
+\end{Soln}
+
+\Item{2.} Show that the sum of any number of odd numbers,
+beginning with~$1$, is a square number.
+\begin{Soln}
+The series of odd numbers is $1$, $3$, $5$, $7$,~$\dots$.
+%% -----File: 152.png---Folio 146-------
+\begin{DPalign*}
+\lintertext{\indent Here}
+a &= 1 \quad\text{and}\quad d = 2\Add{.}
+\intertext{\indent Putting these values in formula (5) we have}
+s &= \frac{n}{2} \bigl\{2 + (n - 1)2\bigr\} \\
+ &= \frac{n}{2} × 2n \\
+ &= n^{2}\Add{.}
+\end{DPalign*}
+
+Therefore the sum of the first $5$~odd numbers is~$5^{2}$ or~$25$\Add{,} of the first
+$8$ odd numbers is~$8^{2}$ or~$64$, and so on.
+\end{Soln}
+
+\Item{3.} The sum of $20$~terms of an arithmetical progression
+is~$420$, and the first term is~$2$. Find the common difference.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Here}
+s &= 420,\quad n = 20, \quad\text{and}\quad a = 2\Add{.} \\
+\intertext{\indent Putting these values in formula~(5), we have}
+420 &= \tfrac{20}{2}(4 + 19d) \\
+ &= 40 + 190d \\
+190d &= 380 \\
+\Add{\therefore} d &= 2\Add{.}
+\end{DPalign*}
+
+Therefore the common difference is~$2$.
+\end{Soln}
+
+\Exercise{76.}
+
+\Item{1.} Find the sum of $3$, $5$, $7$, $\dots$, to $20$~terms.
+
+\Item{2.} Find the sum of $14$, $14\frac{1}{2}$, $15$, $\dots$, to $12$~terms.
+
+\Item{3.} Find the sum of $\frac{7}{6}$, $1$, $\frac{5}{6}$, $\dots$, to $10$~terms.
+
+\Item{4.} Find the sum of $-7$, $-5$, $-3$, $\dots$, to $16$~terms.
+
+\Item{5.} Find the sum of $12$, $9$, $6$, $\dots$, to $21$~terms.
+
+\Item{6.} Find the sum of $-10\frac{1}{2}$, $-9$, $-7\frac{1}{2}$, $\dots$, to $25$~terms.
+
+\Item{7.} The sum of three numbers in arithmetical progression
+is~$9$, and the sum of their squares is~$35$. Find the numbers.
+
+\begin{Remark}[Hint.] Let $x - y$, $x$, $x + y$, stand for the numbers.
+\end{Remark}
+%% -----File: 153.png---Folio 147-------
+
+\Item{8.} A common clock strikes the hours from $1$ to~$12$.
+How many times does it strike every $24$~hours?
+
+\Item{9.} The Greenwich clock strikes the hours from $1$ to~$24$.
+How many times does it strike in $24$~hours?
+
+\Item{10.} In a potato race each man picked up $50$~potatoes
+placed in line a yard apart, and the first potato one yard
+from the basket, picking up one potato at a time and bringing
+it to the basket. How many yards did each man run,
+the start being made from the basket?
+
+\Item{11.} A heavy body falling from a height falls $16.1$~feet
+the first second, and in each succeeding second $32.2$~feet
+more than in the second next preceding. How far will a
+body fall in $19$~seconds?
+
+\Item{12.} A stone dropped from a bridge reached the water in
+just $3$~seconds. Find the height of the bridge. (See Ex.~11.)
+
+\Item{13.} The arithmetical mean between two numbers is~$13$,
+and the mean between the double of the first and the triple
+of the second is~$33\frac{1}{2}$. Find the numbers.
+
+\Item{14.} Find three numbers of an arithmetical series whose
+sum shall be~$27$, and the sum of the first and second shall
+be~$frac{4}{5}$ of the sum of the second and third.
+
+\Item{15.} A travels uniformly $20$~miles a day; B~travels $8$~miles
+the first day, $12$~the second, and so on, in arithmetical
+progression. If they start Monday morning from the same
+place and travel in the same direction, how far apart will
+they be Saturday night?
+
+\Item{16.} The sum of three terms of an arithmetical progression
+is~$36$, and the square of the mean exceeds the product of
+the other two terms by~$49$. Find the numbers.
+%% -----File: 154.png---Folio 148-------
+
+
+\Chapter{XIV.}{Geometrical Progression.}
+
+\Paragraph{172.} A series of numbers is said to be in \Defn{Geometrical Progression}
+when the quotient of any term divided by the
+preceding term is the same throughout the series.
+
+\begin{Remark}
+Thus $a$, $b$, $c$, $d$, etc., are in geometrical progression if $\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}$,~etc.
+\end{Remark}
+
+\Paragraph{173.} This quotient is called the \Defn{common ratio}, and is represented
+by~$r$.
+
+State the common ratio of the following series:
+\[
+\begin{array}{r*{4}{>{\quad}r}}
+1, & 3, & \Neg9, &27, & \dots \\
+2, & 4, & 8, &16, & \dots \\
+16,& 8, & 4, &2, & \dots \\
+\frac{2}{3}, & 1, & \frac{3}{2}, & \frac{9}{4}, & \dots \\
+4, & -2, & 1, & -\frac{1}{2}, & \dots \\
+\end{array}
+\]
+
+\Paragraph{174.} If the first term of a geometrical progression is represented
+by~$a$, and the common ratio by~$r$, then
+\begin{align*}
+&\text{the \emph{second} term will be~$ar$,} \\
+&\text{the \emph{third} term will be~$ar^{2}$,} \\
+&\text{the \emph{fourth} term will be~$ar^{3}$,}
+\end{align*}
+and so on, the index of~$r$ being always less by~$1$ than the
+\emph{number of the term in the series}.
+
+Hence the $n$th~term will be~$ar^{n - 1}$.
+%% -----File: 155.png---Folio 149-------
+
+If we denote the $n$th~term by~$l$, we have
+\[
+l = ar^{n - 1}.
+\Tag{Formula (1)}
+\]
+
+\Paragraph{175.} If the first term and common ratio are given, or if
+any \emph{two terms} are given, we can find the series.
+
+\Item{1.} Find the 5th~term of a geometrical progression if the
+first is~$3$ and the common ratio~$2$.
+\begin{Soln}
+In formula~(1), put $5$~for~$n$, $3$~for~$a$, and $2$~for~$r$.
+\begin{DPalign*}
+\lintertext{\indent Then}
+l &= 3 × 2^{4} = 48.
+\end{DPalign*}
+
+Therefore the 5th~term is~$48$.
+\end{Soln}
+
+\Item{2.} Find the geometrical series if the 5th~term is~$48$ and
+the 7th~term is~$192$.
+\begin{Soln}
+The 5th and 7th~terms are $ar^{4}$~and~$ar^{6}$, respectively.
+\begin{DPalign*}
+\lintertext{\indent Whence}
+ar^{4} &= 48,
+\Tag{(1)} \\
+\lintertext{and}
+ar^{6} &= 192.
+\Tag{(2)} \\
+\lintertext{\indent Divide (2) by~(1),}
+r^{2} &= 4. \\
+\therefore r &= ±2. \\
+\lintertext{\indent From~(1),}
+a = \tfrac{48}{16} &= 3.
+\end{DPalign*}
+
+Therefore the series is $3$, $±6$, $12$, $±24$,~$\dots$.
+\end{Soln}
+
+\Paragraph{176. Geometrical Mean.} If three numbers are in geometrical
+progression, the middle number is called the \emph{geometrical
+mean} of the other two numbers. Hence, if
+$a$,~$G$,~$b$ are in geometrical progression, $G$~is the geometrical
+mean of $a$~and~$b$.
+
+By the definition of a geometrical progression,
+\begin{DPalign*}
+\frac{G}{a} &= \frac{b}{G}. \\
+\therefore G^{2} &= ab, \\
+\lintertext{and}
+G &= ± \sqrt{ab}.
+\Tag{Formula (2)}
+\end{DPalign*}
+\begin{Theorem}[Hence], the geometrical mean of any two numbers is the
+square root of their product.
+\end{Theorem}
+%% -----File: 156.png---Folio 150-------
+
+\PrintBreak
+\Paragraph{177. To Find the Sum of Any Number of Terms of a Geometrical
+Progression.}
+
+If $l$~denote the last term, $a$~the first term, $n$~the number
+of terms, $r$~the common ratio, and $s$~the sum of the $n$~terms,
+then
+\begin{DPalign*}
+s &= a + ar + ar^{2} + ar^{3} + \dots+ ar^{n - 1}. \\
+\lintertext{\indent Multiply by~$r$,}
+rs &= ar + ar^{2} + ar^{3} + \dots + ar^{n - 1} + ar^{n}.
+\end{DPalign*}
+
+Therefore, by subtracting the first equation from the
+second,
+\begin{DPalign*}
+rs - s &= ar^{n} - a, \\
+\lintertext{or}
+(r - 1)s &= a(r^{n} - 1). \\
+\therefore s &= \frac{a(r^{n} - 1)}{r - 1}.
+\Tag{Formula (3)}
+\end{DPalign*}
+
+\Paragraph{178.} When $r$~is $< 1$, this formula will be more convenient
+if written
+\[
+s = \frac{a(1 - r^{n})}{1 - r}.
+\]
+
+\Item{1.} Find the sum of $8$~terms of the series
+\[
+1,\quad 2,\quad 4,\quad \dots\Add{.}
+\]
+\begin{DPalign*}
+\lintertext{\indent Here}
+a &= 1,\quad r = 2,\quad n = 8. \\
+\lintertext{\indent From formula~(3),}
+s &= 1(2^{8} - 1) = 255.
+\end{DPalign*}
+
+\Item{2.} Find the sum of $6$~terms of the series
+\[
+2,\quad 3,\quad \tfrac{9}{2},\quad \dots\Add{.}
+\]
+\begin{DPalign*}
+\lintertext{\indent Here}
+a &= 2,\quad r = \tfrac{3}{2},\quad n = 6. \\
+\lintertext{\indent From formula~(3),}
+s &= \frac{2\bigl\{(\frac{3}{2})^{6} - 1\bigr\}}{\frac{3}{2} - 1} \\
+ &= \frac{2\bigl\{\frac{729}{64} - 1\bigr\}}{\frac{1}{2}} \\
+ &= \frac{4\{729 - 64\}}{64} \\
+ &= 41\tfrac{9}{16}.
+\end{DPalign*}
+%% -----File: 157.png---Folio 151-------
+
+\Exercise{77.}
+
+\Item{1.} Find the 5th~term of $3$, $9$, $27$\Add{,}~$\dots$.
+
+\Item{2.} Find the 7th~term of $3$, $6$, $12$\Add{,}~$\dots$.
+
+\Item{3.} Find the 8th~term of $6$, $3$, $\frac{3}{2}$\Add{,}~$\dots$.
+
+\Item{4.} Find the 9th~term of $1$, $-2$, $4$\Add{,}~$\dots$.
+
+\Item{5.} Find the geometrical mean between $2$~and~$8$.
+
+\Item{6.} Find the common ratio if the 1st~and 3d~terms are
+$2$~and~$32$.
+
+Find the sum of the series:
+
+\Item{7.} $3$, $9$, $27$, $\dots$ to $6$~terms.
+
+\Item{8.} $3$, $6$, $12$, $\dots$ to $8$~terms.
+
+\Item{9.} $6$, $3$, $\frac{3}{2}$, $\dots$ to $7$~terms.
+
+\Item{10.} $8$, $4$, $2$, $\dots$ to $8$~terms.
+
+\Item{11.} $64$, $32$, $16$, $\dots$ to $9$~terms.
+
+\Item{12.} $64$, $-32$, $16$, $\dots$ to $5$~terms.
+
+\Item{13.} $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{9}$, $\dots$ to $4$~terms.
+
+\Item{14.} If a blacksmith uses seven nails in putting a shoe on
+a horse's foot, and receives $1$~cent for the first nail, $2$~cents
+for the second nail, and so on, what does he receive for
+putting on the shoe?
+
+\Item{15.} If a boy receives $2$~cents for his first day's work,
+$4$~cents for his second day, $8$~cents for the third day, and
+so on for $12$~days, what will his wages amount to?
+
+\Item{16.} If the population of a city is $10,000$, and increases
+$10$\%~a year for four years, what will be its population at
+the end of the four years? (Here $l = ar^{4}$.)
+%% -----File: 158.png---Folio 152-------
+
+
+\Chapter{XV.}{Square and Cube Roots.}
+
+\Section{Square Roots of Compound Expressions.}
+
+\Paragraph{179.} Since the square of $a + b$ is $a^{2} + 2ab + b^{2}$, the square
+root of $a^{2} + 2ab + b^{2}$ is $a + b$.
+
+It is required to find a method of extracting the root
+$a + b$ when $a^{2} + 2ab + b^{2}$ is given.
+\begin{Soln}
+Ex. The first term,~$a$, of the root is obviously the square root of
+the first term,~$a^{2}$, in the expression.
+\[
+\begin{array}{r*{3}{cr}l}
+ & & a^{2} &+& 2ab &+& \TbBar{b^{2}} & a + b \\
+\cline{8-8}
+ & & a^{2} \\
+\cline{3-3}
+2a &+& \TbBar{b} & & 2ab &+& b^{2} \\
+ & & \TbBar{ } & & 2ab &+& b^{2} \\
+\cline{4-7}
+\end{array}
+\]
+
+If the $a^{2}$ is subtracted from the given
+expression, the remainder is $2ab + b^{2}$\Add{.}
+Therefore the second term,~$b$, of the root
+is obtained when the first term of this
+remainder is divided by~$2a$; that is, by
+\emph{double the part of the root already found}. Also, since
+\[
+2ab + b^{2} = (2a + b)b,
+\]
+the divisor is \emph{completed by adding to the trial-divisor the new term of
+the root}\Add{.}
+\end{Soln}
+
+\ScreenBreak
+Ex. Find the square root of $25x^{2} - 20x^{3}y + 4x^{4}y^{2}$.
+\begin{Soln}
+\[
+\begin{array}{rcccrll}
+& && & 25x^{2} & \TbBar{-20 x^{3}y + 4x^{4}y^{2}} & 5x - 2x^{2}y \\
+\cline{7-7}
+\text{Here $a^{2}$}
+ &=& (5x)^{2} &=& 25x^{2} \\
+\cline{5-5}
+2a + b &=& 10x &-& \TbBar{2x^{2}y} & -20x^{3}y + 4x^{4}y^{2} \\
+ & & & & \TbBar{ } & -20x^{3}y + 4x^{4}y^{2} \\
+\cline{6-6}
+\end{array}
+\]
+
+The expression is \emph{arranged} according to the ascending powers of~$x$\Add{.}
+
+The square root of the first term is~$5x$, hence $5x$~is the first term
+of the root. $(5x)^{2}$ or $25x^{2}$ is subtracted, and the remainder is
+\[
+-20x^{3}y + 4x^{4}y^{2}.
+\]
+
+The second term of the root, $-2x^{2}y$, is obtained by dividing
+$-20x^{3}y$ by~$10x$, the double of~$5x$, and this new term of the root is
+also annexed to the divisor,~$10x$, to complete the divisor.
+\end{Soln}
+%% -----File: 159.png---Folio 153-------
+
+\Paragraph{180.} The same method will apply to longer expressions,
+if care be taken to obtain the \emph{trial-divisor} at each stage of
+the process, \emph{by doubling the part of the root already found},
+and to obtain the \emph{complete divisor by annexing the new term
+of the root to the trial-divisor}.
+
+\ScreenBreak
+Ex. Find the square root of
+\[
+1 + 10x^{2} + 25x^{4} + 16x^{6} - 24x^{5} - 20x^{3} - 4x.
+\]
+\begin{Soln}
+\[
+%[** TN: Spacing hack]
+\qquad\makebox[0pt][c]{$\begin{array}{r*{2}{cr}lll}
+16x^{6} &-& 24x^{5} &+& 25x^{4} &-20x^{3} + 10x^{2} &\TbBar{- 4x + 1} & 4x^{3} - 3x^{2} + 2x - 1 \\
+\cline{8-8}
+16x^{6} \\
+\cline{1-1}
+\TbBar{\llap{$8x^{3} - 3x^{2}$}}
+ &-& 24x^{5} &+& 25x^{4} \\
+\TbBar{}&-& 24x^{5} &+& 9x^{4} \\
+\cline{2-5}
+\multicolumn{4}{r|}{8x^{3} - 6x^{2} + 2x} &
+ 16x^{4} &-20x^{3} + 10x^{2} \\
+ & & & \TbBar{ }& 16x^{4} &-12x^{3} + \Z4x^{2} \\
+\cline{5-6}
+\multicolumn{5}{r|}{8x^{3} - 6x^{2} + 4x - 1}
+ &-\Z8x^{3} + \Z6x^{2} & -4x + 1 \\
+ & & & & \TbBar{}&-\Z8x^{3} + \Z6x^{2} & -4x + 1 \\
+\cline{6-7}
+\end{array}$}
+\]
+
+The expression is arranged according to the descending powers of~$x$.
+
+It will be noticed that each successive trial-divisor may be obtained
+by taking the preceding complete divisor with its \emph{last term doubled}.
+\end{Soln}
+
+\Exercise{78.}
+
+Find the square root of:
+\Item{1.} $a^{2} + 2ab + 2ac + b^{2} + 2bc + c^{2}$.
+
+\Item{2.} $x^{4} + 2x^{3} + 3x^{2} + 2x + 1$.
+
+\Item{3.} $x^{4} - 4x^{3}y + 6x^{2}y^{2} - 4xy^{3} + y^{4}$.
+
+\Item{4.} $4a^{4} - 12a^{3}b + 29a^{2}b^{2} - 30ab^{3} + 25b^{4}$.
+
+\Item{5.} $16x^{6} + 24x^{5}y + 9x^{4}y^{2} - 16x^{3}y^{3} - 12x^{2}y^{4} + 4y^{6}$.
+
+\Item{6.} $4x^{6} - 4x^{4}y^{2} + 12x^{3}y^{3} + x^{2}y^{4} - 6xy^{5} + 9y^{6}$.
+
+\Paragraph{181. Arithmetical Square Roots.} In the general method
+of extracting the square root of a number expressed by
+figures, the first step is to mark off the figures into \emph{groups}.
+%% -----File: 160.png---Folio 154-------
+
+Since $1 = 1^{2}$, $100 = 10^{2}$, $10,000 = 100^{2}$, and so on, it is
+evident that the square root of a number between $1$~and
+$100$ lies between $1$~and~$10$; of a number between $100$ and
+$10,000$ lies between $10$~and~$100$. In other words, the
+square root of a number expressed by \emph{one} or \emph{two} figures is
+a number of \emph{one} figure, of a number expressed by \emph{three} or
+\emph{four} figures is a number of \emph{two} figures, and so on.
+
+If, therefore, an integral square number is divided into
+groups of two figures each, from the right to the left, the
+number of figures in the root will be equal to the number
+of groups of figures. The last group to the left may have
+only one figure.
+
+Ex. Find the square root of~$3249$.
+%[** TN: Tabulated calculation inset in the original]
+\begin{Soln}
+\[
+\begin{array}{rc@{}ll}
+ &3&249&(57 \\
+ &2&5 \\
+\cline{2-3}
+107\,\rlap{)}&&749 \\
+ &&749 \\
+\cline{3-3}
+\end{array}
+\]
+
+In this case, $a$~in the typical form $a^{2} + 2ab + b^{2}$
+represents $5$~tens, that is,~$50$, and $b$~represents~$7$\Add{.} The
+$25$ subtracted is really~$2500$, that is,~$a^{2}$, and the complete
+divisor $2a + b$ is $2 × 50 + 7 = 107$.
+\end{Soln}
+
+\Paragraph{182.} The same method will apply to numbers of more
+than two groups of figures by considering $a$~in the typical
+form to represent at each step \emph{the part of the root already
+found}.
+
+It must be observed that \emph{$a$~represents so many tens with
+respect to the next figure of the root}.
+
+Ex. Find the square root of~$94,249$.
+\begin{Soln}
+\[
+\begin{array}{r*{3}{c@{\,}}l}
+ &9& 42&49&(307 \\
+ &9 \\
+\cline{2-4}
+607\rlap{)} & & \multicolumn{2}{l}{4249} \\
+ & & \multicolumn{2}{l}{4249} \\
+\cline{3-4}
+\end{array}
+\]
+\end{Soln}
+
+\begin{Remark}[Note.] Since the first trial divisor,~$60$, is not contained in~$42$, we
+put a zero in the root, and bring down the next group,~$49$.
+\end{Remark}
+%% -----File: 161.png---Folio 155-------
+
+\Paragraph{183.} If the square root of a number has decimal places,
+the number itself will have \emph{twice} as many. Thus, if $0.21$
+is the square root of some number, this number will be
+$(0.21)^{2} = 0.21 × 0.21 = 0.0441$, and if $0.111$ be the root,
+the number will be $(0.111)^{2} = 0.111 x 0.111 = 0.012321$.
+
+Therefore, the number of \emph{decimal} places in every square
+decimal will be \emph{even}, and the number of decimal places in
+the root will be \emph{half} as many as in the given number itself.
+
+Hence, if a given number contain a decimal, we divide
+it into groups of two figures each, by beginning at the
+decimal point and marking toward the left for the integral
+number, and toward the right for the decimal. We must
+have the last group on the right of the decimal point contain
+\emph{two} figures, annexing a cipher when necessary.
+
+Ex. Find the square roots of $41.2164$ and $965.9664$.
+\begin{Soln}
+\[
+\begin{array}{r@{}r@{}l@{\,}ll}
+ & 41&.21&64& (6.42 \\
+ & 36 \\
+\cline{2-3}
+124\rlap{)} & 5&21 \\
+ & 4&96 \\
+\cline{3-4}
+\multicolumn{2}{r}{1282\rlap{)}}&\multicolumn{2}{l}{2564} \\
+ & &\multicolumn{2}{l}{2564} \\
+\cline{3-4}
+\end{array}\qquad\qquad\qquad
+\begin{array}{rl@{}l@{\,}ll}
+ 9&65&.96& 64&(31.08 \\
+ 9 \\
+\cline{2-2}
+ 61\rlap{)}&65 \\
+ &61 \\
+\cline{2-3}
+6208\rlap{)}&49&664 \\
+ &49&664 \\
+\cline{2-3}
+\end{array}
+\]
+\end{Soln}
+
+\Paragraph{184.} If a number contain an \emph{odd} number of decimal
+places, or if any number give a \emph{remainder} when as many
+figures in the root have been obtained as the given number
+has groups, then its exact square root cannot be found. We
+may, however, approximate to its exact root as near as we
+please by annexing ciphers and continuing the operation.
+
+The square root of a common fraction whose denominator
+is not a perfect square can be found approximately by
+reducing the fraction to a decimal and then extracting the
+root; or by reducing the fraction to an equivalent fraction
+whose denominator is a perfect square, and extracting the
+square root of both terms of the fraction.
+%% -----File: 162.png---Folio 156-------
+
+%[** Force page break in both print and screen layout]
+\newpage
+\Item{1.} Find the square roots of $3$ and $357.357$.
+\begin{Soln}
+\[
+\begin{array}{rcccl}
+ &3.&\multicolumn{3}{l}{(\rlap{$1.732\dots$}} \\
+ &1 \\
+\cline{2-3}
+27\rlap{)}
+ &2&00 \\
+ &1&89 \\
+\cline{3-4}
+\multicolumn{2}{r}{343\rlap{)}}
+ &11&00 \\
+ &&10&29 \\
+\cline{4-5}
+\multicolumn{3}{r}{3462\rlap{)}}
+ &71&00 \\
+&& &69&24 \\
+\cline{4-5}
+\end{array}\qquad\qquad\qquad
+\begin{array}{rcclll}
+ &3&57.&35&70&\rlap{$(18.903\dots$} \\
+ &1 \\
+\cline{2-3}
+28\rlap{)}
+ &2&57 \\
+ &2&24 \\
+\cline{3-4}
+\multicolumn{2}{r}{369\rlap{)}}
+ &33&35 \\
+& &33&21 \\
+\cline{4-6}
+\multicolumn{3}{r}{37803\rlap{)}}
+ &14&70&00 \\
+&& &11&34&09 \\
+\cline{4-6}
+\end{array}
+\]
+\end{Soln}
+
+\Item{2.} Find the square root of~$\frac{5}{8}$.
+\begin{Soln}
+\begin{DPalign*}
+\lintertext{\indent Since}
+\frac{5}{8} &= 0.625, \\
+\lintertext{the square root of}
+\frac{5}{8} &= \sqrt{0.625} \\
+ &= 0.79057. \displaybreak[1] \\
+\lintertext{\indent Or,}
+\frac{5}{8} &= \frac{10}{16}, \\
+\lintertext{and the square root of}
+\frac{5}{8} &= \frac{\sqrt{10}}{\sqrt{16}} = \tfrac{1}{4}\sqrt{10} \\
+ &= \tfrac{1}{4}(3.16227) \\
+ &= 0.79057.
+\end{DPalign*}
+\end{Soln}
+
+\ScreenBreak
+\Exercise{79.}
+
+Find the square root of:
+\begin{multicols}{3}
+\Item{1.} $324$.
+
+\Item{2.} $441$.
+
+\Item{3.} $529$.
+
+\Item{4.} $961$.
+
+\Item{5.} $10.24$.
+
+\Item{6.} $53.29$.
+
+\Item{7.} $53,824$.
+
+\Item{8.} $616,225$.
+
+\Item{9.} $1,500,625$.
+
+\Item{10.} $346,921$.
+
+\Item{11.} $31,371,201$.
+
+\Item{12.} $1,522,756$.
+\end{multicols}
+
+\PrintBreak
+Find to four decimal places the square root of:
+\begin{multicols}{5}
+\Item{13.} $2$.
+
+\Item{14.} $3$.
+
+\Item{15.} $5$.
+
+\Item{16.} $6$.
+
+\Item{17.} $0.5$.
+
+\Item{18.} $0.9$.
+
+\Item{19.} $\frac{2}{3}$.
+
+\Item{20.} $\frac{3}{4}$.
+
+\Item{21.} $\frac{4}{5}$.
+
+\Item{22.} $\frac{5}{8}$.
+\end{multicols}
+%% -----File: 163.png---Folio 157-------
+
+
+\Section{Cube Roots of Compound Expressions.}
+
+\Paragraph{185.} Since the cube of $a + b$ is $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$,
+the cube root of a$^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ is $a + b$.
+
+It is required to devise a method for extracting the cube
+root $a + b$ when $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ is given.
+
+\Item{1.} Find the cube root of $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$.
+\begin{Soln}
+\[
+\begin{array}{rl<{\quad}rcll}
+ & & a^{3} &+& \TbBar{3a^{2}b + 3ab^{2} + b^{3}} & a + b \\
+\cline{6-6}
+3a^{2} & & a^{3} \\
+\cline{3-3}
+ &+ 3ab + b^{2} &\TbBar{}& & 3a^{2}b + 3ab^{2} + b^{3} \\
+\cline{1-3}
+3a^{2} &+ 3ab + b^{2} &\TbBar{}& & 3a^{2}b + 3ab^{2} + b^{3} \\
+\cline{4-5}
+\end{array}
+\]
+
+The first term $a$ of the root is obviously the cube root of the first
+term~$a^{3}$ of the given expression.
+
+If $a^{3}$ be subtracted, the remainder is $3a^{2}b + 3ab^{2} + b^{3}$; therefore,
+the second term~$b$ of the root is obtained by dividing the first term of
+this remainder by \emph{three times the square of~$a$}.
+
+Also, since $3a^{2}b + 3ab^{2} + b^{3} = (3a^{2} + 3ab + b^{2})b$, the \emph{complete
+divisor} is obtained by adding $3ab + b^{2}$ to the \emph{trial divisor~$3a^{2}$}.
+\end{Soln}
+
+\Item{2.} Find the cube root of $8x^{3} + 36x^{2}y + 54xy^{2} + 27y^{3}$.
+\begin{Soln}
+\[
+\begin{array}{rlrlcll}
+ & & & 8x^{3} &+& \TbBar{36x^{2}y + 54xy^{2} + 27y^{3}} & 2x + 3y \\
+\cline{7-7}
+ & 12x^{2} & & 8x^{3} \\
+\cline{4-4}
+(6x + 3y)3y =& & 18xy +& \TbBar{9y^{2}} & & 36x^{2}y + 54xy^{2} + 27y^{3} \\
+\cline{2-4}
+ & 12x^{2} &+ 18xy +& \TbBar{9y^{2}} & & 36x^{2}y + 54xy^{2} + 27y^{3} \\
+\cline{5-6}
+\end{array}
+\]
+
+The cube root of the first term is~$2x$, and this is therefore the first
+term of the root. $8x^{3}$,~the cube of~$2x$, is subtracted.
+
+The second term of the root,~$3y$, is obtained by dividing $36x^{2}y$ by
+$3(2x)^{2} = 12x^{2}$, which corresponds to $3a^{2}$ in the typical form, and the
+divisor is completed by annexing to~$12x^{2}$ the expression
+\[
+\bigl\{3(2x) + 3y\bigr\}3y = 18xy + 9y^{2},
+\]
+which corresponds to $3ab + b^{2}$ in the typical form.
+\end{Soln}
+%% -----File: 164.png---Folio 158-------
+
+\Paragraph{186.} The same method may be applied to longer expressions
+by considering~$a$ in the typical form $3a^{2} + 3ab + b^{2}$
+to represent at each stage of the process \emph{the part of the root
+already found}. Thus, if the part of the root already found
+is $x + y$, then $3a^{2}$~of the typical form will be represented
+by $3(x + y)^{2}$; and if the third term of the root be~$+z$, \DPtypo{the}{then}
+$3ab + b^{2}$ will be represented by $3(x + y)z + z^{2}$. So that
+the complete divisor, $3a^{2} + 3ab + b^{2}$, will be represented
+by $3(x + y)^{2} + 3(x + y)z + z^{2}$.
+
+Ex. Find the cube root of $x^{6} - 3x^{5} + 5x^{3} - 3x - 1$.
+\begin{Soln}
+%[** TN: Special spacing]
+\ifthenelse{\not\boolean{ForPrinting}}{\footnotesize}{}
+\[
+\ifthenelse{\not\boolean{ForPrinting}}{\quad}{}
+\begin{array}{*{2}{r}@{}*{3}{r}*{4}{l}}
+ & & & \TbBar{}& x^{2}& \multicolumn{3}{@{}l}{{} - x - 1} \\
+\cline{5-6}
+ & & & & x^{6}& {} - 3x^{5} &\multicolumn{2}{@{}l}{\phantom{{}+ 3x^{4}} + 5x^{3} - 3x - 1} \\
+ & 3x^{4}& & & x^{6} \\
+\cline{5-5}
+ (3x^{2} - x)(-x) =& &{} - 3x^{3}&+& \TbBar{x^{2}}&{} - 3x^{5}&\phantom{{}+ 3x^{4}} + 5x^{3} \\
+\cline{3-5}
+ & 3x^{4}&{} - 3x^{3}&+& \TbBar{x^{2}}&{} - 3x^{5}&{} + 3x^{4} - \Z x^{3} \\
+\cline{6-7}
+ & & & & &\TbBar{} &{} - 3x^{4} + 6x^{3} - 3x - 1 \\
+ 3(x^{2} - x)^{2} =& 3x^{4}&{} - 6x^{3}&+& 3x^{2}&\TbBar{} \\
+\llap{$(3x^{2} - 3x - 1)$}(-1) =& & &-& 3x^{2}& \multicolumn{1}{l|}{{}+ 3x + 1} \\
+\cline{2-6}
+ & 3x^{4}&{} - 6x^{3}& & & \multicolumn{1}{l|}{{}+ 3x + 1}&{} - 3x^{4} + 6x^{3} - 3x - 1 \\
+\cline{7-7}
+\end{array}
+\]
+\end{Soln}
+
+\begin{Remark}[Note.] The root is placed \emph{above} the given expression because
+there is no room for it on the page at the right of the expression.
+
+The first term of the root,~$x^{2}$, is obtained by taking the cube root
+of the first term of the given expression; and the first trial-divisor,~$3x^{4}$,
+is obtained by taking three times the square of this term.
+
+The next term of the root is found by dividing~$-3x^{5}$, the first term
+of the remainder after~$x^{6}$ is subtracted, by~$3x^{4}$, and the first complete
+divisor, $3x^{4} - 3x^{3} + x^{2}$, is found by annexing to the trial divisor
+$(3x^{2} - x)(-x)$, which expression corresponds to $(3a + b)b$ in the
+typical form.
+
+\emph{The part of the root already found}~($a$) is now represented by $x^{2} - x$,
+therefore $3a^{2}$~is represented by $3(x^{2} - x)^{2} = 3x^{4} - 6x^{3} + 3x^{2}$, the
+second trial divisor\Add{,} and $(3a + b)b$ by $(3x^{2} - 3x - 1)(-1)$, since $b$~in
+this case is found to be~$-1$, therefore, in the second complete
+divisor, $3a^{2} + (3a + b)b$ is represented by
+\[
+(3x^{4} - 6x^{3} + 3x^{2}) + (3x^{2} - 3x - 1)(-1) = 3x^{4} - 6x^{3} + 3x + 1.
+\]
+\end{Remark}
+%% -----File: 165.png---Folio 159-------
+
+\Exercise{80.}
+
+Find the cube root of
+
+\Item{1.} $x^{3} + 3x^{2} y + 3xy^{2} + y^{3}$\Add{.}
+
+\Item{2.} $8x^{3} - 12x^{2} + 6x - 1$.
+
+\Item{3.} $8x^{3} - 36x^{2} y + 54xy^{2} - 27y^{3}$.
+
+\Item{4.} $64a^{3} - 144a^{2} x + 108ax^{2} - 27x^{3}$\Add{.}
+
+\Item{5.} $1 + 3x + 6x^{2} + 7x^{3} + 6x^{4} + 3x^{5} + x^{6}$.
+
+\Item{6.} $x^{6} - 3x^{5} + 6x^{4} - 7x^{3} + 6x^{2} - 3x + 1$.
+
+\ScreenBreak
+\Paragraph{187. Arithmetical Cube Roots.} In extracting the cube root
+of a number expressed by figures, the first step is to mark
+it off into groups\Add{.}
+
+Since $1 = 1^{3}$, $1000 = 10^{3}$, $1,000,000 = 100^{3}$, and so on, it
+follows that the cube root of any number between $1$~and
+$1000$, that is, of any number which has \emph{one}, \emph{two}, or \emph{three}
+figures, is a number of \emph{one} figure, and that the cube root
+of any number between $1000$ and $1,000,000$, that is, of any
+number which has \emph{four}, \emph{five}, or \emph{six} figures, is a number of
+\emph{two} figures, and so on.
+
+If, therefore, an integral cube number be divided into
+groups of three figures each, from right to left, the number
+of figures in the root will be equal to the number of groups\Add{.}
+The last group to the left may consist of one, two, or three
+figures.
+
+\Paragraph{188.} If the cube root of a number have decimal places,
+the number itself will have \emph{three times} as many. Thus, if
+$0.11$ be the cube root of a number\Add{,} the number is $0.11 × 0.11
+x 0.11 = 0.001331$. Hence\Add{,} if a given number contain a
+decimal, we divide the figures of the number into groups
+of three figures each, by beginning at the decimal point
+and marking toward the left for the integral number, and
+%% -----File: 166.png---Folio 160-------
+toward the right for the decimal. We must be careful to
+have the last group on the right of the decimal point contain
+\emph{three} figures, annexing ciphers when necessary.
+
+\ScreenBreak
+Extract the cube root of~$42875$.
+\begin{Soln}
+\[
+\begin{array}{rrrlll}
+ & & & 42&875&(35 \\
+ & & a^{3} =& 27 \\
+\cline{4-5}
+3a^{2} =& 3 × 30^{2} =& \TbBar{2700} & 15&875 \\
+ 3ab =& 3 × (30 × 5) =& \TbBar{450} \\
+ b^{2} =& 5^{2} =& \TbBar{25} \\
+\cline{3-3}
+ & & \TbBar{3175} & 15&875 \\
+\cline{4-5}
+\end{array}
+\]
+
+Since $42875$ has two groups, the root will have two figures.
+
+The first group, $42$, contains the cube of the tens of the root.
+
+The greatest cube in~$42$ is~$27$, and the cube root of~$27$ is~$3$. Hence
+$3$~is the tens' figure of the root.
+
+We subtract $27$ from~$42$, and bring down the next group,~$875$.
+Since $a$~is $3$~tens or~$30$, $3a^{2} = 3 × 30^{2}$, or~$2700$. This trial-divisor is
+contained $5$~times in~$15875$. The trial-divisor is completed by adding
+$3ab + b^{2}$; that is, $450 + 25$, to the trial-divisor.
+\end{Soln}
+
+\Paragraph{189.} The same method will apply to numbers of more
+than two groups of figures, by considering in each case~$a$,
+the part of the root already found, as so many tens with
+respect to the next figure of the root.
+
+\PrintStretch{12pt}
+Extract the cube root of~$57512456$.
+\begin{Soln}
+\[
+\begin{array}{*{3}{r}*{4}{l}}
+ & & & 57&512&456&(386 \\
+ & & a^{3} =& 27 \\
+\cline{4-5}
+3a^{2} =& 3 × 30^{2} =& \TbBar{2700} & 30&512 \\
+ 3ab =& 3 × (30 × 8) =& \TbBar{720} \\
+ b^{2} =& 8^{2} =& \TbBar{64} \\
+\cline{3-3}
+ & & \TbBar{3484} & 27&872 \\
+\cline{4-6}
+ & & \TbBar{} & \Z2&640&456 \\
+3a^{2} =& 3 × 380^{2} =& \TbBar{433200} \\
+ 3ab =& 3 × (380 × 6) =& \TbBar{6840} \\
+ b^{2} =& 6^{2} =& \TbBar{36} \\
+\cline{3-3}
+ & & \TbBar{440076} & \Z2&640&456 \\
+\cline{4-6}
+\end{array}
+\]
+\end{Soln}
+%% -----File: 167.png---Folio 161-------
+
+Extract the cube root of~$187.149248$.
+\begin{Soln}
+\[
+\begin{array}{*{3}{r}@{}*{4}{r}l}
+ & & & \multicolumn{2}{r}{187\rlap{.}}&149&248&(5.72 \\
+ & & a^{3} =& \multicolumn{2}{r}{125} \\
+\cline{4-6}
+3a^{2} =& 3 × 50^{2} =& \TbBar{7500}&& 62&149 \\
+ 3ab =& 3 × (50 × 7) =& \TbBar{1050} \\
+ b^{2} =& 7^{2} =& \TbBar{49} \\
+\cline{3-3}
+ & & \TbBar{8599}&& 60&193 \\
+\cline{4-7}
+ & & & \TbBar{}& 1&956&248 \\
+3a^{2} =& 3 × 570^{2} =& 9747&\TbBar{00} \\
+ 3ab =& 3 × (570 × 2) =& 34&\TbBar{20} \\
+ b^{2} =& 2^{2} =& & \TbBar{4} \\
+\cline{3-4}
+ & & 9781&\TbBar{24}& 1&956&248 \\
+\cline{5-7}
+\end{array}
+\]
+
+It will be seen from the groups of figures that the root will have
+one integral and two decimal places.
+\end{Soln}
+
+\Paragraph{190.} If the given number is not a perfect cube, ciphers
+may be annexed, and a value of the root may be found as
+near to the \emph{true} value as we please.
+
+Extract the cube root of~$1250.6894$.
+\begin{Soln}
+\[
+\begin{array}{rrrcclll}
+ & & & &1&\multicolumn{3}{l}{\rlap{250.689\,400\,(10.77}} \\
+ & & a^{3} &=&1 \\
+\cline{4-6}
+3a^{2} =& \PadTo{3 × (1070 × 7)}{3 × 10^{2}} =& \TbBar{\Z\Z300}& && 250 & \phantom{999} & \phantom{999} \\
+\end{array}
+\]
+Since $300$ is not contained in~$250$, the next figure of the root will
+be~$0$.
+\[
+\begin{array}{rrr@{}ccrll}
+3a^{2} =& 3 × 100^{2} =& \TbBar{30000}& &\Z&250&689 \\
+ 3ab =& 3 × (100 × 7) =& \TbBar{2100} \\
+ b^{2} =& 7^{2} =& \TbBar{49} \\
+\cline{3-3}
+ & & \TbBar{32149}& && 225&043 \\
+\cline{4-8}
+ & & &\TbBar{}&& 25&646&400 \\
+3a^{2} =& 3 × 1070^{2} =& 34347&\TbBar{00} \\
+ 3ab =& 3 × (1070 × 7) =& 224&\TbBar{70} \\
+ b^{2} =& 7^{2} =& &\TbBar{49} \\
+\cline{3-4}
+ & & 34572&\TbBar{19}&& 24&200&533 \\
+\cline{5-8}
+ & & & && 1&445&867 \\
+\end{array}
+\]
+\end{Soln}
+%% -----File: 168.png---Folio 162-------
+
+\Paragraph{191.} Notice that if $a$~denotes the first term, and $b$~the
+second term of the root, the \emph{first complete divisor} is
+\[
+3a^{2} + 3ab + b^{2},
+\]
+and the \emph{second trial-divisor} is $3(a + b)^{2}$, that is,
+\[
+3a^{2} + 6ab + 3b^{2}.
+\]
+
+This expression may be obtained by adding to the preceding
+complete divisor, $3a^{2} + 3ab + b^{2}$, \emph{its second term and
+twice its third term}. Thus:
+\[
+\begin{array}{rr}
+3a^{2} + 3ab + & b^{2} \\
+ 3ab + &2b^{2} \\
+\cline{1-2}
+3a^{2} + 6ab + &3b^{2} \\
+\end{array}
+\]
+
+This method of obtaining \emph{trial-divisors} is of great importance
+for shortening numerical work, as may be seen in the
+following example:
+
+Ex. Extract the cube root of~$5$ to five places of decimals.
+\begin{Soln}
+\[
+\begin{array}{rrr@{}r@{}rcrrl}
+ & & & &&5\rlap{.}&\multicolumn{3}{l}{000\,(1.70997} \\
+ & && \multicolumn{3}{r}{a^{3} = 1} \\
+\cline{4-7}
+3a^{2} =& 3 × 10^{2} =& 300&\TbBar{}&&4&000 \\
+ 3ab =& 3(10 × 7) =& 210&\TbBar{} \\
+ b^{2} =& 7^{2} =& 49&\TbBar{}\\
+\cline{3-3}
+ & & 559&\TbBar{\BB}&&3&913 \\
+\cline{5-9}
+ & & 259& & &\TbBar{}& 87& 000& 000 \\
+\cline{3-5}
+3a^{2} =& 3 × 1700^{2} =& 867&00&00&\TbBar{} \\
+ 3ab =& 3(1700 × 9) =& 4&59&00&\TbBar{} \\
+ b^{2} =& 9^{2} =& & &81&\TbBar{} \\
+\cline{3-5}
+ & & 871&59&81&\TbBar{\BB}& 78& 443& 829 \\
+\cline{7-9}
+ & & 4&59&81&\TbBar{}& 8& 556& 1710 \\
+\cline{3-5}
+3a^{2} =& 3 × 1709^{2} =& 876&20&43&\TbBar{}& 7& 885& 8387 \\
+\cline{7-9}
+ & & & & &\TbBar{}& & 670& 33230 \\
+ & & & & &\TbBar{}& & 613& 34301 \\
+\cline{7-9}
+\end{array}
+\]
+%% -----File: 169.png---Folio 163-------
+
+After the first two figures of the root are found, the next trial-divisor
+is obtained by bringing down~$259$, the sum of the $210$ and $49$
+obtained in completing the preceding divisor, then \emph{adding the three
+lines connected by the brace}, and annexing two ciphers to the result.
+
+This trial divisor is~$86,700$, and if we add $3ab + b^{2}$ to complete the
+divisor, when $b = 1$, the complete divisor will be $86,700 + 511 = 87,211$,
+and this is larger than the dividend~$87,000$. We therefore put $0$ for
+the next figure of the root. We then bring down another group
+and annex two more ciphers to the trial-divisor.
+
+The last two figures of the root are found by division. The rule
+in such cases is, that two less than the number of figures already
+obtained may be found without error by division, the divisor being
+three times the square of the part of the root already found.
+\end{Soln}
+
+\Paragraph{192.} The cube root of a common fraction whose denominator
+is not a perfect cube can be found approximately by
+reducing the fraction to a decimal, and then extracting
+the root.
+
+\Exercise{81.}
+
+Find the cube root of:
+\begin{multicols}{2}
+\Item{1.} $46,656$.
+
+\Item{2.} $42,875$.
+
+\Item{3.} $91,125$.
+
+\Item{4.} $274,625$.
+
+\Item{5.} $110,592$.
+
+\Item{6.} $258,474,853$.
+
+\Item{7.} $109,215,352$.
+
+\Item{8.} $259,694,072$.
+
+\Item{9.} $127,263,527$.
+
+\Item{10.} $385,828,352$.
+
+\Item{11.} $1879.080904$.
+
+\Item{12.} $1838.265625$.
+\end{multicols}
+
+Find to four decimal places the cube root of:
+\begin{multicols}{4}
+\Item{13.} $0.01$.
+
+\Item{14.} $0.05$.
+
+\Item{15.} $0.2$.
+
+\Item{16.} $4$.
+
+\Item{17.} $10$.
+
+\Item{18.} $87$.
+
+\Item{19.} $2.5$.
+
+\Item{20.} $2.05$.
+
+\Item{21.} $3.02$.
+
+\Item{22.} $\frac{2}{3}$.
+
+\Item{23.} $\frac{3}{4}$.
+
+\Item{24.} $\frac{9}{11}$.
+\end{multicols}
+%% -----File: 170.png---Folio 164-------
+%[Blank Page]
+%% -----File: 171.png---Folio 165-------
+
+
+\Answers
+
+\AnsTo[7]{Exercise}{1.} % Page 10.
+
+\Item{1.} $14$.
+
+\Item{2.} $10$.
+
+\Item{3.} $13$.
+
+\Item{4.} $11$.
+
+\Item{5.} $13$.
+
+\Item{6.} $7$.
+
+\Item{7.} $9$.
+
+\Item{8.} $7$.
+
+\Item{9.} $6$.
+
+\Item{10.} $2$.
+
+\Item{11.} $3$.
+
+\Item{12.} $6$.
+
+\Item{13.} $2$.
+
+\Item{14.} $8$.
+
+\Item{15.} $4$.
+
+\Item{16.} $3$.
+
+\Item{17.} $1$.
+
+\Item{18.} $1$.
+
+\Item{19.} $3$.
+
+\Item{20.} $4$.
+
+\Item{21.} $10$.
+
+
+\AnsTo[7]{Exercise}{2.} % Page 12.
+
+\Item{1.} $91$.
+
+\Item{2.} $21$.
+
+\Item{3.} $60$.
+
+\Item{4.} $24$.
+
+\Item{5.} $96$.
+
+\Item{6.} $16$.
+
+\Item{7.} $36$.
+
+\ResetCols[3]
+\Item{8.} $4a + 4b$.
+
+\Item{9.} $4a - 4b$.
+
+\Item{10.} $2a^{2} + 2b^{2}$.
+
+\Item{11.} $2a^{2} - 2b^{2}$.
+
+\Item{12.} $3ab + 3c$.
+
+\Item{13.} $3ab - 3c$.
+
+\Item{14.} $3c - 3ab$.
+
+\Item{15.} $ab + ac$.
+
+\Item{16.} $ab - ac$.
+
+\Item{17.} $3ab + 3ac$.
+
+\Item{18.} $3ab - 3ac$.
+
+\Item{19.} $5ab^{2} + 5ac$.
+
+\Item{20.} $5ab^{2} - 5ac^{2}$.
+
+\Item{21.} $5a^{2}b^{2} - 5a^{2}c$.
+
+
+\AnsTo[5]{Exercise}{3.} % Page 12.
+
+\Item{1.} $63$.
+
+\Item{2.} $280$.
+
+\Item{3.} $300$.
+
+\Item{4.} $98$.
+
+\Item{5.} $81$.
+
+\Item{6.} $1250$.
+
+\Item{7.} $105$.
+
+\Item{8.} $105$.
+
+\Item{9.} $315$.
+
+\Item{10.} $35$.
+
+\Item{11.} $105$.
+
+\Item{12.} $105$.
+
+\Item{13.} $0$.
+
+\Item{14.} $135$.
+
+\Item{15.} $120$.
+
+\Item{16.} $0$.
+
+\Item{17.} $1800$.
+
+\Item{18.} $540$.
+
+\Item{19.} $0$.
+
+\Item{20.} $270$.
+
+\Item{21.} $540$.
+
+
+\AnsTo[6]{Exercise}{4.} % Page 13.
+
+\Item{1.} $21$.
+
+\Item{2.} $26$.
+
+\Item{3.} $72$.
+
+\Item{4.} $85$.
+
+\Item{5.} $30$.
+
+\Item{6.} $17$.
+
+\Item{7.} $8$.
+
+\Item{8.} $50$.
+
+\Item{9.} $24$.
+
+\Item{10.} $0$.
+
+\Item{11.} $12$.
+
+\Item{12.} $100$.
+
+\Item{13.} $80$.
+
+\Item{14.} $71$.
+
+\Item{15.} $139$.
+
+\Item{16.} $17$.
+
+\Item{17.} $8$.
+
+\Item{18.} $5$.
+
+\Item{19.} $3$.
+
+\Item{20.} $6$.
+
+\Item{21.} $5$.
+
+\Item{22.} $1$.
+
+\Item{23.} $2$.
+
+\Item{24.} $2$.
+
+
+\AnsTo{Exercise}{5.} % Page 14.
+
+\Item{1.} $a$~plus~$b$; $a$~minus~$b$; $a$~times~$b$; $a$~divided by~$b$.
+
+\Item{3.} $a + b$.
+
+\Item{5.} $a - b$.
+
+\Item{7.} $x - y$.
+
+\Item{9.} $4x$; $x^{4}$.
+
+\Item{11.} $35 - x$.
+
+\Item{12.} $x - a$.
+
+\Item{14.} $14 - x$.
+
+\Item{15.} $a - x$.
+
+\Item{17.} $xy$.
+
+\Item{18.} $\dfrac{x}{y}$.
+%% -----File: 172.png---Folio 166-------
+
+
+\AnsTo[2]{Exercise}{6.} % Page 15.
+
+\Item{2.} $\dfrac{a}{b}$.
+
+\Item{4.} $(x - 3)$~yr.; $(x + 7)$~yr.
+
+\Item{6.} $7(2x - y)$.
+
+\Item{8.} $x + 1$; $x - 1$.
+
+\Item{9.} $20 - d$.
+
+\Item{11.} $x + 8$.
+
+\Item{13.} $x - 10$.
+
+\Item{14.} $10$.
+
+
+\AnsTo[2]{Exercise}{7.} % Page 16.
+
+\Item{1.} $(40 - x)$~yr.
+
+\Item{2.} $(a + y)$~yr.
+
+\Item{3.} $4$.
+
+\Item{5.} $ab$.
+
+\Item{6.} $5x - 3x$.
+
+\Item{8.} $2x - 3 - (x + 1)$.
+
+\Item{9.} $40$.
+
+\Item{10.} $12$.
+
+\Item{11.} $100a + 25b + 10c$.
+
+\Item{12.} $100 - x - y$.
+
+\Item{14.} $xy + c$.
+
+
+\AnsTo[2]{Exercise}{8.} % Page 17.
+
+\Item{2.} $xy - a^{2}$.
+
+\Item{3.} $\dfrac{ph}{gk}$.
+
+\Item{4.} $6m^{2} + 5c(d + b - a)$.
+
+\Item{5.} $5(2n + 1) - 6(c - a + b)$.
+
+\Item{6.} \$$100 - \text{\$}(a + b + 2c)$.
+
+\Item{8.} $\dfrac{1}{x}$.
+
+\Item{9.} $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}$.
+
+\ResetCols[1]
+\Item{10.} $n + (n + 1) + (n + 2)$; $n(n + 1)(n + 2)$.
+
+\ResetCols[4]
+\Item{11.} $\dfrac{36}{x}$.
+
+\Item{12.} $qd$.
+
+\Item{13.} $qd + r$.
+
+\Item{14.} $2x$.
+
+\Item{15.} $\dfrac{10x}{12}$.
+
+\Item{16.} $\dfrac{6a}{b}$.
+
+\Item{17.} $4m$.
+
+\Item{18.} $x + 17$.
+
+\Item{19.} $x + y + c$.
+
+\Item{20.} $36x$.
+
+\Item{21.} $\dfrac{c}{4}$.
+
+\Item{22.} $x - 1$, $x$, $x + 1$.
+
+\Item{23.} $2n + 3$.
+
+
+\AnsTo[5]{Exercise}{9.} % Page 24.
+
+\Item{1.} $4$.
+
+\Item{2.} $5$.
+
+\Item{3.} $3$.
+
+\Item{4.} $1$.
+
+\Item{5.} $13$.
+
+\Item{6.} $0$.
+
+\Item{7.} $5$.
+
+\Item{8.} $5$.
+
+\Item{9.} $7$.
+
+\Item{10.} $4$.
+
+\Item{11.} $4$.
+
+\Item{12.} $1$.
+
+\Item{13.} $25$.
+
+\Item{14.} $32\frac{1}{2}$.
+
+\Item{15.} $6$.
+
+\Item{16.} $10$.
+
+\Item{17.} $3$.
+
+\Item{18.} $1$.
+
+\Item{19.} $7$.
+
+\Item{20.} $13$.
+
+\Item{21.} $12$.
+
+\Item{22.} $14$.
+
+\Item{23.} $7$.
+
+\Item{24.} $5$.
+
+\Item{25.} $0$.
+
+\Item{26.} $15$.
+
+\Item{27.} $10\frac{1}{2}$.
+
+\Item{28.} $4$.
+
+\Item{29.} $3$.
+
+\Item{30.} $4$.
+
+\Item{31.} $\frac{2}{5}$.
+
+\Item{32.} $6$.
+
+\Item{33.} $9$.
+
+\Item{34.} $7$.
+
+\Item{35.} $5$.
+
+\Item{36.} $6$.
+
+\Item{37.} $6$.
+
+
+\AnsTo[2]{Exercise}{10.} % Page 27.
+
+\Item{1.} $30$.
+
+\Item{2.} Son, $10$~yr.; father, $50$~yr.
+
+\Item{3.} $78$, $13$.
+
+\Item{4.} $80$~ft.\ broken off; $10$~ft.\ standing.
+
+\Item{5.} $23$, $30$.
+
+\Item{6.} $36$, $48$.
+
+\Item{7.} $15$, $20$.
+
+\Item{8.} $20$.
+
+\Item{9.} $12$.
+
+\Item{10.} $10$, $40$.
+
+\Item{11.} $26$, $10$.
+
+\Item{12.} $25$, $15$.
+
+\Item{13.} $10$, $20$.
+
+\Item{14.} $7$, $20$.
+
+\Item{15.} $12$, $20$.
+%% -----File: 173.png---Folio 167-------
+
+
+\AnsTo{Exercise}{11.} % Page 29.
+
+\Item{1.} Cow, \$$42$; horse, \$$168$.
+
+\Item{2.} $81$.
+
+\Item{3.} $2$.
+
+\Item{4.} $30$, $40$.
+
+\Item{5.} $25$, $26$, $27$.
+
+\Item{6.} $5$, $6$, $7$, $8$, $9$.
+
+\Item{7.} A, $30$~yr.; B, $10$~yr.
+
+\Item{8.} Father, $40$~yr., son, $10$~yr.
+
+\Item{9.} $40$.
+
+\Item{10.} $10$.
+
+\Item{11.} \$$40$.
+
+\Item{12.} $9$.
+
+
+\AnsTo[2]{Exercise}{12.} % Page 30.
+
+\Item{1.} $15$~men; $30$~women; $45$~children.
+
+\Item{2.} $50$.
+
+\Item{3.} $16$.
+
+\Item{4.} $7$.
+
+\Item{5.} $35$.
+
+\Item{6.} $24$.
+
+\Item{7.} $24$.
+
+\Item{8.} $20$.
+
+\Item{9.} $970$; $1074$.
+
+
+\AnsTo[2]{Exercise}{13.} % Page 31.
+
+\Item{1.} $24$.
+
+\Item{2.} A, \$$60$; B, \$$30$.
+
+\Item{3.} \$$3$~quarters; $6$~bills.
+
+\Item{4.} $14$.
+
+\Item{5.} \$$4$~quarters; $20$~half-dollars.
+
+\Item{6.} \$$7$~ten-dollar bills; $21$~one-dollar bills.
+
+\Item{7.} Father, $32$~yr.; son, $8$~yr.
+
+\Item{8.} $20$.
+
+
+\AnsTo[2]{Exercise}{14.} % Page 32.
+
+\Item{1.} $9$~miles.
+
+\Item{2.} \$$60$.
+
+\Item{3.} \$$20$~lb.\ at $65$~cts.;
+ $60$~lb.\ at $45$~cts.
+
+\Item{4.} $40$.
+
+\Item{5.} $15,000$.
+
+\Item{6.} $15$~in.; $21$~in.
+
+\Item{7.} \$$2$~doz.\ at $25$~cts.;
+ $5$~doz.\ at $20$~cts.
+
+\Item{8.} \$$6$~quarters, $18$~ten-cent pieces.
+
+
+\AnsTo[4]{Exercise}{15.} % Page 39.
+
+\Item{1.} $40c$.
+
+\Item{2.} $24a$.
+
+\Item{3.} $39x$.
+
+\Item{4.} $51y$.
+
+\Item{5.} $-26a$.
+
+\Item{6.} $-40x$.
+
+\Item{7.} $-17b$.
+
+\Item{8.} $-66z$.
+
+\Item{9.} $-20m$.
+
+\Item{10.} $2d$.
+
+\Item{11.} $0$.
+
+\Item{12.} $-18g$.
+
+\Item{13.} $a^{2}$.
+
+\Item{14.} $-21x^{3}$.
+
+\Item{15.} $0$.
+
+\Item{16.} $3mn$.
+
+\Item{17.} $0$.
+
+\Item{18.} $-3a^{3}b^{3}c^{3}$.
+
+\Item{19.} $-9abcd$.
+
+\Item{20.} $1$.
+
+\Item{21.} $12$.
+
+\Item{22.} $4$.
+
+\Item{23.} $-18$.
+
+\Item{24.} $10$.
+%% -----File: 174.png---Folio 168-------
+
+
+\AnsTo{Exercise}{16.} % Page 42.
+
+\Item{1.} $30a^{5}$.
+
+\Item{2.} $40a^{4}b^{3}$.
+
+\Item{3.} $63x^{2}y^{2}$.
+
+\Item{4.} $2a^{5}b^{5}c^{2}$.
+
+\Item{5.} $9a^{7}b^{9}c^{9}$.
+
+\Item{6.} $-10a^{2}$.
+
+\Item{7.} $12ab$.
+
+\Item{8.} $-a^{4}b^{3}$.
+
+\Item{9.} $10a^{5}b^{5}c$.
+
+\Item{10.} $12x^{7}y^{5}z^{2}$.
+
+\Item{11.} $105a^{7}b^{5}$.
+
+\Item{12.} $6a^{6}b^{5}c^{7}$.
+
+\Item{13.} $-12a^{5}b^{5}c^{5}x^{5}$.
+
+\Item{14.} $24a^{7}b^{6}c^{5}$.
+
+\Item{15.} $-42a^{6}m^{5}x^{7}$.
+
+\Item{16.} $30x^{8}y^{4}z^{6}$.
+
+\Item{17.} $-46$.
+
+\Item{18.} $-3$.
+
+\Item{19.} $-8$.
+
+\Item{20.} $-17$.
+
+\Item{21.} $9$.
+
+\Item{22.} $12$.
+
+\Item{23.} $-102$.
+
+\Item{24.} $-41$.
+
+\Item{25.} $174$.
+
+\Item{26.} $6$.
+
+\Item{27.} $30$.
+
+\Item{28.} $372$.
+
+
+\AnsTo[4]{Exercise}{17.} % Page 45.
+
+\Item{1.} $x^{2}$.
+
+\Item{2.} $3x^{2}$.
+
+\Item{3.} $-7$.
+
+\Item{4.} $-7$.
+
+\Item{5.} $7x^{4}$.
+
+\Item{6.} $9x$.
+
+\Item{7.} $-4a$.
+
+\Item{8.} $4x^{2}y^{2}$.
+
+\Item{9.} $-9x$.
+
+\Item{10.} $5x$.
+
+\Item{11.} $3y^{2}$.
+
+\Item{12.} $-4ab^{2}$.
+
+\Item{13.} $12xy^{4}$.
+
+\Item{14.} $\dfrac{3x^{3}y^{3}}{5}$.
+
+\Item{15.} $-\dfrac{3a}{2}$.
+
+\Item{16.} $-bd$.
+
+\Item{17.} $acd^{2}$.
+
+\Item{18.} $-\dfrac{2xy}{3}$.
+
+\Item{19.} $5ab$.
+
+\Item{20.} $4mn$.
+
+\Item{21.} $\dfrac{yz^{3}}{3}$.
+
+\Item{22.} $-17cd$.
+
+\Item{23.} $2n^{2}p$.
+
+\Item{24.} $\dfrac{3r^{2}}{p}$.
+
+\Item{25.} $-13agt$.
+
+\Item{26.} $\dfrac{1}{abc}$.
+
+\Item{27.} $\dfrac{3}{2xy^{2}z^{3}}$.
+
+\Item{28.} $\dfrac{2}{mnp}$.
+
+\Item{29.} $-\dfrac{a}{3b^{2}}$.
+
+\Item{30.} $-\dfrac{g}{3mt}$.
+
+
+\AnsTo[2]{Exercise}{18.} % Page 48.
+
+\Item{1.} $2a^{2} + 2b^{2}$.
+
+\Item{2.} $9a^{2} - 2a + 6$.
+
+\Item{3.} $0$.
+
+\Item{4.} $4x + 4y + 4z$.
+
+\Item{5.} $2b + 2c$.
+
+\Item{6.} $4a + 4b + 4c$.
+
+\Item{7.} $3a^{2} + 5a - 2$.
+
+\Item{8.} $8ab + 3ac$.
+
+\Item{9.} $6x^{3}$.
+
+\Item{10.} $5x^{2} + 3xy - 2y^{2}$.
+
+\Item{11.} $a^{2} - 2b^{2}$.
+
+\Item{12.} $4a^{3} + 6a + 2$.
+
+\Item{13.} $3m^{3} + 7m^{2} + 2$.
+
+\Item{14.} $2x^{3} - 2x^{2} + 4x + y$.
+
+\Item{15.} $7x^{3} + 7x^{2} + 2$.
+
+\Item{16.} $a^{3} + 3a^{2}b - 5ab^{2} - b^{3}$.
+
+\Item{17.} $-a^{3} - a^{2}b - 2ab^{2} - 2b^{3}$.
+
+\Item{18.} $2x^{3} + 2x^{2}y - xy^{2} + 6y^{3}$.
+%% -----File: 175.png---Folio 169-------
+
+
+\AnsTo[2]{Exercise}{19.} % Page 50.
+
+\Item{1.} $a - b + c$.
+
+\Item{2.} $2a - 2b + 6c$.
+
+\Item{3.} $2a + 3y -8z$.
+
+\Item{4.} $x + 4y + 5z$.
+
+\Item{5.} $2ac + 2bc$.
+
+\Item{6.} $2ab - 3ac + 4bc$.
+
+\Item{7.} $x^{3} + 3x^{2} + 2x - 8$.
+
+\Item{8.} $x^{3} - 7x^{2} + 4x$.
+
+\Item{9.} $2b^{3} + 18abc - 15c^{3}$.
+
+\Item{10.} $2 - x - 2x^{2} + 2x^{3}$.
+
+\Item{11.} $-3b^{3} - 4c^{3} + 6abc$.
+
+\Item{12.} $-x^{4} - 2x^{3} + 4x^{2} - 7x + 5$.
+
+\Item{13.} $2x + x^{2} + x^{3} + x^{5}$.
+
+\Item{14.} $2b^{3} - 4a^{2}b + 2ab^{2}$.
+
+\Item{15.} $2b^{4} - 2a^{3}b^{3} - ab^{2}$.
+
+\Item{16.} $4x^{3} - 3x^{2}y - 4xy^{2} + 7y^{3}$.
+
+
+\AnsTo{Exercise}{20.} % Page 52.
+
+\Item{1.} $c$.
+
+\Item{2.} $y - b$.
+
+\Item{3.} $x - 3y - 7c$.
+
+\Item{4.} $7a + 2b-2$.
+
+\Item{5.} $2a + x$.
+
+\Item{6.} $13x - 15y + 13z$.
+
+\Item{7.} $2a - 2b + 2c$.
+
+\Item{8.} $5a + b - 4c$.
+
+\Item{9.} $4x - 5y + 2z$.
+
+\Item{10.} $3a - b$.
+
+\Item{11.} $2x + 3y + z$.
+
+\Item{12.} $-8x + y$.
+
+\Item{13.} $6z - 2y-z$.
+\ResetCols
+
+\Item{15.} $(a + c)x - (a - b)y + (a - c)z$.
+
+\Item{16.} $(2a + 5c)x - (3a + 4b)y - (6b + 7c)z$.
+
+\Item{17.} $(ac - an)x - (bm + cn)y + (a + 3c)z$.
+
+\Item{18.} $(mn - 1)x - (mn + 1)y + (mn + 1)z$.
+
+
+\AnsTo[2]{Exercise}{21.} % Page 53.
+
+\Item{1.} $x^{2} + 7x$.
+
+\Item{2.} $8x^{2} - 12xy$.
+
+\Item{3.} $14xy - 21y^{2}$.
+
+\Item{4.} $2ax - 4a^{2}$.
+
+\Item{5.} $bx - 3b^{2}$.
+
+\Item{6.} $-6a^{3} + 9a^{2}b$.
+
+\Item{7.} $10x^{2}z + 15xz^{2}$.
+
+\Item{8.} $5a^{3}b - 25a^{2}b^{2}$.
+
+\Item{9.} $-x^{2}y^{2} + 3xy^{3}$.
+
+\Item{10.} $4x^{5} - 6x^{4}$.
+
+\Item{11.} $4x^{2}y - 12y^{3}$.
+
+\Item{12.} $-x^{4} + 3x^{2}y^{2}$.
+
+\Item{13.} $-a^{3}b^{3} + a^{5}b^{2}$.
+
+\Item{14.} $a^{4}b^{2} + a^{5}$.
+
+\Item{15.} $4x^{5} - 6x^{4} + 2x^{3}$.
+
+\Item{16.} $5a^{3}b - 25a^{2}b^{2} - 5ab^{3}$.
+
+\Item{17.} $a^{5} + 2a^{4}b + 2a^{3}b^{2}$.
+
+\Item{18.} $a^{3}b^{3} + 2a^{2}b^{4} + 2ab^{5}$.
+
+\Item{19.} $8x^{3} - 12x^{2}y - 18xy^{2}$.
+
+\Item{20.} $x^{2}y + 2xy^{2} - y^{3}$.
+
+\Item{21.} $a^{5} + a^{4}b^{2} + a^{2}b^{3}$.
+
+\Item{22.} $x^{2}y^{2} - 2xy^{3} + y^{4}$.
+
+\Item{23.} $15a^{4}b^{4} - 20a^{3}b^{5} + 5a^{5}b^{3}$.
+
+\Item{24.} $3a^{2}x^{2}y^{2} - 9a^{2}xy^{4} + 3a^{2}y^{6}$.
+
+\Item{25.} $x^{15}y^{2} - x^{13}y^{5} - x^{6}y^{12}$.
+
+\Item{26.} $4x^{5}y^{3} - 6x^{4}y^{5} + 4x^{3}y^{6}$.
+
+\Item{27.} $a^{10}x^{5}y^{10} - a^{9}x^{4}y^{9} - a^{8}x^{3}y^{8}$.
+
+\Item{28.} $15a^{4}b^{5} - 10a^{3}b^{6} + 25a^{5}b^{4}$.
+%% -----File: 176.png---Folio 170-------
+
+
+\AnsTo[2]{Exercise}{22.} % Page 56.
+
+\Item{1.} $x^{2} + 13x + 42$.
+
+\Item{2.} $x^{2} - x - 42$.
+
+\Item{3.} $x^{2} + x - 42$.
+
+\Item{4.} $x^{2} - 13x + 42$.
+
+\Item{5.} $x^{2} + 3x - 40$.
+
+\Item{6.} $4x^{2} + 12x + 9$.
+
+\Item{7.} $4x^{2} - 12x + 9$.
+
+\Item{8.} $4x^{2} - 9$.
+
+\Item{9.} $-9x^{2} + 12x - 4$.
+
+\Item{10.} $20x^{2} - 47x + 21$.
+
+\Item{11.} $a^{2} + ab - 6b^{2}$.
+
+\Item{12.} $a^{2} - 12ab + 35b^{2}$.
+
+\Item{13.} $25x^{2} - 30xy + 9y^{2}$.
+
+\Item{14.} $x^{2} - bx - cx + bc$.
+
+\Item{15.} $8m^{2} - 10mp + 3p^{2}$.
+
+\Item{16.} $a^{2} + ab - bc - c^{2}$.
+
+\Item{17.} $a^{4} - a^{3}b + 2a^{2}b^{2} - ab^{3} + b^{4}$.
+
+\Item{18.} $x^{5} - 3x^{4} - x^{3} + 16x^{2} - 21$.
+
+\Item{19.} $a^{3} - b^{3}$.
+
+\Item{20.} $a^{3} + b^{3}$.
+
+\Item{21.} $2x^{4} + 13x^{3} - 9x^{2} - 50x + 40$.
+
+\Item{22.} $9x^{5} - 7x^{3} + 6x^{2} - 2x$.
+
+\Item{23.} $x^{5} - 4x^{2}y^{3} + 3xy^{4}$.
+
+\Item{24.} $-a^{4} + 4a^{3}b - 7ab^{3} - 2b^{4}$.
+\ResetCols[1]
+
+\Item{25.} $-25a^{5}b^{3} + 20a^{4}b^{4} + 12a^{3}b^{5} - 5a^{2}b^{6} - 2ab^{7}$.
+
+\Item{26.} $a^{4} - 2a^{2}b^{2} + b^{4}$.
+
+\Item{27.} $a^{2}b^{2} + 2abcd - a^{2}c^{2} + c^{2}d^{2}$.
+
+\Item{28.} $-2x^{5}y^{3} + x^{4}y^{4} + 10x^{3}y^{5} - 8x^{2}y^{6} - 3xy^{7}$.
+
+\Item{29.} $x^{4} - 4x^{2}y^{2} + 4xy^{3} - y^{4}$.
+
+\Item{30.} $3x^{4} - 5x^{3}y - 12x^{2}y^{2} - xy^{3} + 3y^{4}$.
+
+\Item{31.} $-a^{4} + 6a^{2}b^{2} - b^{4}$.
+
+\Item{32.} $a^{4} - a^{3}c + ab^{2}c - b^{4} - 2b^{2}c^{2} + ac^{3} - c^{4}$.
+
+\Item{33.} $a^{4} - 16a^{2}b^{2}x^{2} + 32a^{3}b^{3}x^{3} - 16a^{4}b^{4}x^{4}$.
+
+\Item{34.} $6a^{4} + 5a^{3}bx - 10a^{2}b^{2}x^{2} + 7ab^{3}x^{3} - 2b^{4}x^{4}$.
+
+\Item{35.} $10x^{6}y^{2} + 14x^{5}y^{3} - 48x^{4}y^{4} + 32x^{3}y^{5} - 16x^{2}y^{6}$.
+
+
+\AnsTo{Exercise}{23.} % Page 58.
+
+\Item{1.} $2a^{2} - a$.
+
+\Item{2.} $7a^{4} - a$.
+
+\Item{3.} $7x^{2} + 1$.
+
+\Item{4.} $5m^{4} - p^{2}$.
+
+\Item{5.} $3x^{3} - 5x^{2}$.
+
+\Item{6.} $-3x^{3} + 1$.
+
+\Item{7.} $2x^{2} - 3x$.
+
+\Item{8.} $-x^{2} + 2$.
+
+\Item{9.} $a + 2c$.
+
+\Item{10.} $5x - y$.
+
+\Item{11.} $ax - 1$.
+
+\Item{12.} $x + xy$.
+
+\Item{13.} $-3a + 4b - 2c$.
+
+\Item{14.} $ab - b^{4} - a^{2}b$.
+
+\Item{15.} $x^{2} - 2xy - 3y^{2}$.
+
+\Item{16.} $xy - x^{2} - y^{2}$.
+
+\Item{17.} $-a^{2} + ab + b^{2}$.
+
+\Item{18.} $-a + 1 - b$.
+
+\Item{19.} $-1 + xy - x^{2}y^{2}$.
+
+\Item{20.} $x^{2} + 2x + 1$.
+
+\Item{21.} $a - b - c$.
+
+\Item{22.} $x^{3} - x^{2}y - y^{2}$.
+
+\Item{23.} $ab - 2 - 3b^{2}$.
+
+\Item{24.} $a^{2}c^{2} + a - c$.
+%% -----File: 177.png---Folio 171-------
+
+
+\AnsTo{Exercise}{24.} % Page 62.
+
+\Item{1.} $x + 8$.
+
+\Item{2.} $x - 8$.
+
+\Item{3.} $x + 8$.
+
+\Item{4.} $x - 8$.
+
+\Item{5.} $a + 5$.
+
+\Item{6.} $3a + 1$.
+
+\Item{7.} $a + 5$.
+
+\Item{8.} $-3a - 2$.
+
+\Item{9.} $x^{2} - x + 1$.
+
+\Item{10.} $x^{4} + x^{2} + 1$.
+
+\Item{11.} $1 + ab + a^{2}b^{2}$.
+
+\Item{12.} $x^{2} + 3x + 1$.
+
+\Item{13.} $a - b + c$.
+
+\Item{14.} $a + b - c$.
+
+\Item{15.} $x + y - z$.
+
+\Item{16.} $c^{2} + c + 2$.
+
+\Item{17.} $x - 2y - z$.
+
+\Item{18.} $x - a$.
+
+\Item{19.} $a - 2b + 3c$.
+
+\Item{20.} $a^{2} + 5a + 6$.
+
+\Item{21.} $q^{2} + 3q + 2$.
+
+\Item{22.} $9a^{2} + 6ab + 4b^{2}$.
+
+\Item{23.} $-65$.
+
+\Item{24.} $10$.
+
+\Item{25.} $7a - 45$.
+
+\Item{26.} $2x^{4}$.
+
+
+\AnsTo[1]{Exercise}{25.} % Page 63.
+
+\Item{1.} $2a^{2}$.
+
+\Item{2.} $-3a^{4} + 2a^{3}b - 2ab^{3} + 4b^{4}$.
+
+\Item{3.} $x$.
+
+\Item{4.} $a^{4} + 2a^{2}b^{2} + b^{4} - c^{4} + 2c^{2}d^{2} - d^{4}$.
+
+\Item{5.} $10y^{4} + 8y^{3} + 6y^{2} + 4y + 2$.
+
+\Item{6.} $0$.
+
+\Item{7.} $2z - 7y$.
+
+\Item{8.} $a^{3} - 3abc + b^{3} + c^{3}$.
+
+\Item{9.} $4y^{2} - 3xy + 2x^{2}$.
+
+\Item{10.} $5a^{3}b - b^{4}$.
+
+\Item{11.} $3x^{3} - 2x^{2} + 1$.
+
+\Item{12.} $3c^{2} + 24c - 12$.
+
+\Item{13.} $2b^{4}$.
+
+\Item{14.} $10 - 16x - 39x^{2} + 2x^{3} + 15x^{4}$.
+
+\Item{15.} $a^{4} - ax^{3} + x^{4}$.
+
+\Item{16.} $(a - b)x^{3} + (b + c)x^{2} - (c + 1)x$.
+
+\Item{17.} $(a + b)x^{4} - (a - b)x^{3} - (c + 2)x$.
+
+\Item{18.} $(a + 1)x^{3} - (b + c)x^{2} + (b - c)x$.
+
+
+\AnsTo[2]{Exercise}{26.} % Page 65.
+
+\Item{1.} $m^{2} + 2mn + n^{2}$.
+
+\Item{2.} $c^{2} - 2ac + a^{2}$.
+
+\Item{3.} $a^{2} + 4ac + 4c^{2}$
+
+\Item{4.} $9a^{2} - 12ab + 4b^{2}$.
+
+\Item{5.} $4a^{2} + 12ab + 9b^{2}$.
+
+\Item{6.} $a^{2} - 6ab + 9b^{2}$.
+
+\Item{7.} $4x^{2} - 4xy + y^{2}$.
+
+\Item{8.} $y^{2} - 4xy + 4x^{2}$.
+
+\Item{9.} $a^{2} + 10ab + 25b^{2}$.
+
+\Item{10.} $4a2 - 20ac + 25c^{2}$.
+
+\Item{11.} $x^{2} - y^{2}$.
+
+\Item{12.} $16a^{2} - b^{2}$.
+
+\Item{13.} $4b^{2} - 9c^{2}$.
+
+\Item{14.} $x^{2} + 10bx + 25b^{2}$.
+
+\Item{15.} $y^{2} - 4yz + 4z^{2}$.
+
+\Item{16.} $y^{2} - 9z^{2}$.
+
+\Item{17.} $4a^{2} - 9b^{2}$.
+
+\Item{18.} $4a^{2} - 12ab + 9b^{2}$.
+
+\Item{19.} $4a^{2} + 12ab + 9b^{2}$.
+
+\Item{20.} $25x^{2} - 9a^{2}$.
+%% -----File: 178.png---Folio 172-------
+
+
+\AnsTo[2]{Exercise}{27.} % Page 67.
+
+\Item{1.} $x^{2} + 11x + 28$.
+
+\Item{2.} $x^{2} + 4x - 21$.
+
+\Item{3.} $x^{2} - 6x + 8$.
+
+\Item{4.} $x^{2} - 16x + 60$.
+
+\Item{5.} $x^{2} + 3x - 28$.
+
+\Item{6.} $x^{2} - ax - 2a^{2}$.
+
+\Item{7.} $x^{2} + 2ax - 3a^{2}$.
+
+\Item{8.} $a^{2} + 6ac + 9c^{2}$.
+
+\Item{9.} $a^{2} - 2ax - 8x^{2}$.
+
+\Item{10.} $a^{2} - 7ab + 12b^{2}$.
+
+\Item{11.} $a^{4} + a^{2}c - 2c^{2}$.
+
+\Item{12.} $x^{2} - 20x + 51$.
+
+\Item{13.} $x^{2} + xy - 30y^{2}$.
+
+\Item{14.} $9 + 3x - 2x^{2}$.
+
+\Item{15.} $5 - 8x - 4x^{2}$.
+
+\Item{16.} $a^{2} + ab - 6b^{2}$.
+
+\Item{17.} $a^{4}b^{4} - 6a^{2}b^{2}x^{2} + 5x^{4}$.
+
+\Item{18.} $a^{6}b^{2} + 4a^{4}b^{4} - 5a^{2}b^{6}$.
+
+\Item{19.} $x^{4}y^{2} - 4x^{3}y^{3} + 3x^{2}y^{4}$.
+
+\Item{20.} $x^{4}y^{2} + 2x^{3}y^{3} + x^{2}y^{4}$.
+
+\Item{21.} $x^{2} + (a + b)x + ab$.
+
+\Item{22.} $x^{2} + (a - b)x - ab$.
+
+\Item{23.} $x^{2} - (a - b)x - ab$.
+
+\Item{24.} $x^{2} - (a + b)x + ab$.
+
+\Item{25.} $x^{2} + (2a + 2b)x + 4ab$.
+
+\Item{26.} $x^{2} - (2a - 2b)x - 4ab$.
+
+\Item{27.} $x^{2} + (2a - 2b)x - 4ab$.
+
+\Item{28.} $x^{2} - (2a + 2b)x + 4ab$.
+
+\Item{29.} $x^{2} + 2ax - 3a^{2}$.
+
+\Item{30.} $x^{2} + ax - 6a^{2}$.
+
+
+\AnsTo{Exercise}{28.} % Page 68.
+
+\Item{1.} $x + 2$.
+
+\Item{2.} $x - 2$.
+
+\Item{3.} $a + 3$.
+
+\Item{4.} $a - 3$.
+
+\Item{5.} $c + 5$.
+
+\Item{6.} $c - 5$.
+
+\Item{7.} $7x + y$.
+
+\Item{8.} $7x - y$.
+
+\Item{9.} $3b + 1$.
+
+\Item{10.} $3b - 1$.
+
+\Item{11.} $4x^{2} + 5a$.
+
+\Item{12.} $4x^{2} - 5a$.
+
+\Item{13.} $3x + 5y$.
+
+\Item{14.} $a + b - c$.
+
+\Item{15.} $a - b + c$.
+
+\Item{16.} $a + 2b - c$.
+
+\Item{17.} $5a - 7b + 1$.
+
+\Item{18.} $5a - 7b - 1$.
+
+\Item{19.} $z + x - y$.
+
+\Item{20.} $z - x + y$.
+
+\Item{21.} $a - 2b + c$.
+
+\Item{22.} $x + 3y + z$.
+
+\Item{23.} $x + 3y - z$.
+
+\Item{24.} $a + 2b + 2c$.
+
+\Item{25.} $a + 2b - 2c$.
+
+\Item{26.} $1 - 3x + 2y$.
+
+
+\AnsTo[2]{Exercise}{29.} % Page 69.
+
+\Item{1.} $1 + x + x^{2}$.
+
+\Item{2.} $1 + 2a + 4a^{2}$.
+
+\Item{3.} $1 + 3c + 9c^{2}$.
+
+\Item{4.} $4a^{2} + 2ab + b^{2}$.
+
+\Item{5.} $16b^{2} + 12bc + 9c^{2}$.
+
+\Item{6.} $9x^{2} + 6xy + 4y^{2}$.
+
+\Item{7.} $x^{2}y^{2} + xyz + z^{2}$.
+
+\Item{8.} $a^{2}b^{2} + 2ab + 4$.
+
+\Item{9.} $25a^{2} + 5ab + b^{2}$.
+
+\Item{10.} $a^{2} + 2ab + 4b^{2}$.
+
+\Item{11.} $a^{2} + 4a + 16$.
+
+\Item{12.} $a^{6} + 3a^{3} + 9$.
+
+\Item{13.} $a^{8} + a^{4}x^{2}y^{2} + x^{4}y^{4}$.
+
+\Item{14.} $x^{10} + x^{5}a^{3}b^{3} + a^{6}b^{6}$.
+
+\Item{15.} $9x^{2}y^{2} + 3xyz^{4} + z^{8}$.
+
+\Item{16.} $x^{2}y^{2}z^{2} + xyz + 1$.
+
+\Item{17.} $4a^{2}b^{2}c^{2} - 6abc + 9$.
+
+\Item{18.} $1 + 4xyz + 16x^{2}y^{2}z^{2}$.
+%% -----File: 179.png---Folio 173-------
+
+
+\AnsTo[2]{Exercise}{30.} % Page 70.
+
+\Item{1.} $1 - x + x^{2}$.
+
+\Item{2.} $1 - 2a + 4a^{2}$.
+
+\Item{3.} $1 - 3c + 9c^{2}$.
+
+\Item{4.} $4a^{2} - 2ab + b^{2}$.
+
+\Item{5.} $16b^{2} - 12bc + 9c^{2}$.
+
+\Item{6.} $9x^{2} - 6xy + 4y^{2}$.
+
+\Item{7.} $4x^{2} - 10xy + 25y^{2}$.
+
+\Item{8.} $x^{2}y^{2} - xyz + z^{2}$.
+
+\Item{9.} $a^{2}b^{2} - 2ab + 4$.
+
+\Item{10.} $25a^{2} - 5ab + b^{2}$.
+
+\Item{11.} $a^{2} - 2ab + 4b^{2}$.
+
+\Item{12.} $a^{4} - 4a^{2} + 16$.
+
+\Item{13.} $a^{6} - 3a^{3} + 9$.
+
+\Item{14.} $4a^{4} - 2a^{2}b + b^{2}$.
+
+\Item{15.} $a^{8} - a^{4}x^{2}y^{2} + x^{4}y^{4}$.
+
+\Item{16.} $x^{10} - x^{5}a^{3}b^{3} + a^{6}b^{6}$.
+
+\Item{17.} $9x^{2}y^{2} - 3xyz^{4} + z^{8}$.
+
+\Item{18.} $x^{2}y^{2}z^{2} - xyz + 1$.
+
+\Item{19.} $4a^{2}b^{2}c^{2} - 6abc + 9$.
+
+\Item{20.} $1 - 4xyz + 16x^{2}y^{2}z^{2}$.
+
+\Item{21.} $1 - 3a^{2}bc + 9a^{4}b^{2}c^{2}$.
+
+\Item{22.} $x^{3} + x^{2}y + xy^{2} + y^{3}$.
+
+\Item{23.} $x^{3} - x^{2}y + xy^{2} - y^{3}$.
+
+\Item{24.} $x^{4} + x^{3}y + x^{2}y^{2} + xy^{3} + y^{4}$.
+
+\Item{25.} $x^{4} - x^{3}y + x^{2}y^{2} - xy^{3} + y^{4}$.
+
+\Item{26.} $x^{5} + x^{4}y + x^{3}y^{2} + x^{2}y^{3} + xy^{4} + y^{5}$.
+
+\Item{27.} $x^{5} - x^{4}y + x^{3}y^{2} - x^{2}y^{3} + xy^{4} - y^{5}$.
+
+
+\AnsTo[2]{Exercise}{31.} % Page 72.
+
+\Item{1.} $2x(x - 2)$.
+
+\Item{2.} $3a(a^{2} - 2)$.
+
+\Item{3.} $5a^{2}b^{2}(1 - 2ab)$.
+
+\Item{4.} $xy(3x + 4y)$.
+
+\Item{5.} $4a^{2}b^{2}(2a + b)$.
+
+\Item{6.} $3a^{2}(a^{2} - 4 - 2a)$.
+
+\Item{7.} $4x^{2}(1 - 2x^{2} - 3x^{3})$.
+
+\Item{8.} $5(1 - 2x^{2}y^{2} + 3x^{2}y)$.
+
+\Item{9.} $7a(a + 2 - 3a^{2})$.
+
+\Item{10.} $3x^{2}y^{2}(xy - 2x^{2}y^{2} - 3)$.
+
+
+\AnsTo{Exercise}{32.} % Page 73.
+
+\Item{1.} $(x^{2} + 1)(x + 1)$.
+
+\Item{2.} $(x^{2} + 1)(x - 1)$.
+
+\Item{3.} $(x + y)(x + z)$.
+
+\Item{4.} $(x - y)(a - b)$.
+
+\Item{5.} $(a + b)(a - c)$.
+
+\Item{6.} $(x + 3)(x - b)$.
+
+\Item{7.} $(x^{2} + 2)(2x - 1)$.
+
+\Item{8.} $(a - b)(a - 3)$.
+
+\Item{9.} $(2a - c)(3a + b)$.
+
+\Item{10.} $(xy + c)(ab + c)$.
+
+\Item{11.} $(a - b - c)(x - y)$.
+
+\Item{12.} $(a - b - 2c)(a - b)$.
+
+
+\AnsTo[2]{Exercise}{33.} % Page 74.
+
+\Item{1.} $(2 + x)(2 - x)$.
+
+\Item{2.} $(3 + x)(3 - x)$.
+
+\Item{3.} $(3a + x)(3a - x)$.
+
+\Item{4.} $(5 + x)(5 - x)$.
+
+\Item{5.} $(5x + a)(5x - a)$.
+
+\Item{6.} $(4a^{2} + 11)(4a^{2} - 11)$.
+
+\Item{7.} $(11a^{2} + 4)(11a^{2} - 4)$.
+
+\Item{8.} $(2ab + cd)(2ab - cd)$.
+
+\Item{9.} $(1 + xy)(1 - xy)$.
+
+\Item{10.} $(9xy + 1)(9xy - 1)$.
+
+\Item{11.} $(7ab + 2)(7ab - 2)$.
+
+\Item{12.} $(5a^{2}b^{2} + 3)(5a^{2}b^{2} - 3)$.
+
+\Item{13.} $(3a^{4}b^{3} + 4x^{5})(3a^{4}b^{3} - 4x^{5})$.
+
+\Item{14.} $(12xy + 1)(12xy - 1)$.
+
+\Item{15.} $(10x^{3}yz^{2} + 1)(10x^{3}yz^{2} - 1)$.
+
+\Item{16.} $(1 + 11a^{2}b^{4}c^{6})(1 - 11a^{2}b^{4}c^{6})$.
+
+\Item{17.} $(5a + 8x^{3}y^{3})(5a - 8x^{3}y^{3})$.
+
+\Item{18.} $(4x^{8} + 5y^{9})(4x^{8} - 5y^{9})$.
+
+\Item{19.} $90,000$.
+
+\Item{20.} $22,760$.
+
+\Item{21.} $732,200$.
+
+\Item{22.} $400$.
+
+\Item{23.} $28,972$.
+
+\Item{24.} $14,248,000$.
+%% -----File: 180.png---Folio 174-------
+
+
+\AnsTo[2]{Exercise}{34.} % Page 75.
+
+\Item{1.} $(x + y + z)(x + y - z)$.
+
+\Item{2.} $(x - y + z)(x - y - z)$.
+
+\Item{3.} $(z + x + y)(z - x - y)$.
+
+\Item{4.} $(z + x - y)(z - x + y)$.
+
+\Item{5.} $(x + y + 2z)(x + y - 2z)$.
+
+\Item{6.} $(2z + x - y)(2z - x + y)$.
+
+\Item{7.} $(a + 2b + c)(a + 2b - c)$.
+
+\Item{8.} $(a - 2b + c)(a - 2b - c)$.
+
+\Item{9.} $(c + a - 2b)(c - a + 2b)$.
+
+\Item{10.} $(2a + 5c + 1)(2a + 5c - 1)$.
+
+\Item{11.} $(1 + 2a - 5c)(1 - 2a + 5c)$.
+
+\Item{12.} $(a + 3b + 4c)(a + 3b - 4c)$.
+
+\Item{13.} $(a - 5b + 3c)(a - 5b - 3c)$.
+
+\Item{14.} $(4c + a - 5b)(4c - a + 5b)$.
+
+\Item{15.} $(2a + x + y)(2a - x - y)$.
+
+\Item{16.} $(b + a - 2x)(b - a + 2x)$.
+
+\Item{17.} $(2z + x + 3y)(2z - x - 3y)$.
+
+\Item{18.} $(3 + 3a - 7b)(3 - 3a + 7b)$.
+
+\Item{19.} $(4a + 2b + 5c)(4a - 2b - 5c)$.
+
+\Item{20.} $(5c + 3a - 2x)(4c - 3a + 2x)$.
+
+\Item{21.} $(3a + 3b -5c)(3a - 3b + 5c)$.
+
+\Item{22.} $(4y + a - 3c)(4y - a + 3c)$.
+
+\Item{23.} $(7m + p + 2q)(7m - p - 2q)$.
+
+\Item{24.} $(6n + d - 2c)(6n - d + 2c)$.
+
+\Item{25.} $(x + y + a + b)(x + y - a - b)$.
+
+\Item{26.} $(x - y + a - b)(x - y - a + b)$.
+
+\Item{27.} $(2x + 3 + 2a + b)(2x + 3 - 2a - b)$.
+
+\Item{28.} $(b - c + a - 2x)(b - c - a + 2x)$.
+
+\Item{29.} $(3x - y + 2a - b)(3x - y - 2a + b)$.
+
+\Item{30.} $(x - 3y + a + 2b)(x - 3y - a - 2b)$.
+
+\Item{31.} $(x + 2y + a + 3b)(x + 2y - a - 3b)$.
+
+\Item{32.} $(x + y + a - z)(x + y - a + z)$.
+
+
+\AnsTo[2]{Exercise}{35.} % Page 77.
+
+\Item{1.} $(2x - y)(4x^{2} + 2xy + y^{2})$.
+
+\Item{2.} $(x - 1)(x^{2} + x + 1)$.
+
+\Item{3.} $(xy - z)(x^{2}y^{2} + xyz + z^{2})$.
+
+\Item{4.} $(x - 4)(x^{2} + 4x + 16)$.
+
+\Item{5.} $(5a - b)(25a^{2} + 5ab + b^{2})$.
+
+\Item{6.} $(a - 7)(a^{2} + 7a + 49)$.
+
+\Item{7.} $(ab - 3c)(a^{2}b^{2} + 3abc + 9c^{2})$.
+
+\Item{8.} $(xyz - 2)(x^{2}y^{2}z^{2} + 2xyz + 4)$.
+
+\Item{9.} $(2ab - 3y^{2})(4a^{2}b^{2} + 6aby^{2} + 9y^{4})$.
+
+\Item{10.} $(4x - y^{3})(16x^{2} + 4xy^{3} + y^{6})$.
+
+\Item{11.} $(3a - 4c^{2})(9a^{2} + 12ac^{2} + 16c^{4})$.
+
+\Item{12.} $(xy - 6z)(x^{2}y^{2} + 6xyz + 36z^{2})$.
+
+\Item{13.} $(4x - 9y)(16x^{2} + 36xy + 81y^{2})$.
+
+\Item{14.} $(3a - 8c)(9a^{2} + 24ac + 64c^{2})$.
+
+\Item{15.} $(2x^{2} - 5y)(4x^{4} + 10x^{2}y + 25y^{2})$.
+
+\Item{16.} $(4x^{2} - 3y^{5})(16x^{8} + 12x^{4}y^{5} + 9y^{10})$.
+
+\Item{17.} $(6 - 2a)(36 + 12a + 4a^{2})$.
+
+\Item{18.} $(7 - 3y)(49 + 21y + 9y^{2})$.
+%% -----File: 181.png---Folio 175-------
+
+
+\AnsTo[2]{Exercise}{36.} % Page 78.
+
+\Item{1.} $(x + 1)(a^{2} - x + 1)$.
+
+\Item{2.} $(2x + y)(4x^{2} - 2xy + y^{2})$.
+
+\Item{3.} $(x + 5)(x^{2} - 5x + 25)$.
+
+\Item{4.} $(4a + 3)(16a^{2} - 12a + 9)$.
+
+\Item{5.} $(xy + z)(x^{2}y^{2} - xyz + z^{2})$.
+
+\Item{6.} $(a + 4)(a^{2} - 4a + 16)$.
+
+\Item{7.} $(2a^{2} + b)(4a^{4} - 2a^{2}b + b^{2})$.
+
+\Item{8.} $(x + 7)(x^{2} - 7x + 49)$.
+
+\Item{9.} $(2 + xyz)(4 - 2xyz + x^{2}y^{2}z^{2})$.
+
+\Item{10.} $(y^{3} + 4x)(y^{6} - 4y^{3}x + 16x^{2})$.
+
+\Item{11.} $(ab + 3x)(a^{2}b^{2} - 3abx + 9x^{2})$.
+
+\Item{12.} $(2yz + x^{2})(4y^{2}z^{2} - 2yzx^{2} + x^{4})$.
+
+\Item{13.} $(y^{3} + 4x^{2})(y^{6} - 4y^{3}x^{2} + 16x^{4})$.
+
+\Item{14.} $(4a^{4} + x^{5})(16a^{8} - 4a^{4}x^{5} + x^{10})$.
+
+\Item{15.} $(3x^{5} + 2a^{2})(9x^{10} - 6x^{5}a^{2} + 4a^{4})$.
+
+\Item{16.} $(3x^{3} + 8)(9x^{6} - 24x^{3} + 64)$.
+
+\Item{17.} $(7 + 4x)(49 - 28x + 16x^{2})$.
+
+\Item{18.} $(5 + 3y)(25 - 15y + 9y^{2})$.
+
+
+\AnsTo{Exercise}{37.} % Page 80.
+
+\Item{1.} $(2x + y)(2x + y)$.
+
+\Item{2.} $(x + 3y)(x + 3y)$.
+
+\Item{3.} $(x + 8)(x + 8)$.
+
+\Item{4.} $(x + 5a)(x + 5a)$.
+
+\Item{5.} $(a - 8)(a - 8)$.
+
+\Item{6.} $(a - 5b)(a - 5b)$.
+
+\Item{7.} $(c - 3d)(c - 3d)$.
+
+\Item{8.} $(2x - 1)(2x - 1)$.
+
+\Item{9.} $(2a - 3b)(2a - 3b)$.
+
+\Item{10.} $(3a - 4b)(3a - 4b)$.
+
+\Item{11.} $(x + 4y)(x + 4y)$.
+
+\Item{12.} $(x - 4y)(x - 4y)$.
+
+\Item{13.} $(2x - 5y)(2x - 5y)$.
+
+\Item{14.} $(1 + 10a)(1 + 10a)$.
+
+\Item{15.} $(7a - 2)(7a - 2)$.
+
+\Item{16.} $(6a + 5b)(6a + 5b)$.
+
+\Item{17.} $(9x - 2b)(9x - 2b)$.
+
+\Item{18.} $(mn + 7x^{2})(mn + 7x^{2})$.
+
+
+\AnsTo{Exercise}{38.} % Page 82.
+
+\Item{1.} $(a + 2)(a + 3)$.
+
+\Item{2.} $(a - 2)(a - 3)$.
+
+\Item{3.} $(a + 1)(a + 5)$.
+
+\Item{4.} $(a - 1)(a - 5)$.
+
+\Item{5.} $(a - 1)(a + 5)$.
+
+\Item{6.} $(a + 1)(a - 5)$.
+
+\Item{7.} $(c - 3)(c - 6)$.
+
+\Item{8.} $(c + 3)(c + 6)$.
+
+\Item{9.} $(c - 3)(c + 6)$.
+
+\Item{10.} $(c + 3)(c - 6)$.
+
+\Item{11.} $(x + 2)(x + 7)$.
+
+\Item{12.} $(x - 2)(x - 7)$.
+
+\Item{13.} $(x + 2)(x - 7)$.
+
+\Item{14.} $(x - 4)(x - 5)$.
+
+\Item{15.} $(x + 4)(x - 5)$.
+
+\Item{16.} $(x - 4)(x + 5)$.
+
+\Item{17.} $(x - 3)(x - 7)$.
+
+\Item{18.} $(x + 3)(x - 7)$.
+
+\Item{19.} $(x - 3)(x + 7)$.
+
+\Item{20.} $(x - 7)(x - 8)$.
+
+\Item{21.} $(x + 7)(x - 8)$.
+
+\Item{22.} $(x - 1)(x - 9)$.
+
+\Item{23.} $(x + 3)(x + 10)$.
+
+\Item{24.} $(x - 3)(x + 10)$.
+
+\Item{25.} $(x + 3)(x - 10)$.
+
+\Item{26.} $(a - 2b)(a + 3b)$.
+
+\Item{27.} $(a + 2b)(a - 3b)$.
+
+\Item{28.} $(a - b)(a + 4b)$.
+
+\Item{29.} $(a + b)(a - 4b)$.
+
+\Item{30.} $(ax + 7)(ax - 9)$.
+
+\Item{31.} $(a - 7x)(a + 9x)$.
+
+\ResetCols[2]
+\Item{32.} $(a - 4b)(a - 5b)$.
+
+\Item{33.} $(xy - 3z)(xy - 16z)$.
+
+\Item{34.} $(ab + 4c)(ab + 11c)$.
+
+\Item{35.} $(x - 4y)(x - 9y)$.
+
+\Item{36.} $(x + 7y)(x + 12y)$.
+
+\Item{37.} $(ax - 6y)(ax - 17y)$.
+
+\Item{38.} $(x + 2y)(x - 2y)(x^{2} - 5y^{2})$.
+
+\Item{39.} $(a^{2}x^{2} - 11y^{2})(a^{2}x^{2} - 13y^{2})$.
+
+\Item{40.} $(a^{3}b^{3} - 11c^{2})(a^{3}b^{3} - 12c^{2})$.
+
+\Item{41.} $(a + 4bc)(a - 24bc)$.
+
+\Item{42.} $(a + 8bc)(a - 12bc)$.
+
+\Item{43.} $(a + 6bc)(a - 16bc)$.
+
+\Item{44.} $(a - 3bc)(a + 32bc)$.
+
+\Item{45.} $(a + 2bc)(a - 48bc)$.
+
+\Item{46.} $(a + bc)(a + 48bc)$.
+
+\Item{47.} $(x + 9yz)(x - 27yz)$.
+
+\Item{48.} $(xy + 13z)(xy - 14z)$.
+%% -----File: 182.png---Folio 176-------
+
+
+\AnsTo[2]{Exercise}{39.} % Page 83.
+
+\Item{1.} $a(a^{2} - 7)$.
+
+\Item{2.} $ab(3ab - 2a^{2} + 3b^{2})$.
+
+\Item{3.} $(a - b + 1)(a - b)$.
+
+\Item{4.} $(a + b + 1)(a + b - 1)$.
+
+\Item{5.} $(a + 2b)(a^{2} - 2ab + 4b^{2})$.
+
+\Item{6.} $(x + 2y + 1)(x - 2y)$.
+
+\Item{7.} $(a - b)(a^{2} + ab + b^{2} + 1)$.
+
+\Item{8.} $(a - 3b)(a - 3b)$.
+
+\Item{9.} $(x + 1)(x - 2)$.
+
+\Item{10.} $(x + 1)(x - 3)$.
+
+\Item{11.} $(x - 3)(x + 7)$.
+
+\Item{12.} $(a + 2)(a - 13)$.
+
+\Item{13.} $(x^{2} + 3)(a + b)$.
+
+\Item{14.} $(x - 3)(x - y)$.
+
+\Item{15.} $(x - 3)(x - 4)$.
+
+\Item{16.} $(a + 2b)(a + 3b)$.
+
+\Item{17.} $(x^{2} + 5)(x^{2} + 5)$.
+
+\Item{18.} $(x - 9)(x - 9)$.
+
+\Item{19.} $(x - 10)(x - 11)$.
+
+\Item{20.} $(x + 8)(x + 11)$.
+
+\Item{21.} $(x - 8)(x + 11)$.
+
+\Item{22.} $(x^{2} + 1)(x - 1)$.
+
+\Item{23.} $x^{2}(3x + 1)(3x - 1)$.
+
+\Item{24.} $(1 + a - b)(1 - a + b)$.
+
+\Item{25.} $(a + b)(a^{2} - ab + b^{2} + 1)$.
+
+\Item{26.} $(m + n)(m - n)(x + y)$.
+
+\Item{27.} $(x - y + z)(x - y - z)$.
+
+\Item{28.} $(z + x - y)(z - x + y)$.
+
+\Item{29.} $(2a^{2} + 3a - 1)(2a^{2} - 3a + 1)$.
+
+\Item{30.} $(2x - y)(4x^{2} + 2xy + y^{2})$.
+
+\Item{31.} $x^{2}(x - 3y)$.
+
+\Item{32.} $(x - 3y)(x^{2} + 3xy + 9y^{2})$.
+
+\Item{33.} $(x - 5)(x + 8)$.
+
+\Item{34.} $(x - 2y)(x + 5y)$.
+
+\Item{35.} $(1 + 4x)(1 - 4x)$.
+
+\Item{36.} $a^{2}(a^{2} + 3b^{2})(a^{2} - 3b^{2})$.
+
+\Item{37.} $x(x + y)(x + 2y)$.
+
+\Item{38.} $x^{2}(x + y)(x + 3y)$.
+
+\Item{39.} $(x - 2y^{2})(x - 2y^{2})$.
+
+\Item{40.} $(4x^{2} + 1)(4x^{2} + 1)$.
+
+\Item{41.} $a^{2}(3a + 2c)(3a - 2c)$.
+
+\Item{42.} $ab(a + b)(a - 2b)$.
+
+\Item{43.} $(x + 2)(x^{2} - 2x + 4)(x - 1)$.
+
+\Item{44.} $(a + y)(a^{2} - ay + y^{2})(a - x)$.
+
+
+\AnsTo{Exercise}{40.} % Page 86.
+
+\Item{1.} $6$.
+
+\Item{2.} $5x^{3}$.
+
+\Item{3.} $6ax$.
+
+\Item{4.} $7ab^{2}$.
+
+\Item{5.} $7$.
+
+\Item{6.} $2a^{2}b^{2}$.
+
+\Item{7.} $x + 3y$.
+
+\Item{8.} $x + 3$.
+
+\Item{9.} $2a + 1$.
+
+\Item{10.} $x + y$.
+
+\Item{11.} $a + x$.
+
+\Item{12.} $a + 2b$.
+
+\Item{13.} $x - 1$.
+
+\Item{14.} $x + 3$.
+
+\Item{15.} $x - 6$.
+
+\Item{16.} $x^{2} - x + 1$.
+
+\Item{17.} $x - 1$.
+
+\Item{18.} $x - y$.
+
+\Item{19.} $x - 5$.
+
+\Item{20.} $a - b - c$.
+
+\Item{21.} $x + 2y$.
+
+\Item{22.} $x + 4y$.
+
+\Item{23.} $x^{2} + 2xy + 4y^{2}$.
+
+\Item{24.} $x - 2$.
+
+\Item{25.} $1 - 3a$.
+
+\Item{26.} $x - 7y$.
+
+\Item{27.} $2a + b$.
+
+\Item{28.} $x + y - z$.
+
+
+\AnsTo[2]{Exercise}{41.} % Page 88.
+
+\Item{1.} $18x^{2}y^{3}$.
+
+\Item{2.} $6a^{2}bc^{3}$.
+
+\Item{3.} $20a^{3}b^{3}$.
+
+\Item{4.} $30a^{3}b^{4}$.
+
+\Item{5.} $189x^{3}y^{5}$.
+
+\Item{6.} $x^{2}y^{3}z^{3}$.
+
+\Item{7.} $a^{2}(a + 1)$.
+
+\Item{8.} $x^{2}(x - 3)$.
+
+\Item{9.} $x(x + 1)(x - 1)$.
+
+\Item{10.} $x(x + 1)(x - 1)$.
+
+\Item{11.} $xy(x + y)$.
+
+\Item{12.} $x(x + 2)^{2}$.
+%% -----File: 183.png---Folio 177-------
+
+\Item{13.} $(a + 2)(a + 2)(a + 3)$.
+
+\Item{14.} $(c - 4)(c + 5)(c - 6)$.
+
+\Item{15.} $(b - 5)(b - 6)(b + 7)$.
+
+\Item{16.} $(y - 4)(y + 5)(y - 6)$.
+
+\Item{17.} $(z - 5)(z - 6)(z + 7)$.
+
+\Item{18.} $(x - 4)(x + 8)(x - 8)(x^{2} + 4x + 16)$.
+
+\Item{19.} $(a + b)(a + b)(a - b)(a - b)$.
+
+\Item{20.} $4a^{2}b(a + b)(a + b)(a - b)$.
+
+\Item{21.} $(y + 2)(y + 3)(y + 4)$.
+
+\Item{22.} $(x + 1)(x - 1)(x^{2} + 1)$.
+
+\Item{23.} $(1 + x)(1 - x)(1 + x + x^{2})$.
+
+\Item{24.} $(x + y)(x + y)(x - y)(x - y)$.
+
+\Item{25.} $x(x - 3)(x + 5)(x^{2} + 3x + 9)$.
+
+\Item{26.} $(a + b + c)(a + b + c)(a + b - c)$.
+
+\Item{27.} $(x - a)(x - b)(x - c)$.
+
+\Item{28.} $a(a + b + c)(a + b - c)$.
+
+
+\AnsTo[4]{Exercise}{42.} % Page 90.
+
+\Item{1.} $\dfrac{1}{3b}$.
+
+\Item{2.} $\dfrac{4m}{5n}$.
+
+\Item{3.} $\dfrac{3m}{4p^{2}}$.
+
+\Item{4.} $\dfrac{x^{2}}{2yz}$.
+
+\Item{5.} $\dfrac{a^{3}b^{3}}{3c^{2}}$.
+
+\Item{6.} $\dfrac{2xy}{3}$.
+
+\Item{7.} $\dfrac{2m}{3p}$.
+
+\Item{8.} $\dfrac{3b^{2}c}{4a^{3}}$.
+
+\Item{9.} $\dfrac{2y^{2}z^{4}}{3}$.
+
+\Item{10.} $\dfrac{b}{c}$.
+
+\Item{11.} $\dfrac{2a - 3b}{2a}$.
+
+\Item{12.} $\dfrac{3a}{a + 2}$.
+
+\Item{13.} $\dfrac{x}{x - 1}$.
+
+\Item{14.} $\dfrac{y}{x^{2} + 3xy + 9y^{2}}$.
+
+\Item{15.} $\dfrac{x + 1}{x - 5}$.
+
+\Item{16.} $\dfrac{x + 1}{x - 2}$.
+
+\Item{17.} $\dfrac{a + b + c}{a}$.
+
+\Item{18.} $\dfrac{x + 5}{x + 3}$.
+
+\Item{19.} $\dfrac{x + 1}{x + 3}$.
+
+
+\AnsTo[2]{Exercise}{43.} % Page 91.
+
+\Item{1.} $a + b + \dfrac{2}{a - b}$.
+
+\Item{2.} $a - b - \dfrac{2}{a + b}$.
+
+\Item{3.} $a - 1 + \dfrac{2a}{a^{2} - a - 1}$.
+
+\Item{4.} $2x - 4 + \dfrac{5}{x + 1}$.
+
+\Item{5.} $4x^{2} - 2x + 1 - \dfrac{1}{2x + 1}$.
+
+\Item{6.} $5x + 4 + \dfrac{x + 7}{x^{2} + x - 1}$.
+
+\Item{7.} $a + \dfrac{5a - 2}{a^{2} + a + 2}$.
+
+\Item{8.} $y^{2} - yx + x^{2}$.
+
+\Item{9.} $x^{2} - 4x + 3 + \dfrac{2x - 4}{x^{2} + x + 1}$.
+
+\Item{10.} $x^{3} + x + 1 + \dfrac{2x + 2}{x^{2} - x - 1}$.
+%% -----File: 184.png---Folio 178-------
+
+
+\AnsTo[2]{Exercise}{44.} % Page 92.
+
+\Item{1.} $\dfrac{x^{2} + y^{2}}{x - y}$.
+
+\Item{2.} $\dfrac{x^{2} + y^{2}}{x + y}$.
+
+\Item{3.} $\dfrac{2y}{x + y}$.
+
+\Item{4.} $-\dfrac{2ax}{a - x}$.
+
+\Item{5.} $-\dfrac{x + 2}{x - 3}$.
+
+\Item{6.} $-\dfrac{2x^{2} - 6x + 5}{x - 2}$.
+
+\Item{7.} $\dfrac{x^{3} + x^{2} - 2x + 1}{x + 2}$.
+
+\Item{8.} $\dfrac{2a^{2} - 11a + 6}{a - 3}$.
+
+\Item{9.} $\dfrac{-2a^{3} + a^{2} + 2a-3}{a - 1}$.
+
+\Item{10.} $\dfrac{3a^{4} + 6a^{3} - 14a^{2} - 4}{3a^{2} + 1}$.
+
+
+\AnsTo[1]{Exercise}{45.} % Page 94.
+
+\Item{1.} $\dfrac{x(x + a)}{(x + a)(x - a)}$, $\dfrac{x^{2}}{(x + a)(x - a)}$.
+
+\Item{2.} $\dfrac{a(a - b)}{(a + b)(a - b)}$, $\dfrac{a^{2}}{(a + b)(a - b)}$.
+
+\Item{3.} $\dfrac{1 - 2a}{(1 + 2a)(1 - 2a)}$, $\dfrac{1}{(1 + 2a)(1 - 2a)}$.
+
+\Item{4.} $\dfrac{9}{(4 + x)(4 - x)}$, $\dfrac{(4 - x)^{2}}{(4 + x)(4 - x)}$.
+
+\Item{5.} $\dfrac{a^{2}}{(3 - a)(9 + 3a + a^{2})}$, $\dfrac{a(9 + 3a + a^{2})}{(3 - a)(9 + 3a + a^{2})}$.
+
+\Item{6.} $\dfrac{x + 2}{(x + 2)(x - 2)(x - 3)}$, $\dfrac{x - 2}{(x + 2)(x - 2)(x - 3)}$.
+
+
+\AnsTo{Exercise}{46.} % Page 95.
+
+\Item{1.} $\dfrac{4x + 2}{5}$.
+
+\Item{2.} $\dfrac{13x + 3}{12}$.
+
+\Item{3.} $\dfrac{5(9x - 13)}{42}$.
+
+\Item{4.} $\dfrac{51x + 31}{36}$.
+
+\Item{5.} $\dfrac{x - 5}{3}$.
+
+\Item{6.} $\dfrac{5(x - y)}{8x}$.
+
+\Item{7.} $\dfrac{22x - 97}{30}$.
+
+\Item{8.} $\dfrac{3x - 4}{15x}$.
+
+\Item{9.} $\dfrac{a^{3} - b^{3} + c^{3} - abc}{abc}$.
+
+
+\AnsTo{Exercise}{47.} % Page 96}.
+
+\Item{1.} $\dfrac{2x + 1}{(x + 3)(x - 2)}$.
+
+\Item{2.} $\dfrac{2x}{x^{2} - 1}$.
+
+\Item{3.} $\dfrac{3x + 16}{(x - 8)(x + 2)}$.
+
+\Item{4.} $\dfrac{4ax}{a^{3} - x^{2}}$.
+
+\Item{5.} $\dfrac{ax}{x^{2} - a^{2}}$.
+
+\Item{6.} $-\dfrac{4ab}{4a^{2} - b^{2}}$.
+
+\Item{7.} $\dfrac{1}{9 - a^{2}}$.
+
+\Item{8.} $\dfrac{b}{a^{2} - b^{2}}$.
+
+\Item{9.} $\dfrac{5x + 8}{x^{2} - 4}$.
+
+\Item{10.} $\dfrac{1 + x}{1 - 9x^{2}}$.
+
+\Item{11.} $\dfrac{3(a^{2} + 4a + 1)}{a(a + 1)(a + 3)}$.
+
+\Item{12.} $\dfrac{2}{x^{2} - 1}$.
+
+\Item{13.} $\dfrac{2x^{2}}{(x + 2)(x - 3)}$.
+
+\Item{14.} $0$.
+%% -----File: 185.png---Folio 179-------
+
+
+\AnsTo{Exercise}{48.} % Page 97.
+
+\Item{1.} $0$.
+
+\Item{2.} $\dfrac{2a}{a + b}$.
+
+\Item{3.} $\dfrac{7a}{1 - a^{2}}$.
+
+\Item{4.} $\dfrac{x - 10y}{4x^{2} - 25y^{2}}$.
+
+\Item{5.} $\dfrac{2}{x + 4y}$.
+
+\Item{6.} $\dfrac{2(x + 6)}{4x^{2} - 9}$.
+
+
+\AnsTo{Exercise}{49.} % Page 100.
+
+\Item{1.} $\dfrac{20}{3bc}$.
+
+\Item{2.} $\dfrac{2ay}{3}$.
+
+\Item{3.} $\dfrac{7p^{2}}{4xz}$.
+
+\Item{4.} $\dfrac{2a^{2}cm}{7}$.
+
+\Item{5.} $\dfrac{30}{abc}$.
+
+\Item{6.} $abc$.
+
+\Item{7.} $b^{2}$.
+
+\Item{8.} $\dfrac{x + a}{x - 2a}$.
+
+\Item{9.} $\dfrac{xy}{2c - 1}$.
+
+\Item{10.} $\dfrac{a + 10}{a + 3}$.
+
+\Item{11.} $\dfrac{3x + 2y}{x - 2}$.
+
+\Item{12.} $\dfrac{5a + b}{4a + 3b}$.
+
+\Item{13.} $\dfrac{x - 7}{a + b + c}$.
+
+\Item{14.} $\dfrac{x(x + 1)}{x - 5}$.
+
+\Item{15.} $\dfrac{a + 1}{a + 5}$.
+
+\Item{16.} $1$.
+
+\Item{17.} $\dfrac{x(x + y)}{x + 1}$.
+
+\Item{18.} $\dfrac{b}{a - b}$.
+
+\Item{19.} $abc$.
+
+\Item{20.} $\dfrac{(x + 2y)(x + 1)}{(x + y)(x + 2)}$.
+
+
+\AnsTo{Exercise}{50.} % Page 102.
+
+\Item{1.} $\dfrac{x + y}{z}$.
+
+\Item{2.} $\dfrac{12x + 3y}{12x - 4y}$.
+
+\Item{3.} $\dfrac{abd - 21d^{2}}{21cd - 7ab}$.
+
+\Item{4.} $\dfrac{x^{2} + x - 2}{x^{2} - x - 2}$.
+
+\Item{5.} $1$.
+
+\Item{6.} $\dfrac{x + y}{x^{2} - 2xy + y^{2}}$.
+
+\Item{7.} $\dfrac{a + b}{a - b}$.
+
+\Item{8.} $4(3a + 8)$.
+
+\Item{9.} $\dfrac{y + x}{y - x}$.
+
+\Item{10.} $x$.
+
+\Item{11.} $\dfrac{1}{x}$.
+
+\Item{12.} $\dfrac{x^{2}(x - 3)}{x - 2}$.
+
+\Item{13.} $a - 1$.
+
+\Item{14.} $\dfrac{4a}{a - x}$.
+
+
+\AnsTo[5]{Exercise}{51.} % Page 105.
+
+\Item{1.} $5$.
+
+\Item{2.} $7$.
+
+\Item{3.} $2\frac{1}{2}$.
+
+\Item{4.} $120$.
+
+\Item{5.} $12$.
+
+\Item{6.} $2\frac{1}{3}$.
+
+\Item{7.} $17$.
+
+\Item{8.} $4$.
+
+\Item{9.} $4$.
+
+\Item{10.} $1$.
+
+\Item{11.} $-16$.
+
+\Item{12.} $11$.
+
+\Item{13.} $-4$.
+
+\Item{14.} $-2$.
+
+\Item{15.} $-2$.
+
+\Item{16.} $5$.
+
+\Item{17.} $9$.
+
+\Item{18.} $-1$.
+%% -----File: 186.png---Folio 180-------
+
+
+\AnsTo[5]{Exercise}{52.} % Page 106.
+
+\Item{1.} $2$.
+
+\Item{2.} $2$.
+
+\Item{3.} $-33$.
+
+\Item{4.} $1$.
+
+\Item{5.} $\frac{2}{3}$.
+
+\Item{6.} $1\frac{1}{2}$.
+
+\Item{7.} $2$.
+
+\Item{8.} $8$.
+
+\Item{9.} $5$.
+
+\Item{10.} $\frac{3}{7}$.
+
+\Item{11.} $2$.
+
+\Item{12.} $1$.
+
+\Item{13.} $3$.
+
+
+\AnsTo[6]{Exercise}{53.} % Page 107.
+
+\Item{1.} $33$.
+
+\Item{2.} $2$.
+
+\Item{3.} $3\frac{1}{2}$.
+
+\Item{4.} $1\frac{5}{37}$.
+
+\Item{5.} $7$.
+
+\Item{6.} $3$.
+
+
+\AnsTo{Exercise}{54.} % Page 108.
+
+\Item{1.} $a + b$.
+
+\Item{2.} $\dfrac{a}{2}$.
+
+\Item{3.} $\dfrac{b}{2}$.
+
+\Item{4.} $2a$.
+
+\Item{5.} $b - a$.
+
+\Item{6.} $\dfrac{ab}{a + b + c}$.
+
+\Item{7.} $\dfrac{a^{2} - b^{2}}{2a}$.
+
+\Item{8.} $\dfrac{2b}{a}$.
+
+\Item{9.} $\dfrac{2b^{2} - a^{2}}{4b - 3a}$.
+
+\Item{10.} $1$.
+
+\Item{11.} $3(a - b)$.
+
+
+\AnsTo[4]{Exercise}{55.} % Page 109.
+
+\Item{1.} $35$.
+
+\Item{2.} $70$.
+
+\Item{3.} $36$.
+
+\Item{4.} $57$, $58$.
+
+
+\AnsTo[5]{Exercise}{56.} % Page 110.
+
+\Item{1.} $81$, $19$.
+
+\Item{2.} $100$, $24$.
+
+\Item{3.} $64$, $15$.
+
+\Item{4.} $103$, $12$.
+
+\Item{5.} $295$, $25$.
+
+
+\AnsTo[4]{Exercise}{57.} % Page 111.
+
+\Item{1.} $12$~yr.
+
+\Item{2.} A, $60$~yr.; B, $10$~yr.
+
+\Item{3.} A, $25$~yr.; B, $5$~yr.
+
+\Item{4.} $17\frac{1}{2}$~yr.
+
+\Item{5.} $35$~yr.
+
+\Item{6.} Son, $12$~yr.; father, $36$~yr.
+
+\Item{7.} $25$~yr.
+
+\Item{8.} A, $30$~yr.; B, $15$~yr.
+
+\Item{9.} Son, $12$~yr.; father, $68$~yr.
+
+
+\AnsTo[6]{Exercise}{58.} % Page 112.
+
+\Item{1.} $1\frac{3}{7}$~dy.
+
+\Item{2.} $1\frac{13}{47}$~dy.
+
+\Item{3.} $1\frac{1}{20}$~dy.
+
+\Item{4.} $15$~dy.
+
+\Item{5.} $12$~hr.
+
+\Item{6.} $10$~dy.
+
+
+\AnsTo[5]{Exercise}{59.} % Page 113.
+
+\Item{1.} $7\frac{5}{13}$~hr.
+
+\Item{2.} $2\frac{2}{5}$~hr.
+
+\Item{3.} $\frac{10}{11}$~hr.
+
+\Item{4.} $1\frac{1}{13}$~hr.
+
+\Item{5.} $30$~hr.
+
+
+\AnsTo[4]{Exercise}{60.} % Page 114.
+
+\Item{1.} $36$~mi.
+
+\Item{2.} $26$~hr.
+
+\Item{3.} $8$~mi.
+
+\Item{4.} $240$~mi.
+
+
+\AnsTo{Exercise}{61.} % Page 115.
+
+\Item{1.} $600$.
+
+\Item{2.} $700$.
+
+\Item{3.} Dog, $1440$; rabbit, $1800$.
+%% -----File: 187.png---Folio 181-------
+
+\AnsTo[2]{Exercise}{62.} % Page 116.
+
+\Item{1.} $27\frac{3}{11}$~min.\ past 5~o'clock.
+
+\Item{2.} $27\frac{3}{11}$~min.\ past 2~o'clock.
+
+\Item{3.} $43\frac{7}{11}$~min.\ past 2~o'clock.
+
+\Item{4.} $21\frac{9}{11}$~min.\ past 1~o'clock.
+
+\Item{5.} $38\frac{2}{11}$~min.\ past 1~o'clock.
+
+\Item{6.} $38\frac{2}{11}$~min.\ past 7~o'clock.
+
+
+
+\AnsTo{Exercise}{63.} % Page 117.
+
+\Item{1.} $1764$~sq.~ft.
+
+\Item{2.} $18$~ft.\ by $23$~ft.
+
+\Item{3.} $14$~ft.\ by $20$~ft.
+
+\Item{4.} $12$~ft.\ by $15$~ft.
+
+\Item{5.} $30$~ft.\ by $40$~ft.
+
+
+\AnsTo[4]{Exercise}{64.} % Page 121.
+
+\Item{1.} $90°\,0'\,30''$; $30°\,30'$.
+
+\Item{2.} \$$133\frac{1}{3}$.
+
+\Item{3.} \$$2000$.
+
+\Item{4.} \$$4000$.
+
+\Item{5.} \$$3000$.
+
+\Item{6.} \$$500$.
+
+\Item{7.} $5$\%.
+
+\Item{8.} $6$\%.
+
+\Item{9.} $3$~yr.
+
+\Item{10.} $9\frac{3}{8}$~yr.
+
+\Item{11.} \$$25,000$.
+
+\Item{12.} \$$20,000$.
+
+\Item{13.} \$$6$\%.
+
+\Item{14.} $20$~yr.
+
+
+\AnsTo{Exercise}{65.} % Page 124.
+
+\Item{1.} $x = 2$, $y = 1$.
+
+\Item{2.} $x = 3$, $y = 2$.
+
+\Item{3.} $x = 5$, $y = 1$.
+
+\Item{4.} $x = 2$, $y = 1$.
+
+\Item{5.} $x = 1$, $y = 2$.
+
+\Item{6.} $x = 6$, $y = 1$.
+
+\Item{7.} $x = 3$, $y = 21$.
+
+\Item{8.} $x = 7$, $y = 7$.
+
+\Item{9.} $x = 23$, $y = -1$.
+
+\Item{10.} $x = 2$, $y = 1$.
+
+\Item{11.} $x = 35$, $y = 20$.
+
+\Item{12.} $x = 2$, $y = 1$.
+
+\Item{13.} $x = 1$, $y = 2$.
+
+\Item{14.} $x = 3$, $y = 2$.
+
+\Item{15.} $x = 1$, $y = 2$.
+
+\Item{16.} $x = 4$, $y = 3$.
+
+\Item{17.} $x = 12$, $y = 4$.
+
+\Item{18.} $x = 12$, $y = 21$.
+
+\Item{19.} $x = 5$, $y = 7$.
+
+\Item{20.} $x = 5$, $y = 2$.
+
+\Item{21.} $x = 18$, $y = 6$.
+
+\Item{22.} $x = 3$, $y = 2$.
+
+\Item{23.} $x = 3$, $y = 2$.
+
+\Item{24.} $x = 7$, $y = 8$.
+
+\Item{25.} $x = 8$, $y = -2$.
+
+\Item{26.} $x = \dfrac{a}{(a - b)}$, $y = \dfrac{b}{(a + b)}$.
+
+
+\AnsTo[2]{Exercise}{66.} % Page 127.
+
+\Item{1.} A, \$$520$; B, \$$440$.
+
+\Item{2.} $23$~and~$17$.
+
+\Item{3.} $20$~and~$16$.
+
+\Item{4.} Velvet, \$$6$; silk, \$$3$.
+
+\Item{5.} Wheat, \$$1$; rye, \$$\frac{4}{5}$.
+
+\Item{6.} Tea, \$$\frac{1}{2}$; coffee, \$$\frac{1}{4}$.
+
+\Item{7.} Horse, \$$92$; cow, \$$64$.
+%% -----File: 188.png---Folio 182-------
+
+
+\AnsTo[5]{Exercise}{67.} % Page 128.
+
+\Item{1.} $\frac{3}{7}$.
+
+\Item{2.} $\frac{13}{25}$.
+
+\Item{3.} $\frac{3}{20}$.
+
+\Item{4.} $\frac{5}{21}$.
+
+\Item{5.} $\frac{7}{22}$.
+
+
+\AnsTo[4]{Exercise}{68.} % Page 129.
+
+\Item{1.} $45$.
+
+\Item{2.} $72$.
+
+\Item{3.} $75$~and~$57$.
+
+\Item{4.} $54$.
+
+
+\AnsTo{Exercise}{69.} % Page 130.
+
+\Item{1.} \$$2500$ at $4$\%.
+
+\Item{2.} \$$1600$ at $6$\%.
+
+\Item{3.} \$$6000$ at $4$\%; \$$4000$ at $5$\%.
+
+
+\AnsTo[4]{Exercise}{70.} % Page 131.
+
+\Item{1.} $22$~and~$18$.
+
+\Item{2.} $60$~and~$8$.
+
+\Item{3.} $\frac{14}{17}$.
+
+\Item{4.} Wheat, \$$1$; barley, \$$\frac{4}{5}$.
+
+\Item{5.} A, \$$235$; B, \$$65$.
+
+\Item{6.} A, \$$70$; B, \$$30$.
+
+\Item{7.} Lemon, $2$~cts.; orange, $3$~cts.
+
+\Item{8.} A, $30$~apples; B, $10$~apples.
+
+
+\AnsTo[4]{Exercise}{71.} % Page 134.
+
+\Item{1.} $±2$.
+
+\Item{2.} $±3$.
+
+\Item{3.} $±5$.
+
+\Item{4.} $±8$.
+
+\Item{5.} $±7$.
+
+\Item{6.} $±5$.
+
+\Item{7.} $±5$.
+
+\Item{8.} $±3$.
+
+\Item{9.} $±3$.
+
+\Item{10.} $±3$.
+
+\Item{11.} $12$~and~$16$.
+
+\Item{12.} $12$~oranges at $3$~cts.
+
+\Item{13.} $3$~rods.
+
+\Item{14.} Width, $12$~rd.; length, $48$~rd.
+
+
+\AnsTo{Exercise}{72.} % Page 137.
+
+\Item{1.} $9$~or~$3$.
+
+\Item{2.} $4$~or~$2$.
+
+\Item{3.} $3$~or~$1$.
+
+\Item{4.} $1$~or~$-\frac{1}{5}$.
+
+\Item{5.} $1$~or~$-3$.
+
+\Item{6.} $\frac{4}{3}$~or~$\frac{4}{3}$.
+
+\Item{7.} $1$~or~$-\frac{1}{6}$.
+
+\Item{8.} $3$~or~$-1$.
+
+\Item{9.} $\frac{3}{4}$~or~$\frac{1}{4}$.
+
+\Item{10.} $3$~or~$\frac{1}{3}$.
+
+\Item{11.} $17$~or~$-3$.
+
+\Item{12.} $25$~or~$9$.
+
+\Item{13.} $4$~or~$-5$.
+
+\Item{14.} $4$~or~$-3$.
+
+\Item{15.} $5$~or~$1$.
+
+\Item{16.} $2$~or~$-6$.
+
+\Item{17.} $2$~or~$2$.
+
+\Item{18.} $5$~or~$-11$.
+
+\Item{19.} $2$~or~$-5\frac{1}{3}$.
+
+\Item{20.} $4\frac{1}{3}$~or~$-3\frac{2}{3}$.
+
+\Item{21.} $2$~or~$\frac{1}{3}$.
+
+\Item{22.} $4$~or~$-\frac{2}{5}$.
+
+\Item{23.} $2$~or~$-3$.
+
+\Item{24.} $10$~or~$2$.
+
+\Item{25.} $3$~or~$-2\frac{1}{3}$.
+
+\Item{26.} $2$~or~$2$.
+
+\Item{27.} $\frac{1}{2}$~or~$-3$.
+
+\Item{28.} $5$~or~$\frac{1}{2}$.
+
+\Item{29.} $7$~or~$2$.
+
+\Item{30.} $4$~or~$-\frac{2}{3}$.
+
+\Item{31.} $8$~or~$2$.
+
+\Item{32.} $4$~or~$-7$.
+
+\Item{33.} $0$~or~$3$.
+
+\Item{34.} $0$~or~$7$.
+
+\Item{35.} $5$~or~$2$.
+
+\Item{36.} $4$~or~$-1$.
+%% -----File: 189.png---Folio 183-------
+
+
+\AnsTo{Exercise}{73.} % Page 140.
+
+\Item{1.} $6$~and~$5$.
+
+\Item{2.} $5$~and~$15$.
+
+\Item{3.} Son, $8$~yr.; father, $40$~yr.
+
+\Item{4.} $9$.
+
+\Item{6.} $5$~rd.\ by $7$~rd.
+
+\Item{7.} $12$~ft.
+
+\Item{8.} $20$~ft.\ by $18$~ft.
+
+\Item{9.} $10$~rd.\ by $12$~rd.
+
+\Item{10.} Son, $10$~yr.; father, $54$~yr.
+
+
+\AnsTo{Exercise}{74.} % Page 141.
+
+\Item{1.} $6$~miles an hour.
+
+\Item{2.} $7$.
+
+\Item{3.} $5$.
+
+\Item{4.} $8$.
+
+\Item{5.} $36$.
+
+
+\AnsTo[4]{Exercise}{75.} % Page 144.
+
+\Item{1.} $75$.
+
+\Item{2.} $38$.
+
+\Item{3.} $4\frac{1}{7}$.
+
+\Item{4.} $-8\frac{3}{4}$.
+
+\Item{5.} $23$.
+
+\Item{6.} $0$.
+
+\Item{7.} $156$.
+
+\Item{8.} $20$th.
+
+\Item{9.} $101$st.
+
+\Item{10.} $26$.
+
+\Item{11.} $a$.
+
+\Item{12.} $21$, $22$,~etc.
+
+
+\AnsTo[4]{Exercise}{76.} % Page 146.
+
+\Item{1.} $440$.
+
+\Item{2.} $201$.
+
+\Item{3.} $4frac{1}{6}$.
+
+\Item{4.} $128$.
+
+\Item{5.} $-378$.
+
+\Item{6.} $187\frac{1}{2}$.
+
+\Item{7.} $1$, $3$, $5$.
+
+\Item{8.} $156$.
+
+\Item{9.} $300$.
+
+\Item{10.} $2550$~yd.
+
+\Item{11.} $5812.1$~ft.
+
+\Item{12.} $144.9$~ft.
+
+\Item{13.} $11$, $15$.
+
+\Item{14.} $7$, $9$, $11$.
+
+\Item{15.} $12$~miles.
+
+\Item{16.} $5$, $12$, $19$.
+
+
+\AnsTo[4]{Exercise}{77.} % Page 151.
+
+\Item{1.} $243$.
+
+\Item{2.} $192$.
+
+\Item{3.} $\frac{3}{64}$.
+
+\Item{4.} $256$.
+
+\Item{5.} $±4$.
+
+\Item{6.} $±4$.
+
+\Item{7.} $1092$.
+
+\Item{8.} $765$.
+
+\Item{9.} $11\frac{29}{32}$.
+
+\Item{10.} $15\frac{15}{16}$.
+
+\Item{11.} $127\frac{3}{4}$.
+
+\Item{12.} $44$.
+
+\Item{13.} $1\frac{11}{54}$.
+
+\Item{14.} \$$1.27$.
+
+\Item{15.} \$$81.90$.
+
+\Item{16.} $14,641$.
+
+
+\AnsTo{Exercise}{78.} % Page 153.
+
+\Item{1.} $a + b + c$.
+
+\Item{2.} $x^{2} + x + 1$.
+
+\Item{3.} $x^{2} - 2xy + y^{2}$.
+
+\Item{4.} $2a^{2} - 3ab + 5b^{2}$.
+
+\Item{5.} $4x^{3} + 3x^{2}y - 2y^{3}$.
+
+\Item{6.} $2x^{3} - xy^{2} + 3y^{3}$.
+
+
+\AnsTo[4]{Exercise}{79.} % Page 156.
+
+\Item{1.} $18$.
+
+\Item{2.} $21$.
+
+\Item{3.} $23$.
+
+\Item{4.} $31$.
+
+\Item{5.} $3.2$.
+
+\Item{6.} $7.3$.
+
+\Item{7.} $232$.
+
+\Item{8.} $785$.
+
+\Item{9.} $1225$.
+
+\Item{10.} $589$.
+
+\Item{11.} $5601$.
+
+\Item{12.} $1234$.
+
+\Item{13.} $1.4142\dots$
+
+\Item{14.} $1.7320\dots$
+
+\Item{15.} $2.2360\dots$
+
+\Item{16.} $2.4494\dots$
+
+\Item{17.} $0.7071\dots$
+
+\Item{18.} $0.9486\dots$
+
+\Item{19.} $0.8164\dots$
+
+\Item{20.} $0.8660\dots$
+
+\Item{21.} $0.8944\dots$
+
+\Item{22.} $0.7905\dots$
+%% -----File: 190.png---Folio 184-------
+
+
+\AnsTo{Exercise}{80.} % Page 159.
+
+\Item{1.} $x + y$.
+
+\Item{2.} $2x - 1$.
+
+\Item{3.} $2x - 3y$.
+
+\Item{4.} $4a - 3x$.
+
+\Item{5.} $1 + x + x^{2}$.
+
+\Item{6.} $x^{2} - x + 1$.
+
+
+\AnsTo[4]{Exercise}{81.} % Page 163.
+
+\Item{1.} $36$.
+
+\Item{2.} $35$.
+
+\Item{3.} $45$.
+
+\Item{4.} $65$.
+
+\Item{5.} $48$.
+
+\Item{6.} $637$.
+
+\Item{7.} $478$.
+
+\Item{8.} $638$.
+
+\Item{9.} $503$.
+
+\Item{10.} $728$.
+
+\Item{11.} $12.34$.
+
+\Item{12.} $12.25$.
+
+\Item{13.} $0.2154\dots$
+
+\Item{14.} $0.3684\dots$
+
+\Item{15.} $0.5848\dots$
+
+\Item{16.} $1.5874\dots$
+
+\Item{17.} $2.1544\dots$
+
+\Item{18.} $4.4310\dots$
+
+\Item{19.} $1.3572\dots$
+
+\Item{20.} $1.2703\dots$
+
+\Item{21.} $1.4454\dots$
+
+\Item{22.} $0.8735\dots$
+
+\Item{23.} $0.9085\dots$
+
+\Item{24.} $0.9352\dots$
+%[** TN: Environment opened by \AnsTo]
+\end{multicols}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%% GUTENBERG LICENSE %%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\BackMatter
+\begin{PGtext}
+End of the Project Gutenberg EBook of The First Steps in Algebra, by
+G. A. (George Albert) Wentworth
+
+*** END OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA ***
+
+***** This file should be named 36670-t.tex or 36670-t.zip *****
+This and all associated files of various formats will be found in:
+ http://www.gutenberg.org/3/6/6/7/36670/
+
+Produced by Andrew D. Hwang, Peter Vachuska, Chuck Greif
+and the Online Distributed Proofreading Team at
+http://www.pgdp.net.
+
+
+Updated editions will replace the previous one--the old editions
+will be renamed.
+
+Creating the works from public domain print editions means that no
+one owns a United States copyright in these works, so the Foundation
+(and you!) can copy and distribute it in the United States without
+permission and without paying copyright royalties. Special rules,
+set forth in the General Terms of Use part of this license, apply to
+copying and distributing Project Gutenberg-tm electronic works to
+protect the PROJECT GUTENBERG-tm concept and trademark. Project
+Gutenberg is a registered trademark, and may not be used if you
+charge for the eBooks, unless you receive specific permission. If you
+do not charge anything for copies of this eBook, complying with the
+rules is very easy. You may use this eBook for nearly any purpose
+such as creation of derivative works, reports, performances and
+research. They may be modified and printed and given away--you may do
+practically ANYTHING with public domain eBooks. Redistribution is
+subject to the trademark license, especially commercial
+redistribution.
+
+
+
+*** START: FULL LICENSE ***
+
+THE FULL PROJECT GUTENBERG LICENSE
+PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
+
+To protect the Project Gutenberg-tm mission of promoting the free
+distribution of electronic works, by using or distributing this work
+(or any other work associated in any way with the phrase "Project
+Gutenberg"), you agree to comply with all the terms of the Full Project
+Gutenberg-tm License (available with this file or online at
+http://gutenberg.net/license).
+
+
+Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
+electronic works
+
+1.A. By reading or using any part of this Project Gutenberg-tm
+electronic work, you indicate that you have read, understand, agree to
+and accept all the terms of this license and intellectual property
+(trademark/copyright) agreement. If you do not agree to abide by all
+the terms of this agreement, you must cease using and return or destroy
+all copies of Project Gutenberg-tm electronic works in your possession.
+If you paid a fee for obtaining a copy of or access to a Project
+Gutenberg-tm electronic work and you do not agree to be bound by the
+terms of this agreement, you may obtain a refund from the person or
+entity to whom you paid the fee as set forth in paragraph 1.E.8.
+
+1.B. "Project Gutenberg" is a registered trademark. It may only be
+used on or associated in any way with an electronic work by people who
+agree to be bound by the terms of this agreement. There are a few
+things that you can do with most Project Gutenberg-tm electronic works
+even without complying with the full terms of this agreement. See
+paragraph 1.C below. There are a lot of things you can do with Project
+Gutenberg-tm electronic works if you follow the terms of this agreement
+and help preserve free future access to Project Gutenberg-tm electronic
+works. See paragraph 1.E below.
+
+1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
+or PGLAF), owns a compilation copyright in the collection of Project
+Gutenberg-tm electronic works. Nearly all the individual works in the
+collection are in the public domain in the United States. If an
+individual work is in the public domain in the United States and you are
+located in the United States, we do not claim a right to prevent you from
+copying, distributing, performing, displaying or creating derivative
+works based on the work as long as all references to Project Gutenberg
+are removed. Of course, we hope that you will support the Project
+Gutenberg-tm mission of promoting free access to electronic works by
+freely sharing Project Gutenberg-tm works in compliance with the terms of
+this agreement for keeping the Project Gutenberg-tm name associated with
+the work. You can easily comply with the terms of this agreement by
+keeping this work in the same format with its attached full Project
+Gutenberg-tm License when you share it without charge with others.
+
+1.D. The copyright laws of the place where you are located also govern
+what you can do with this work. Copyright laws in most countries are in
+a constant state of change. If you are outside the United States, check
+the laws of your country in addition to the terms of this agreement
+before downloading, copying, displaying, performing, distributing or
+creating derivative works based on this work or any other Project
+Gutenberg-tm work. The Foundation makes no representations concerning
+the copyright status of any work in any country outside the United
+States.
+
+1.E. Unless you have removed all references to Project Gutenberg:
+
+1.E.1. The following sentence, with active links to, or other immediate
+access to, the full Project Gutenberg-tm License must appear prominently
+whenever any copy of a Project Gutenberg-tm work (any work on which the
+phrase "Project Gutenberg" appears, or with which the phrase "Project
+Gutenberg" is associated) is accessed, displayed, performed, viewed,
+copied or distributed:
+
+This eBook is for the use of anyone anywhere at no cost and with
+almost no restrictions whatsoever. You may copy it, give it away or
+re-use it under the terms of the Project Gutenberg License included
+with this eBook or online at www.gutenberg.net
+
+1.E.2. If an individual Project Gutenberg-tm electronic work is derived
+from the public domain (does not contain a notice indicating that it is
+posted with permission of the copyright holder), the work can be copied
+and distributed to anyone in the United States without paying any fees
+or charges. If you are redistributing or providing access to a work
+with the phrase "Project Gutenberg" associated with or appearing on the
+work, you must comply either with the requirements of paragraphs 1.E.1
+through 1.E.7 or obtain permission for the use of the work and the
+Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
+1.E.9.
+
+1.E.3. If an individual Project Gutenberg-tm electronic work is posted
+with the permission of the copyright holder, your use and distribution
+must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
+terms imposed by the copyright holder. Additional terms will be linked
+to the Project Gutenberg-tm License for all works posted with the
+permission of the copyright holder found at the beginning of this work.
+
+1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
+License terms from this work, or any files containing a part of this
+work or any other work associated with Project Gutenberg-tm.
+
+1.E.5. Do not copy, display, perform, distribute or redistribute this
+electronic work, or any part of this electronic work, without
+prominently displaying the sentence set forth in paragraph 1.E.1 with
+active links or immediate access to the full terms of the Project
+Gutenberg-tm License.
+
+1.E.6. You may convert to and distribute this work in any binary,
+compressed, marked up, nonproprietary or proprietary form, including any
+word processing or hypertext form. However, if you provide access to or
+distribute copies of a Project Gutenberg-tm work in a format other than
+"Plain Vanilla ASCII" or other format used in the official version
+posted on the official Project Gutenberg-tm web site (www.gutenberg.net),
+you must, at no additional cost, fee or expense to the user, provide a
+copy, a means of exporting a copy, or a means of obtaining a copy upon
+request, of the work in its original "Plain Vanilla ASCII" or other
+form. Any alternate format must include the full Project Gutenberg-tm
+License as specified in paragraph 1.E.1.
+
+1.E.7. Do not charge a fee for access to, viewing, displaying,
+performing, copying or distributing any Project Gutenberg-tm works
+unless you comply with paragraph 1.E.8 or 1.E.9.
+
+1.E.8. You may charge a reasonable fee for copies of or providing
+access to or distributing Project Gutenberg-tm electronic works provided
+that
+
+- You pay a royalty fee of 20% of the gross profits you derive from
+ the use of Project Gutenberg-tm works calculated using the method
+ you already use to calculate your applicable taxes. The fee is
+ owed to the owner of the Project Gutenberg-tm trademark, but he
+ has agreed to donate royalties under this paragraph to the
+ Project Gutenberg Literary Archive Foundation. Royalty payments
+ must be paid within 60 days following each date on which you
+ prepare (or are legally required to prepare) your periodic tax
+ returns. Royalty payments should be clearly marked as such and
+ sent to the Project Gutenberg Literary Archive Foundation at the
+ address specified in Section 4, "Information about donations to
+ the Project Gutenberg Literary Archive Foundation."
+
+- You provide a full refund of any money paid by a user who notifies
+ you in writing (or by e-mail) within 30 days of receipt that s/he
+ does not agree to the terms of the full Project Gutenberg-tm
+ License. You must require such a user to return or
+ destroy all copies of the works possessed in a physical medium
+ and discontinue all use of and all access to other copies of
+ Project Gutenberg-tm works.
+
+- You provide, in accordance with paragraph 1.F.3, a full refund of any
+ money paid for a work or a replacement copy, if a defect in the
+ electronic work is discovered and reported to you within 90 days
+ of receipt of the work.
+
+- You comply with all other terms of this agreement for free
+ distribution of Project Gutenberg-tm works.
+
+1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
+electronic work or group of works on different terms than are set
+forth in this agreement, you must obtain permission in writing from
+both the Project Gutenberg Literary Archive Foundation and Michael
+Hart, the owner of the Project Gutenberg-tm trademark. Contact the
+Foundation as set forth in Section 3 below.
+
+1.F.
+
+1.F.1. Project Gutenberg volunteers and employees expend considerable
+effort to identify, do copyright research on, transcribe and proofread
+public domain works in creating the Project Gutenberg-tm
+collection. Despite these efforts, Project Gutenberg-tm electronic
+works, and the medium on which they may be stored, may contain
+"Defects," such as, but not limited to, incomplete, inaccurate or
+corrupt data, transcription errors, a copyright or other intellectual
+property infringement, a defective or damaged disk or other medium, a
+computer virus, or computer codes that damage or cannot be read by
+your equipment.
+
+1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
+of Replacement or Refund" described in paragraph 1.F.3, the Project
+Gutenberg Literary Archive Foundation, the owner of the Project
+Gutenberg-tm trademark, and any other party distributing a Project
+Gutenberg-tm electronic work under this agreement, disclaim all
+liability to you for damages, costs and expenses, including legal
+fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
+LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
+PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
+TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
+LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
+INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
+DAMAGE.
+
+1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
+defect in this electronic work within 90 days of receiving it, you can
+receive a refund of the money (if any) you paid for it by sending a
+written explanation to the person you received the work from. If you
+received the work on a physical medium, you must return the medium with
+your written explanation. The person or entity that provided you with
+the defective work may elect to provide a replacement copy in lieu of a
+refund. If you received the work electronically, the person or entity
+providing it to you may choose to give you a second opportunity to
+receive the work electronically in lieu of a refund. If the second copy
+is also defective, you may demand a refund in writing without further
+opportunities to fix the problem.
+
+1.F.4. Except for the limited right of replacement or refund set forth
+in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER
+WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.
+
+1.F.5. Some states do not allow disclaimers of certain implied
+warranties or the exclusion or limitation of certain types of damages.
+If any disclaimer or limitation set forth in this agreement violates the
+law of the state applicable to this agreement, the agreement shall be
+interpreted to make the maximum disclaimer or limitation permitted by
+the applicable state law. The invalidity or unenforceability of any
+provision of this agreement shall not void the remaining provisions.
+
+1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
+trademark owner, any agent or employee of the Foundation, anyone
+providing copies of Project Gutenberg-tm electronic works in accordance
+with this agreement, and any volunteers associated with the production,
+promotion and distribution of Project Gutenberg-tm electronic works,
+harmless from all liability, costs and expenses, including legal fees,
+that arise directly or indirectly from any of the following which you do
+or cause to occur: (a) distribution of this or any Project Gutenberg-tm
+work, (b) alteration, modification, or additions or deletions to any
+Project Gutenberg-tm work, and (c) any Defect you cause.
+
+
+Section 2. Information about the Mission of Project Gutenberg-tm
+
+Project Gutenberg-tm is synonymous with the free distribution of
+electronic works in formats readable by the widest variety of computers
+including obsolete, old, middle-aged and new computers. It exists
+because of the efforts of hundreds of volunteers and donations from
+people in all walks of life.
+
+Volunteers and financial support to provide volunteers with the
+assistance they need are critical to reaching Project Gutenberg-tm's
+goals and ensuring that the Project Gutenberg-tm collection will
+remain freely available for generations to come. In 2001, the Project
+Gutenberg Literary Archive Foundation was created to provide a secure
+and permanent future for Project Gutenberg-tm and future generations.
+To learn more about the Project Gutenberg Literary Archive Foundation
+and how your efforts and donations can help, see Sections 3 and 4
+and the Foundation web page at http://www.pglaf.org.
+
+
+Section 3. Information about the Project Gutenberg Literary Archive
+Foundation
+
+The Project Gutenberg Literary Archive Foundation is a non profit
+501(c)(3) educational corporation organized under the laws of the
+state of Mississippi and granted tax exempt status by the Internal
+Revenue Service. The Foundation's EIN or federal tax identification
+number is 64-6221541. Its 501(c)(3) letter is posted at
+http://pglaf.org/fundraising. Contributions to the Project Gutenberg
+Literary Archive Foundation are tax deductible to the full extent
+permitted by U.S. federal laws and your state's laws.
+
+The Foundation's principal office is located at 4557 Melan Dr. S.
+Fairbanks, AK, 99712., but its volunteers and employees are scattered
+throughout numerous locations. Its business office is located at
+809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
+business@pglaf.org. Email contact links and up to date contact
+information can be found at the Foundation's web site and official
+page at http://pglaf.org
+
+For additional contact information:
+ Dr. Gregory B. Newby
+ Chief Executive and Director
+ gbnewby@pglaf.org
+
+
+Section 4. Information about Donations to the Project Gutenberg
+Literary Archive Foundation
+
+Project Gutenberg-tm depends upon and cannot survive without wide
+spread public support and donations to carry out its mission of
+increasing the number of public domain and licensed works that can be
+freely distributed in machine readable form accessible by the widest
+array of equipment including outdated equipment. Many small donations
+($1 to $5,000) are particularly important to maintaining tax exempt
+status with the IRS.
+
+The Foundation is committed to complying with the laws regulating
+charities and charitable donations in all 50 states of the United
+States. Compliance requirements are not uniform and it takes a
+considerable effort, much paperwork and many fees to meet and keep up
+with these requirements. We do not solicit donations in locations
+where we have not received written confirmation of compliance. To
+SEND DONATIONS or determine the status of compliance for any
+particular state visit http://pglaf.org
+
+While we cannot and do not solicit contributions from states where we
+have not met the solicitation requirements, we know of no prohibition
+against accepting unsolicited donations from donors in such states who
+approach us with offers to donate.
+
+International donations are gratefully accepted, but we cannot make
+any statements concerning tax treatment of donations received from
+outside the United States. U.S. laws alone swamp our small staff.
+
+Please check the Project Gutenberg Web pages for current donation
+methods and addresses. Donations are accepted in a number of other
+ways including including checks, online payments and credit card
+donations. To donate, please visit: http://pglaf.org/donate
+
+
+Section 5. General Information About Project Gutenberg-tm electronic
+works.
+
+Professor Michael S. Hart is the originator of the Project Gutenberg-tm
+concept of a library of electronic works that could be freely shared
+with anyone. For thirty years, he produced and distributed Project
+Gutenberg-tm eBooks with only a loose network of volunteer support.
+
+
+Project Gutenberg-tm eBooks are often created from several printed
+editions, all of which are confirmed as Public Domain in the U.S.
+unless a copyright notice is included. Thus, we do not necessarily
+keep eBooks in compliance with any particular paper edition.
+
+
+Most people start at our Web site which has the main PG search facility:
+
+ http://www.gutenberg.net
+
+This Web site includes information about Project Gutenberg-tm,
+including how to make donations to the Project Gutenberg Literary
+Archive Foundation, how to help produce our new eBooks, and how to
+subscribe to our email newsletter to hear about new eBooks.
+\end{PGtext}
+
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+% %
+% End of the Project Gutenberg EBook of The First Steps in Algebra, by %
+% G. A. (George Albert) Wentworth %
+% %
+% *** END OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA *** %
+% %
+% ***** This file should be named 36670-t.tex or 36670-t.zip ***** %
+% This and all associated files of various formats will be found in: %
+% http://www.gutenberg.org/3/6/6/7/36670/ %
+% %
+% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
+
+\end{document}
+###
+@ControlwordReplace = (
+ ['\\Answers', 'Answers.'],
+ ['\\Preface', 'Preface.'],
+ ['\\end{Remark}', ''],
+ ['\\end{Soln}', ''],
+ ['\\end{Theorem}', ''],
+ ['\\HCF', 'H.C.F.'],
+ ['\\LCD', 'L.C.D.'],
+ ['\\LCM', 'L.C.M.'],
+ ['\\end{multicols}', '']
+ );
+
+@MathEnvironments = (
+ ['\\begin{DPalign*}','\\end{DPalign*}','<DPALIGN>'],
+ ['\\begin{DPgather*}','\\end{DPgather*}','<DPGATHER>']
+ );
+
+@ControlwordArguments = (
+ ['\\BookMark', 1, 0, '', '', 1, 0, '', ''],
+ ['\\Chapter', 1, 1, 'Chapter ', ' ', 1, 1, '', ''],
+ ['\\Section', 1, 1, '', ''],
+ ['\\Exercise', 0, 0, '', '', 1, 1, 'Exercise ', ''],
+ ['\\AnsTo', 0, 0, '', '', 1, 1, '', ' ', 1, 1, '', ''],
+ ['\\Paragraph', 1, 1, '', ''],
+ ['\\Signature', 1, 1, '', ' ', 1, 1, '', ''],
+ ['\\begin{Remark}', 0, 1, '', ''],
+ ['\\begin{Soln}', 0, 1, '', ''],
+ ['\\begin{Theorem}', 0, 1, '', ''],
+ ['\\Graphic', 1, 0, '<GRAPHIC>', ''],
+ ['\\Item', 0, 0, '', '', 1, 1, '', ''],
+ ['\\Ans', 1, 1, '', ' Ans.'],
+ ['\\First', 1, 1, '', ''],
+ ['\\tb', 0, 0, '', ''],
+ ['\\Defn', 1, 1, '', ''],
+ ['\\Dictum', 1, 1, '', ''],
+ ['\\DPtypo', 1, 0, '', '', 1, 1, '', ''],
+ ['\\Add', 1, 1, '', ''],
+ ['\\ResetCols', 0, 0, '', ''],
+ ['\\begin{multicols}', 1, 0, '', '']
+ );
+###
+This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) (format=pdflatex 2010.5.6) 8 JUL 2011 19:42
+entering extended mode
+ %&-line parsing enabled.
+**36670-t.tex
+(./36670-t.tex
+LaTeX2e <2005/12/01>
+Babel <v3.8h> and hyphenation patterns for english, usenglishmax, dumylang, noh
+yphenation, arabic, farsi, croatian, ukrainian, russian, bulgarian, czech, slov
+ak, danish, dutch, finnish, basque, french, german, ngerman, ibycus, greek, mon
+ogreek, ancientgreek, hungarian, italian, latin, mongolian, norsk, icelandic, i
+nterlingua, turkish, coptic, romanian, welsh, serbian, slovenian, estonian, esp
+eranto, uppersorbian, indonesian, polish, portuguese, spanish, catalan, galicia
+n, swedish, ukenglish, pinyin, loaded.
+(/usr/share/texmf-texlive/tex/latex/base/book.cls
+Document Class: book 2005/09/16 v1.4f Standard LaTeX document class
+(/usr/share/texmf-texlive/tex/latex/base/bk12.clo
+File: bk12.clo 2005/09/16 v1.4f Standard LaTeX file (size option)
+)
+\c@part=\count79
+\c@chapter=\count80
+\c@section=\count81
+\c@subsection=\count82
+\c@subsubsection=\count83
+\c@paragraph=\count84
+\c@subparagraph=\count85
+\c@figure=\count86
+\c@table=\count87
+\abovecaptionskip=\skip41
+\belowcaptionskip=\skip42
+\bibindent=\dimen102
+) (/usr/share/texmf-texlive/tex/latex/base/inputenc.sty
+Package: inputenc 2006/05/05 v1.1b Input encoding file
+\inpenc@prehook=\toks14
+\inpenc@posthook=\toks15
+(/usr/share/texmf-texlive/tex/latex/base/latin1.def
+File: latin1.def 2006/05/05 v1.1b Input encoding file
+)) (/usr/share/texmf-texlive/tex/latex/base/ifthen.sty
+Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)
+) (/usr/share/texmf-texlive/tex/latex/amsmath/amsmath.sty
+Package: amsmath 2000/07/18 v2.13 AMS math features
+\@mathmargin=\skip43
+For additional information on amsmath, use the `?' option.
+(/usr/share/texmf-texlive/tex/latex/amsmath/amstext.sty
+Package: amstext 2000/06/29 v2.01
+(/usr/share/texmf-texlive/tex/latex/amsmath/amsgen.sty
+File: amsgen.sty 1999/11/30 v2.0
+\@emptytoks=\toks16
+\ex@=\dimen103
+)) (/usr/share/texmf-texlive/tex/latex/amsmath/amsbsy.sty
+Package: amsbsy 1999/11/29 v1.2d
+\pmbraise@=\dimen104
+) (/usr/share/texmf-texlive/tex/latex/amsmath/amsopn.sty
+Package: amsopn 1999/12/14 v2.01 operator names
+)
+\inf@bad=\count88
+LaTeX Info: Redefining \frac on input line 211.
+\uproot@=\count89
+\leftroot@=\count90
+LaTeX Info: Redefining \overline on input line 307.
+\classnum@=\count91
+\DOTSCASE@=\count92
+LaTeX Info: Redefining \ldots on input line 379.
+LaTeX Info: Redefining \dots on input line 382.
+LaTeX Info: Redefining \cdots on input line 467.
+\Mathstrutbox@=\box26
+\strutbox@=\box27
+\big@size=\dimen105
+LaTeX Font Info: Redeclaring font encoding OML on input line 567.
+LaTeX Font Info: Redeclaring font encoding OMS on input line 568.
+\macc@depth=\count93
+\c@MaxMatrixCols=\count94
+\dotsspace@=\muskip10
+\c@parentequation=\count95
+\dspbrk@lvl=\count96
+\tag@help=\toks17
+\row@=\count97
+\column@=\count98
+\maxfields@=\count99
+\andhelp@=\toks18
+\eqnshift@=\dimen106
+\alignsep@=\dimen107
+\tagshift@=\dimen108
+\tagwidth@=\dimen109
+\totwidth@=\dimen110
+\lineht@=\dimen111
+\@envbody=\toks19
+\multlinegap=\skip44
+\multlinetaggap=\skip45
+\mathdisplay@stack=\toks20
+LaTeX Info: Redefining \[ on input line 2666.
+LaTeX Info: Redefining \] on input line 2667.
+) (/usr/share/texmf-texlive/tex/latex/amsfonts/amssymb.sty
+Package: amssymb 2002/01/22 v2.2d
+(/usr/share/texmf-texlive/tex/latex/amsfonts/amsfonts.sty
+Package: amsfonts 2001/10/25 v2.2f
+\symAMSa=\mathgroup4
+\symAMSb=\mathgroup5
+LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
+(Font) U/euf/m/n --> U/euf/b/n on input line 132.
+)) (/usr/share/texmf-texlive/tex/latex/base/alltt.sty
+Package: alltt 1997/06/16 v2.0g defines alltt environment
+) (/usr/share/texmf-texlive/tex/latex/tools/array.sty
+Package: array 2005/08/23 v2.4b Tabular extension package (FMi)
+\col@sep=\dimen112
+\extrarowheight=\dimen113
+\NC@list=\toks21
+\extratabsurround=\skip46
+\backup@length=\skip47
+) (/usr/share/texmf-texlive/tex/latex/tools/multicol.sty
+Package: multicol 2006/05/18 v1.6g multicolumn formatting (FMi)
+\c@tracingmulticols=\count100
+\mult@box=\box28
+\multicol@leftmargin=\dimen114
+\c@unbalance=\count101
+\c@collectmore=\count102
+\doublecol@number=\count103
+\multicoltolerance=\count104
+\multicolpretolerance=\count105
+\full@width=\dimen115
+\page@free=\dimen116
+\premulticols=\dimen117
+\postmulticols=\dimen118
+\multicolsep=\skip48
+\multicolbaselineskip=\skip49
+\partial@page=\box29
+\last@line=\box30
+\mult@rightbox=\box31
+\mult@grightbox=\box32
+\mult@gfirstbox=\box33
+\mult@firstbox=\box34
+\@tempa=\box35
+\@tempa=\box36
+\@tempa=\box37
+\@tempa=\box38
+\@tempa=\box39
+\@tempa=\box40
+\@tempa=\box41
+\@tempa=\box42
+\@tempa=\box43
+\@tempa=\box44
+\@tempa=\box45
+\@tempa=\box46
+\@tempa=\box47
+\@tempa=\box48
+\@tempa=\box49
+\@tempa=\box50
+\@tempa=\box51
+\c@columnbadness=\count106
+\c@finalcolumnbadness=\count107
+\last@try=\dimen119
+\multicolovershoot=\dimen120
+\multicolundershoot=\dimen121
+\mult@nat@firstbox=\box52
+\colbreak@box=\box53
+) (/usr/share/texmf-texlive/tex/latex/graphics/graphicx.sty
+Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
+(/usr/share/texmf-texlive/tex/latex/graphics/keyval.sty
+Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
+\KV@toks@=\toks22
+) (/usr/share/texmf-texlive/tex/latex/graphics/graphics.sty
+Package: graphics 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR)
+(/usr/share/texmf-texlive/tex/latex/graphics/trig.sty
+Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
+) (/etc/texmf/tex/latex/config/graphics.cfg
+File: graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive
+)
+Package graphics Info: Driver file: pdftex.def on input line 90.
+(/usr/share/texmf-texlive/tex/latex/pdftex-def/pdftex.def
+File: pdftex.def 2007/01/08 v0.04d Graphics/color for pdfTeX
+\Gread@gobject=\count108
+))
+\Gin@req@height=\dimen122
+\Gin@req@width=\dimen123
+) (/usr/share/texmf-texlive/tex/latex/tools/indentfirst.sty
+Package: indentfirst 1995/11/23 v1.03 Indent first paragraph (DPC)
+) (/usr/share/texmf-texlive/tex/latex/textcase/textcase.sty
+Package: textcase 2004/10/07 v0.07 Text only upper/lower case changing (DPC)
+) (/usr/share/texmf-texlive/tex/latex/tools/calc.sty
+Package: calc 2005/08/06 v4.2 Infix arithmetic (KKT,FJ)
+\calc@Acount=\count109
+\calc@Bcount=\count110
+\calc@Adimen=\dimen124
+\calc@Bdimen=\dimen125
+\calc@Askip=\skip50
+\calc@Bskip=\skip51
+LaTeX Info: Redefining \setlength on input line 75.
+LaTeX Info: Redefining \addtolength on input line 76.
+\calc@Ccount=\count111
+\calc@Cskip=\skip52
+) (/usr/share/texmf-texlive/tex/latex/fancyhdr/fancyhdr.sty
+\fancy@headwidth=\skip53
+\f@ncyO@elh=\skip54
+\f@ncyO@erh=\skip55
+\f@ncyO@olh=\skip56
+\f@ncyO@orh=\skip57
+\f@ncyO@elf=\skip58
+\f@ncyO@erf=\skip59
+\f@ncyO@olf=\skip60
+\f@ncyO@orf=\skip61
+) (/usr/share/texmf-texlive/tex/latex/geometry/geometry.sty
+Package: geometry 2002/07/08 v3.2 Page Geometry
+\Gm@cnth=\count112
+\Gm@cntv=\count113
+\c@Gm@tempcnt=\count114
+\Gm@bindingoffset=\dimen126
+\Gm@wd@mp=\dimen127
+\Gm@odd@mp=\dimen128
+\Gm@even@mp=\dimen129
+\Gm@dimlist=\toks23
+(/usr/share/texmf-texlive/tex/xelatex/xetexconfig/geometry.cfg)) (/usr/share/te
+xmf-texlive/tex/latex/hyperref/hyperref.sty
+Package: hyperref 2007/02/07 v6.75r Hypertext links for LaTeX
+\@linkdim=\dimen130
+\Hy@linkcounter=\count115
+\Hy@pagecounter=\count116
+(/usr/share/texmf-texlive/tex/latex/hyperref/pd1enc.def
+File: pd1enc.def 2007/02/07 v6.75r Hyperref: PDFDocEncoding definition (HO)
+) (/etc/texmf/tex/latex/config/hyperref.cfg
+File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
+) (/usr/share/texmf-texlive/tex/latex/oberdiek/kvoptions.sty
+Package: kvoptions 2006/08/22 v2.4 Connects package keyval with LaTeX options (
+HO)
+)
+Package hyperref Info: Option `hyperfootnotes' set `false' on input line 2238.
+Package hyperref Info: Option `bookmarks' set `true' on input line 2238.
+Package hyperref Info: Option `linktocpage' set `false' on input line 2238.
+Package hyperref Info: Option `pdfdisplaydoctitle' set `true' on input line 223
+8.
+Package hyperref Info: Option `pdfpagelabels' set `true' on input line 2238.
+Package hyperref Info: Option `bookmarksopen' set `true' on input line 2238.
+Package hyperref Info: Option `colorlinks' set `true' on input line 2238.
+Package hyperref Info: Hyper figures OFF on input line 2288.
+Package hyperref Info: Link nesting OFF on input line 2293.
+Package hyperref Info: Hyper index ON on input line 2296.
+Package hyperref Info: Plain pages OFF on input line 2303.
+Package hyperref Info: Backreferencing OFF on input line 2308.
+Implicit mode ON; LaTeX internals redefined
+Package hyperref Info: Bookmarks ON on input line 2444.
+(/usr/share/texmf-texlive/tex/latex/ltxmisc/url.sty
+\Urlmuskip=\muskip11
+Package: url 2005/06/27 ver 3.2 Verb mode for urls, etc.
+)
+LaTeX Info: Redefining \url on input line 2599.
+\Fld@menulength=\count117
+\Field@Width=\dimen131
+\Fld@charsize=\dimen132
+\Choice@toks=\toks24
+\Field@toks=\toks25
+Package hyperref Info: Hyper figures OFF on input line 3102.
+Package hyperref Info: Link nesting OFF on input line 3107.
+Package hyperref Info: Hyper index ON on input line 3110.
+Package hyperref Info: backreferencing OFF on input line 3117.
+Package hyperref Info: Link coloring ON on input line 3120.
+\Hy@abspage=\count118
+\c@Item=\count119
+)
+*hyperref using driver hpdftex*
+(/usr/share/texmf-texlive/tex/latex/hyperref/hpdftex.def
+File: hpdftex.def 2007/02/07 v6.75r Hyperref driver for pdfTeX
+\Fld@listcount=\count120
+)
+\TmpLen=\skip62
+\DP@lign@no=\count121
+\DP@lignb@dy=\toks26
+(./36670-t.aux)
+\openout1 = `36670-t.aux'.
+
+LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 603.
+LaTeX Font Info: ... okay on input line 603.
+(/usr/share/texmf/tex/context/base/supp-pdf.tex
+[Loading MPS to PDF converter (version 2006.09.02).]
+\scratchcounter=\count122
+\scratchdimen=\dimen133
+\scratchbox=\box54
+\nofMPsegments=\count123
+\nofMParguments=\count124
+\everyMPshowfont=\toks27
+\MPscratchCnt=\count125
+\MPscratchDim=\dimen134
+\MPnumerator=\count126
+\everyMPtoPDFconversion=\toks28
+)
+-------------------- Geometry parameters
+paper: class default
+landscape: --
+twocolumn: --
+twoside: true
+asymmetric: --
+h-parts: 9.03374pt, 325.215pt, 9.03375pt
+v-parts: 4.15848pt, 495.49379pt, 6.23773pt
+hmarginratio: 1:1
+vmarginratio: 2:3
+lines: --
+heightrounded: --
+bindingoffset: 0.0pt
+truedimen: --
+includehead: true
+includefoot: true
+includemp: --
+driver: pdftex
+-------------------- Page layout dimensions and switches
+\paperwidth 343.28249pt
+\paperheight 505.89pt
+\textwidth 325.215pt
+\textheight 433.62pt
+\oddsidemargin -63.23625pt
+\evensidemargin -63.23624pt
+\topmargin -68.11151pt
+\headheight 12.0pt
+\headsep 19.8738pt
+\footskip 30.0pt
+\marginparwidth 98.0pt
+\marginparsep 7.0pt
+\columnsep 10.0pt
+\skip\footins 10.8pt plus 4.0pt minus 2.0pt
+\hoffset 0.0pt
+\voffset 0.0pt
+\mag 1000
+\@twosidetrue \@mparswitchtrue
+(1in=72.27pt, 1cm=28.45pt)
+-----------------------
+(/usr/share/texmf-texlive/tex/latex/graphics/color.sty
+Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC)
+(/etc/texmf/tex/latex/config/color.cfg
+File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
+)
+Package color Info: Driver file: pdftex.def on input line 130.
+)
+Package hyperref Info: Link coloring ON on input line 603.
+(/usr/share/texmf-texlive/tex/latex/hyperref/nameref.sty
+Package: nameref 2006/12/27 v2.28 Cross-referencing by name of section
+(/usr/share/texmf-texlive/tex/latex/oberdiek/refcount.sty
+Package: refcount 2006/02/20 v3.0 Data extraction from references (HO)
+)
+\c@section@level=\count127
+)
+LaTeX Info: Redefining \ref on input line 603.
+LaTeX Info: Redefining \pageref on input line 603.
+(./36670-t.out) (./36670-t.out)
+\@outlinefile=\write3
+\openout3 = `36670-t.out'.
+
+LaTeX Font Info: Try loading font information for U+msa on input line 632.
+(/usr/share/texmf-texlive/tex/latex/amsfonts/umsa.fd
+File: umsa.fd 2002/01/19 v2.2g AMS font definitions
+)
+LaTeX Font Info: Try loading font information for U+msb on input line 632.
+(/usr/share/texmf-texlive/tex/latex/amsfonts/umsb.fd
+File: umsb.fd 2002/01/19 v2.2g AMS font definitions
+) [1
+
+{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] [2
+
+] [1
+
+
+] [2] [3
+
+
+] [4] [5] (./36670-t.toc)
+\tf@toc=\write4
+\openout4 = `36670-t.toc'.
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 1--789
+
+ []
+
+[6
+
+] [1
+
+
+
+
+] [2] [3] [4] [5] [6] [7] [8] [9]
+Overfull \hbox (1.72365pt too wide) in paragraph at lines 1227--1230
+[]\OT1/cmr/m/it/12 If an ex-pres-sion within a paren-the-sis is pre-ceded by th
+e sign $\OT1/cmr/m/n/12 +$\OT1/cmr/m/it/12 ,
+ []
+
+[10]
+Overfull \hbox (1.91821pt too wide) in paragraph at lines 1272--1276
+[]\OT1/cmr/m/it/12 If an ex-pres-sion within a paren-the-sis is pre-ceded by th
+e sign $\OMS/cmsy/m/n/12 ^^@$\OT1/cmr/m/it/12 ,
+ []
+
+[11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24
+
+] [25]
+Underfull \hbox (badness 10000) in paragraph at lines 1954--1961
+
+ []
+
+[26]
+LaTeX Font Info: Try loading font information for OMS+cmr on input line 1964
+.
+(/usr/share/texmf-texlive/tex/latex/base/omscmr.fd
+File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
+)
+LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available
+(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 1964.
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 1966--1973
+
+ []
+
+[27]
+Overfull \hbox (2.96944pt too wide) in paragraph at lines 2013--2013
+[]
+ []
+
+[28]
+Underfull \hbox (badness 10000) in paragraph at lines 2054--2065
+
+ []
+
+
+Overfull \hbox (10.01392pt too wide) in paragraph at lines 2065--2065
+[]
+ []
+
+[29]
+Overfull \hbox (36.58296pt too wide) in paragraph at lines 2093--2093
+[]
+ []
+
+[30] [31]
+Overfull \hbox (11.34335pt too wide) in paragraph at lines 2206--2206
+[]
+ []
+
+[32]
+Overfull \hbox (11.61705pt too wide) in paragraph at lines 2241--2241
+[]
+ []
+
+[33] [34] [35] [36] [37] [38]
+Overfull \hbox (1.94836pt too wide) in paragraph at lines 2459--2462
+[][] \OT1/cmr/m/n/12 I have $$12\OML/cmm/m/it/12 :\OT1/cmr/m/n/12 75$ in two-do
+llar bills and twenty-five cent pieces,
+ []
+
+[39] [40] [41] <./images/fig1.pdf, id=408, 361.35pt x 26.0975pt>
+File: ./images/fig1.pdf Graphic file (type pdf)
+<use ./images/fig1.pdf> [42
+
+ <./images/fig1.pdf>] <./images/fig2.pdf, id=423, 439.6425pt x 24.09pt>
+File: ./images/fig2.pdf Graphic file (type pdf)
+<use ./images/fig2.pdf> [43 <./images/fig2.pdf>] [44] <./images/fig3.pdf, id=44
+1, 427.5975pt x 24.09pt>
+File: ./images/fig3.pdf Graphic file (type pdf)
+<use ./images/fig3.pdf> [45 <./images/fig3.pdf>] [46] [47] [48] [49] [50]
+Overfull \hbox (1.24844pt too wide) in paragraph at lines 2867--2871
+\OT1/cmr/m/it/12 mul-ti-pli-cand \OT1/cmr/m/n/12 and \OT1/cmr/m/it/12 mul-ti-pl
+ier\OT1/cmr/m/n/12 , a third num-ber called \OT1/cmr/m/it/12 prod-uct\OT1/cmr/m
+/n/12 , which
+ []
+
+
+Overfull \hbox (21.76723pt too wide) in paragraph at lines 2872--2894
+[]\OT1/cmr/bx/n/12 71. \OT1/cmr/m/n/12 Ac-cord-ing to this def-i-ni-tion of mul
+-ti-pli-ca-tion,
+ []
+
+[51] [52] [53] [54] [55] [56] [57] [58
+
+] [59] [60] [61] [62] [63] [64] [65] [66] [67
+
+] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82
+
+] [83]
+Overfull \hbox (42.68674pt too wide) in paragraph at lines 4261--4288
+\OT1/cmr/m/n/12 should be care-fully no-ticed and re-mem-bered.
+
+ []
+
+[84] [85] [86] [87] [88]
+Overfull \hbox (1.2826pt too wide) in paragraph at lines 4520--4521
+[][] $[]$\OT1/cmr/m/n/12 .
+ []
+
+[89]
+Overfull \hbox (1.08803pt too wide) in paragraph at lines 4576--4577
+[][] $[]$\OT1/cmr/m/n/12 .
+ []
+
+[90] [91] [92
+
+] [93] [94]
+Overfull \hbox (2.12788pt too wide) in paragraph at lines 4767--4768
+[]\OT1/cmr/bx/n/12 108. When a bi-no-mial is the dif-fer-ence of two squares.
+ []
+
+[95] [96] [97] [98]
+Underfull \hbox (badness 10000) in paragraph at lines 4959--4963
+
+ []
+
+[99] [100] [101] [102] [103] [104]
+Overfull \hbox (1.29138pt too wide) in paragraph at lines 5268--5270
+[]\OT1/cmr/m/n/10.95 Two num-bers whose prod-uct is $30$ are $1$ and $30$, $2$
+and $15$, $3$ and $10$,
+ []
+
+[105] [106] [107] [108] [109] [110
+
+] [111] [112] [113] [114] [115] [116] [117
+
+] [118] [119] [120] [121] [122] [123]
+Overfull \hbox (0.88312pt too wide) in paragraph at lines 6065--6066
+[][] $[]$\OT1/cmr/m/n/12 , $[]$.
+ []
+
+[124]
+Overfull \hbox (3.79523pt too wide) in paragraph at lines 6118--6118
+[]
+ []
+
+[125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135]
+Overfull \hbox (12.6967pt too wide) in paragraph at lines 6449--6449
+[]
+ []
+
+[136
+
+]
+Overfull \hbox (13.73837pt too wide) in paragraph at lines 6508--6508
+[]
+ []
+
+[137] [138] [139] [140]
+Overfull \hbox (127.43008pt too wide) in paragraph at lines 6644--6644
+[]
+ []
+
+[141]
+Overfull \hbox (82.71672pt too wide) in paragraph at lines 6685--6685
+[]
+ []
+
+[142] [143]
+Overfull \hbox (50.27081pt too wide) in paragraph at lines 6733--6733
+[]
+ []
+
+
+Overfull \hbox (2.05074pt too wide) in paragraph at lines 6749--6749
+[]
+ []
+
+[144] [145]
+Overfull \hbox (60.99086pt too wide) in paragraph at lines 6827--6827
+[]
+ []
+
+[146] [147]
+Overfull \hbox (41.2357pt too wide) in paragraph at lines 6885--6885
+[]
+ []
+
+[148]
+Overfull \hbox (33.08694pt too wide) in paragraph at lines 6936--6936
+[]
+ []
+
+[149] [150]
+Overfull \hbox (30.04593pt too wide) in paragraph at lines 6991--6991
+[]
+ []
+
+[151]
+Overfull \hbox (57.59785pt too wide) in paragraph at lines 7039--7039
+[]
+ []
+
+[152]
+Overfull \hbox (24.40863pt too wide) in paragraph at lines 7052--7052
+[]
+ []
+
+[153]
+Overfull \hbox (54.40073pt too wide) in paragraph at lines 7088--7088
+[]
+ []
+
+[154]
+Overfull \hbox (55.29538pt too wide) in paragraph at lines 7144--7144
+[]
+ []
+
+[155] [156]
+Overfull \hbox (25.74243pt too wide) in paragraph at lines 7237--7237
+[]
+ []
+
+[157]
+Overfull \hbox (22.96907pt too wide) in paragraph at lines 7265--7265
+[]
+ []
+
+[158] [159]
+Overfull \hbox (2.44133pt too wide) in paragraph at lines 7352--7354
+[][] \OT1/cmr/m/n/12 Find the prin-ci-pal that will pro-duce $$280$ in-ter-est
+in $2$ years
+ []
+
+[160] [161] [162
+
+] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172]
+Overfull \hbox (2.92752pt too wide) in paragraph at lines 7879--7882
+[][] \OT1/cmr/m/n/12 A sum of money, at sim-ple in-ter-est, amounted in $10$ mo
+nths
+ []
+
+[173] [174] [175
+
+]
+Overfull \hbox (37.3597pt too wide) in paragraph at lines 7986--7986
+[]
+ []
+
+
+Overfull \hbox (19.65984pt too wide) in paragraph at lines 8009--8009
+[]
+ []
+
+[176]
+Overfull \hbox (28.17653pt too wide) in paragraph at lines 8026--8026
+[]
+ []
+
+[177] [178]
+Overfull \hbox (101.83775pt too wide) in paragraph at lines 8136--8136
+[]
+ []
+
+[179]
+Overfull \hbox (75.6592pt too wide) in paragraph at lines 8158--8158
+[]
+ []
+
+
+Overfull \hbox (81.72191pt too wide) in paragraph at lines 8180--8180
+[]
+ []
+
+[180] [181] [182] [183]
+Overfull \hbox (14.36713pt too wide) in paragraph at lines 8349--8349
+[]
+ []
+
+
+Overfull \hbox (39.82089pt too wide) in paragraph at lines 8367--8367
+[]
+ []
+
+[184]
+Overfull \hbox (48.35448pt too wide) in paragraph at lines 8374--8374
+[]
+ []
+
+
+Overfull \hbox (14.62827pt too wide) in paragraph at lines 8395--8395
+[]
+ []
+
+[185] [186]
+Overfull \hbox (36.34747pt too wide) in paragraph at lines 8465--8465
+[]
+ []
+
+[187] [188] [189
+
+] [190]
+Overfull \hbox (41.95776pt too wide) in paragraph at lines 8610--8610
+[]
+ []
+
+[191] [192] [193] [194] [195] [196] [197
+
+]
+Overfull \hbox (5.98813pt too wide) in paragraph at lines 8846--8859
+[]\OT1/cmr/m/n/10.95 The 5th and 7th terms are $\OML/cmm/m/it/10.95 ar[]$ \OT1/
+cmr/m/n/10.95 and $\OML/cmm/m/it/10.95 ar[]$\OT1/cmr/m/n/10.95 , re-spec-tively
+.
+ []
+
+[198]
+Overfull \hbox (1.00482pt too wide) in paragraph at lines 8878--8880
+[]\OT1/cmr/m/n/12 Hence\OT1/cmr/m/it/12 , the ge-o-met-ri-cal mean of any two n
+um-bers is the square
+ []
+
+
+Overfull \hbox (84.25482pt too wide) in paragraph at lines 8894--8894
+[]
+ []
+
+[199]
+Overfull \hbox (35.57372pt too wide) in paragraph at lines 8921--8921
+[]
+ []
+
+
+Overfull \hbox (36.34883pt too wide) in paragraph at lines 8935--8935
+[]
+ []
+
+[200]
+Overfull \hbox (2.11494pt too wide) in paragraph at lines 8950--8952
+[][] \OT1/cmr/m/n/12 Find the com-mon ra-tio if the 1st and 3d terms are $2$ an
+d $32$.
+ []
+
+[201] [202] [203
+
+] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
+[217] [218] [219] [220]
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9785--9786
+[][]$\OT1/cmr/m/n/10 14$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9787--9788
+[][]$\OT1/cmr/m/n/10 10$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9789--9790
+[][]$\OT1/cmr/m/n/10 13$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9791--9792
+[][]$\OT1/cmr/m/n/10 11$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9793--9794
+[][]$\OT1/cmr/m/n/10 13$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9825--9826
+[][]$\OT1/cmr/m/n/10 10$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9830--9831
+[][]$\OT1/cmr/m/n/10 91$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9832--9833
+[][]$\OT1/cmr/m/n/10 21$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9834--9835
+[][]$\OT1/cmr/m/n/10 60$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9836--9837
+[][]$\OT1/cmr/m/n/10 24$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9838--9839
+[][]$\OT1/cmr/m/n/10 96$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9840--9841
+[][]$\OT1/cmr/m/n/10 16$.
+ []
+
+
+Overfull \hbox (2.5148pt too wide) in paragraph at lines 9842--9843
+[][]$\OT1/cmr/m/n/10 36$.
+ []
+
+[221
+
+
+] [222] [223] [224]
+Underfull \hbox (badness 10000) in paragraph at lines 10283--10284
+[][]\OT1/cmr/m/n/10 $$6$ quar-ters, $18$ ten-cent
+ []
+
+[225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [
+238]
+Underfull \hbox (badness 10000) in paragraph at lines 11388--11389
+[][]$\OT1/cmr/m/n/10 (1 + 10\OML/cmm/m/it/10 a\OT1/cmr/m/n/10 )(1 +
+ []
+
+[239] [240] [241] [242]
+Overfull \hbox (24.36917pt too wide) in paragraph at lines 11738--11739
+[][]$[]$\OT1/cmr/m/n/10 .
+ []
+
+[243] [244]
+Overfull \hbox (8.9993pt too wide) in paragraph at lines 11831--11832
+[][]$[]$\OT1/cmr/m/n/10 .
+ []
+
+[245] [246] [247]
+Underfull \hbox (badness 10000) in paragraph at lines 12079--12080
+[][]$\OT1/cmr/m/n/10 100$,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12083--12084
+[][]$\OT1/cmr/m/n/10 103$,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12085--12086
+[][]$\OT1/cmr/m/n/10 295$,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12100--12101
+[][]\OT1/cmr/m/n/10 Son,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12106--12107
+[][]\OT1/cmr/m/n/10 Son,
+ []
+
+
+Overfull \hbox (8.14185pt too wide) in paragraph at lines 12111--12112
+[][]$\OT1/cmr/m/n/10 1[]$ dy.
+ []
+
+
+Overfull \hbox (12.12798pt too wide) in paragraph at lines 12113--12114
+[][]$\OT1/cmr/m/n/10 1[]$ dy.
+ []
+
+
+Overfull \hbox (12.12798pt too wide) in paragraph at lines 12115--12116
+[][]$\OT1/cmr/m/n/10 1[]$ dy.
+ []
+
+
+Overfull \hbox (6.75574pt too wide) in paragraph at lines 12117--12118
+[][]$\OT1/cmr/m/n/10 15$ dy.
+ []
+
+
+Overfull \hbox (6.22795pt too wide) in paragraph at lines 12119--12120
+[][]$\OT1/cmr/m/n/10 12$ hr.
+ []
+
+
+Overfull \hbox (6.75574pt too wide) in paragraph at lines 12121--12122
+[][]$\OT1/cmr/m/n/10 10$ dy.
+ []
+
+
+Overfull \hbox (0.42635pt too wide) in paragraph at lines 12126--12127
+[][]$\OT1/cmr/m/n/10 7[]$ hr.
+ []
+
+
+Overfull \hbox (0.42635pt too wide) in paragraph at lines 12132--12133
+[][]$\OT1/cmr/m/n/10 1[]$ hr.
+ []
+
+
+Overfull \vbox (1.93811pt too high) has occurred while \output is active []
+
+
+Overfull \vbox (1.93811pt too high) has occurred while \output is active []
+
+[248]
+Underfull \hbox (badness 10000) in paragraph at lines 12188--12189
+[][]$\OT1/cmr/m/n/10 90[] 0[] 30[]$;
+ []
+
+[249]
+Underfull \hbox (badness 10000) in paragraph at lines 12320--12321
+[][]\OT1/cmr/m/n/10 $$6000$ at $4$%;
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12331--12332
+[][]\OT1/cmr/m/n/10 Wheat,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12333--12334
+[][]\OT1/cmr/m/n/10 A, $$235$;
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12337--12338
+[][]\OT1/cmr/m/n/10 Lemon,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12339--12340
+\OT1/cmr/m/n/10 ples; B,
+ []
+
+[250]
+Underfull \hbox (badness 10000) in paragraph at lines 12370--12371
+[][]\OT1/cmr/m/n/10 Width,
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12370--12371
+\OT1/cmr/m/n/10 12$ rd.;
+ []
+
+
+Underfull \hbox (badness 10000) in paragraph at lines 12370--12371
+\OT1/cmr/m/n/10 length,
+ []
+
+[251] [252] [253] [1
+
+
+
+] [2] [3] [4] [5] [6] [7] [8] (./36670-t.aux)
+
+ *File List*
+ book.cls 2005/09/16 v1.4f Standard LaTeX document class
+ bk12.clo 2005/09/16 v1.4f Standard LaTeX file (size option)
+inputenc.sty 2006/05/05 v1.1b Input encoding file
+ latin1.def 2006/05/05 v1.1b Input encoding file
+ ifthen.sty 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)
+ amsmath.sty 2000/07/18 v2.13 AMS math features
+ amstext.sty 2000/06/29 v2.01
+ amsgen.sty 1999/11/30 v2.0
+ amsbsy.sty 1999/11/29 v1.2d
+ amsopn.sty 1999/12/14 v2.01 operator names
+ amssymb.sty 2002/01/22 v2.2d
+amsfonts.sty 2001/10/25 v2.2f
+ alltt.sty 1997/06/16 v2.0g defines alltt environment
+ array.sty 2005/08/23 v2.4b Tabular extension package (FMi)
+multicol.sty 2006/05/18 v1.6g multicolumn formatting (FMi)
+graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
+ keyval.sty 1999/03/16 v1.13 key=value parser (DPC)
+graphics.sty 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR)
+ trig.sty 1999/03/16 v1.09 sin cos tan (DPC)
+graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive
+ pdftex.def 2007/01/08 v0.04d Graphics/color for pdfTeX
+indentfirst.sty 1995/11/23 v1.03 Indent first paragraph (DPC)
+textcase.sty 2004/10/07 v0.07 Text only upper/lower case changing (DPC)
+ calc.sty 2005/08/06 v4.2 Infix arithmetic (KKT,FJ)
+fancyhdr.sty
+geometry.sty 2002/07/08 v3.2 Page Geometry
+geometry.cfg
+hyperref.sty 2007/02/07 v6.75r Hypertext links for LaTeX
+ pd1enc.def 2007/02/07 v6.75r Hyperref: PDFDocEncoding definition (HO)
+hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
+kvoptions.sty 2006/08/22 v2.4 Connects package keyval with LaTeX options (HO
+)
+ url.sty 2005/06/27 ver 3.2 Verb mode for urls, etc.
+ hpdftex.def 2007/02/07 v6.75r Hyperref driver for pdfTeX
+supp-pdf.tex
+ color.sty 2005/11/14 v1.0j Standard LaTeX Color (DPC)
+ color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
+ nameref.sty 2006/12/27 v2.28 Cross-referencing by name of section
+refcount.sty 2006/02/20 v3.0 Data extraction from references (HO)
+ 36670-t.out
+ 36670-t.out
+ umsa.fd 2002/01/19 v2.2g AMS font definitions
+ umsb.fd 2002/01/19 v2.2g AMS font definitions
+ omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
+./images/fig1.pdf
+./images/fig2.pdf
+./images/fig3.pdf
+ ***********
+
+ )
+Here is how much of TeX's memory you used:
+ 5458 strings out of 94074
+ 70648 string characters out of 1165154
+ 142333 words of memory out of 1500000
+ 7978 multiletter control sequences out of 10000+50000
+ 19082 words of font info for 72 fonts, out of 1200000 for 2000
+ 645 hyphenation exceptions out of 8191
+ 29i,18n,46p,258b,494s stack positions out of 5000i,500n,6000p,200000b,5000s
+</usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmbx10.pfb></usr/share/texmf
+-texlive/fonts/type1/bluesky/cm/cmbx12.pfb></usr/share/texmf-texlive/fonts/type
+1/bluesky/cm/cmcsc10.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmex1
+0.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmmi10.pfb></usr/share/t
+exmf-texlive/fonts/type1/bluesky/cm/cmmi12.pfb></usr/share/texmf-texlive/fonts/
+type1/bluesky/cm/cmmi8.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmr
+10.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmr12.pfb></usr/share/t
+exmf-texlive/fonts/type1/bluesky/cm/cmr17.pfb></usr/share/texmf-texlive/fonts/t
+ype1/bluesky/cm/cmr6.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmr7.
+pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmr8.pfb></usr/share/texmf
+-texlive/fonts/type1/bluesky/cm/cmsy10.pfb></usr/share/texmf-texlive/fonts/type
+1/bluesky/cm/cmsy7.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmsy8.p
+fb></usr/share/texmf-texlive/fonts/type1/bluesky/cm/cmti10.pfb></usr/share/texm
+f-texlive/fonts/type1/bluesky/cm/cmti12.pfb></usr/share/texmf-texlive/fonts/typ
+e1/bluesky/cm/cmtt8.pfb></usr/share/texmf-texlive/fonts/type1/bluesky/ams/msam1
+0.pfb>
+Output written on 36670-t.pdf (269 pages, 788109 bytes).
+PDF statistics:
+ 2045 PDF objects out of 2073 (max. 8388607)
+ 681 named destinations out of 1000 (max. 131072)
+ 224 words of extra memory for PDF output out of 10000 (max. 10000000)
+
diff --git a/36670-t/old/36670-t.zip b/36670-t/old/36670-t.zip
new file mode 100644
index 0000000..9661f41
--- /dev/null
+++ b/36670-t/old/36670-t.zip
Binary files differ
diff --git a/LICENSE.txt b/LICENSE.txt
new file mode 100644
index 0000000..6312041
--- /dev/null
+++ b/LICENSE.txt
@@ -0,0 +1,11 @@
+This eBook, including all associated images, markup, improvements,
+metadata, and any other content or labor, has been confirmed to be
+in the PUBLIC DOMAIN IN THE UNITED STATES.
+
+Procedures for determining public domain status are described in
+the "Copyright How-To" at https://www.gutenberg.org.
+
+No investigation has been made concerning possible copyrights in
+jurisdictions other than the United States. Anyone seeking to utilize
+this eBook outside of the United States should confirm copyright
+status under the laws that apply to them.
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..8c29382
--- /dev/null
+++ b/README.md
@@ -0,0 +1,2 @@
+Project Gutenberg (https://www.gutenberg.org) public repository for
+eBook #36670 (https://www.gutenberg.org/ebooks/36670)