1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
|
\documentclass{book}
\usepackage{amsmath, amssymb, amsthm, makeidx, hhline}
\usepackage{graphicx}
\usepackage{soulutf8} %May fix some issues
\pagestyle{plain}
\begin{document}
\thispagestyle{empty}
\small
\begin{verbatim}
The Project Gutenberg EBook of A First Book in Algebra, by Wallace C. Boyden
This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org
Title: A First Book in Algebra
Author: Wallace C. Boyden
Release Date: August 27, 2004 [EBook #13309]
Language: English
Character set encoding: TeX
*** START OF THIS PROJECT GUTENBERG EBOOK A FIRST BOOK IN ALGEBRA ***
Produced by Dave Maddock, Susan Skinner
and the PG Distributed Proofreading Team.
\end{verbatim}
\normalsize
\newpage
\begin{titlepage}
\begin{center}
{\LARGE\bfseries A FIRST BOOK IN ALGEBRA}\\[2.5cm]
BY\\[2.5cm]
{\Large WALLACE C. BOYDEN, A.M.}\\[3cm]
{\large SUB-MASTER OF THE BOSTON NORMAL SCHOOL}\\[1cm]
\textsc{1895}
\end{center}
\end{titlepage}
\section*{PREFACE}
\addcontentsline{toc}{section}{\numberline{}Preface}
In preparing this book, the author had especially in mind classes
in the upper grades of grammar schools, though the work will be
found equally well adapted to the needs of any classes of
beginners.
The ideas which have guided in the treatment of the subject are
the following: The study of algebra is a continuation of what the
pupil has been doing for years, but it is expected that this new
work will result in a knowledge of \textit{ general truths} about
numbers, and an increased power of clear thinking. All the
differences between this work and that pursued in arithmetic may
be traced to the introduction of two new elements, namely,
negative numbers and the representation of numbers by letters. The
solution of problems is one of the most valuable portions of the
work, in that it serves to develop the thought-power of the pupil
at the same time that it broadens his knowledge of numbers and
their relations. Powers are developed and habits formed only by
persistent, long-continued practice.
Accordingly, in this book, it is taken for granted that
the pupil knows what he may be reasonably expected to
have learned from his study of arithmetic; abundant
practice is given in the representation of numbers by
letters, and great care is taken to make clear the meaning
of the minus sign as applied to a single number,
together with the modes of operating upon negative numbers;
problems are given in every exercise in the book;
and, instead of making a statement of what the child is
to see in the illustrative example, questions are asked
which shall lead him to find for himself that which he
is to learn from the example.
BOSTON, MASS., December, 1893.
\cleardoublepage \tableofcontents
\cleardoublepage
\part*{A FIRST BOOK IN ALGEBRA.}
\cleardoublepage \chapter*{ALGEBRAIC NOTATION.}
\addcontentsline{toc}{chapter}{\numberline{}ALGEBRAIC NOTATION.}
\addcontentsline{toc}{section}{\numberline{}PROBLEMS}
\textbf{ 1.} Algebra is so much like arithmetic that all that you
know about addition, subtraction, multiplication, and division,
the signs that you have been using and the ways of working out
problems, will be very useful to you in this study. There are two
things the introduction of which really makes all the difference
between arithmetic and algebra. One of these is the use of
\textit{ letters to represent numbers}, and you will see in the
following exercises that this change makes the solution of
problems much easier.
\subsubsection*{Exercise I.}
\textit{ Illustrative Example}. The sum of two numbers is 60, and
the
greater is four times the less. What are the numbers?\\
\begin{center}
\textbf{ Solution}.\\
\end{center}
\begin{center}
\begin{tabular}{lr@{=}ll}
\text{Let } &$x$ & \text{ the less number};\\
\text{then } &$4x$ & \text{ the greater number,}\\
\text{and } &$4x + x$ & 60,\\
\text{or } &$5x$ & 60; \\
\text{therefore } &$x$ & 12,\\
\text{and } &$4x$ & 48. \text{ The numbers are 12 and 48.}
\end{tabular}
\end{center}
\begin{enumerate}
\item The greater of two numbers is twice the less, and the sum of
the numbers is 129. What are the numbers?
\item A man bought a horse and carriage for \$500, paying three
times as much for the carriage as for the horse. How much did each
cost?
\item Two brothers, counting their money, found that together they
had \$186, and that John had five times as much as Charles. How
much had each?
\item Divide the number 64 into two parts so that one part shall
be seven times the other.
\item A man walked 24 miles in a day. If he walked twice as far
in the forenoon as in the afternoon, how far did he walk in the
afternoon?
\item For 72 cents Martha bought some needles and thread, paying
eight times as much for the thread as for the needles. How much
did she pay for each?
\item In a school there are 672 pupils. If there are twice as
many boys as girls, how many boys are there?
\textit{ Illustrative Example}. If the difference between two
numbers is 48, and one number is five times the other, what are
the numbers?
\begin{center}
\textbf{ Solution}.
\end{center}
\begin{center}
\begin{tabular}{lr@{=}ll}
\text{Let } &$x$ & \text{ the less number;} \\
\text{then } &$5x$ & \text{ the greater number,}\\
\text{and } &$5x - x$ & 48, \\
\text{or } &$4x$ & 48;\\
\text{therefore } &$x$ & 12, \\
\text{and } &$5x$ & 60.\\
\end{tabular}
\end{center}
The numbers are 12 and 60.
\item Find two numbers such that their difference is 250 and one
is eleven times the other.
\item James gathered 12 quarts of nuts more than Henry gathered.
How many did each gather if James gathered three times as many as
Henry?
\item A house cost \$2880 more than a lot of land, and five times
the cost of the lot equals the cost of the house. What was the
cost of each?
\item Mr. A. is 48 years older than his son, but he is only three
times as old. How old is each?
\item Two farms differ by 250 acres, and one is six times as large
as the other. How many acres in each?
\item William paid eight times as much for a dictionary as for a
rhetoric. If the difference in price was \$6.30, how much did he
pay for each?
\item The sum of two numbers is 4256, and one is 37 times as
great as the other. What are the numbers?
\item Aleck has 48 cents more than Arthur, and seven times
Arthur's money equals Aleck's. How much has each?
\item The sum of the ages of a mother and daughter is 32 years,
and the age of the mother is seven times that of the daughter.
What is the age of each?
\item John's age is three times that of Mary, and he is 10 years
older. What is the age of each?
\end{enumerate}
\subsubsection*{Exercise 2.}
\textit{ Illustrative Example.} There are three numbers whose sum
is 96; the second is three times the first, and the third is four
times the first. What are the numbers?
\begin{center}
\textbf{ Solution}.
\end{center}
\begin{center}
\begin{tabular}{lr@{=}ll}
\text{Let } &$x$ & first number,\\
&$3x$ & second number,\\
&$4x$ & third number.\\
&$x + 3x + 4x$& 96\\
&$8x$ & 90\\
&$x$ & 12\\
&$3x$ & 36\\
&$4x$& 48\\
\end{tabular}
\end{center}
The numbers are 12, 36, and 48.
\begin{enumerate}
\item A man bought a hat, a pair of boots, and a necktie
for \$7.50; the hat cost four times as much as the necktie,
and the boots cost five times as much as the necktie. What
was the cost of each?
\item A man traveled 90 miles in three days. If he traveled
twice as far the first day as he did the third, and
three times as far the second day as the third, how far
did he go each day?
\item James had 30 marbles. He gave a certain number
to his sister, twice as many to his brother, and had three
times as many left as he gave his sister. How many did
each then have?
\item A farmer bought a horse, cow, and pig for \$90. If
he paid three times as much for the cow as for the pig, and
five times as much for the horse as for the pig, what was
the price of each?
\item A had seven times as many apples, and B three times
as many as C had. If they all together had 55 apples, how
many had each?
\item The difference between two numbers is 36, and one
is four times the other. What are the numbers?
\item In a company of 48 people there is one man to each
five women. How many are there of each?
\item A man left \$1400 to be distributed among three
sons in such a way that James was to receive double
what John received, and John double what Henry received.
How much did each receive?
\item A field containing 45,000 feet was divided into three
lots so that the second lot was three times the first, and
the third twice the second. How large was each lot?
\item There are 120 pigeons in three flocks. In the second
there are three times as many as in the first, and in the
third as many as in the first and second combined. How
many pigeons in each flock?
\item Divide 209 into three parts so that the first part
shall be five times the second, and the second three times
the third.
\item Three men, A, B, and C, earned \$110; A earned
four times as much as B, and C as much as both A and B.
How much did each earn?
\item A farmer bought a horse, a cow, and a calf for \$72; the cow
cost twice as much as the calf, and the horse three times as much
as the cow. What was the cost of each?
\item A cistern, containing 1200 gallons of water, is emptied by
two pipes in two hours. One pipe discharges three times as many
gallons per hour as the other. How many gallons does each pipe
discharge in an hour?
\item A butcher bought a cow and a lamb, paying six times as much
for the cow as for the lamb, and the difference of the prices was
\$25. How much did he pay for each?
\item A grocer sold one pound of tea and two pounds of coffee for
\$1.50, and the price of the tea per pound was three times that of
the coffee. What was the price of each?
\item By will Mrs. Cabot was to receive five times as much as her
son Henry. If Henry received \$20,000 less than his mother, how
much did each receive?
\end{enumerate}
\subsubsection*{Exercise 3.}
\textit{ Illustrative Example}. Divide the number 126 into two
parts such that one part is 8 more than the other.
\begin{center}
\textbf{ Solution}\\
\end{center}
\begin{center}
\begin{tabular}{lr@{=}ll}
\text{Let }&$x$& \text{less part,}\\
&$x+8$& \text{greater part.}\\
&$x+x+8$ & 126\\
&$2x + 8$& 126 \\
&$2x$& 118\footnotemark\\
&$x$&59 \\
&$x + 8$ & 67
\end{tabular}
\end{center}
\footnotetext{Where in arithmetic did you learn the principle
applied in transposing the 8?} The parts are 59 and 67.
\begin{enumerate}
\item In a class of 35 pupils there are 7 more girls than
boys. How many are there of each?
\item The sum of the ages of two brothers is 43 years, and
one of them is 15 years older than the other. Find their
ages.
\item At an election in which 1079 votes were cast the successful
candidate had a majority of 95. How many votes
did each of the two candidates receive?
\item Divide the number 70 into two parts, such that one
part shall be 26 less than the other part.
\item John and Henry together have 143 marbles. If I
should give Henry 15 more, he would have just as many
as John. How many has each?
\item In a storehouse containing 57 barrels there are 3
less barrels of flour than of meal. How many of each?
\item A man whose herd of cows numbered 63 had
17 more Jerseys than Holsteins. How many had he of
each?
\item Two men whose wages differ by 8 dollars receive
both together \$44 per month. How much does each
receive?
\item Find two numbers whose sum is 99 and whose difference
is 19.
\item The sum of three numbers is 56; the second is 3
more than the first, and the third 5 more than the first.
What are the numbers?
\item Divide 62 into three parts such that the first part
is 4 more than the second, and the third 7 more than the
second.
\item Three men together received \$34,200; if the second
received \$1500 more than the first, and the third \$1200
more than the second, how much did each receive?
\item Divide 65 into three parts such that the second part
is 17 more than the first part, and the third 15 less than the
first.
\item A man had 95 sheep in three flocks. In the first
flock there were 23 more than in the second, and in the
third flock 12 less than in the second. How many sheep
in each flock?
\item In an election, in which 1073 ballots were cast, Mr.
A receives 97 votes less than Mr. B, and Mr. C 120 votes
more than Mr. B. How many votes did each receive?
\item A man owns three farms. In the first there are
5 acres more than in the second and 7 acres less than in
the third. If there are 53 acres in all the farms together,
how many acres are there in each farm?
\item Divide 111 into three parts so that the first part
shall be 16 more than the second and 19 less than the
third.
\item Three firms lost \$118,000 by fire. The second firm
lost \$6000 less than the first and \$20,000 more than the
third. What was each firm's loss?
\end{enumerate}
\subsubsection*{Exercise 4.}
\textit{ Illustrative Example.} The sum of two numbers is 25, and
the larger is 3 less than three times the smaller. What are the
numbers?
\begin{center}
\textbf{ Solution.} \\
\end{center}
\begin{center}
\begin{tabular}{lr@{=}l}
Let & $x$ & smaller number,\\
& $3x - 3$ & larger number. \\
& $x+3x-3$ &$25$ \\
& $4x-3$ &$25$ \\
& $4x$ &$28$\footnotemark \\
& $x$ &$7$ \\
& $3x-3$ &$18$ \\
\end{tabular}
\end{center}
The numbers are 7 and 18.
\begin{enumerate}
\item Charles and Henry together have 49 marbles, and
Charles has twice as many as Henry and 4 more. How
many marbles has each?
\item In an orchard containing 33 trees the number of
pear trees is 5 more than three times the number of apple
trees. How many are there of each kind?
\item John and Mary gathered 23 quarts of nuts. John
gathered 2 quarts more than twice as many as Mary. How
many quarts did each gather?
\item To the double of a number I add 17 and obtain as
a result 147. What is the number?
\item To four times a number I add 23 and obtain 95.
What is the number?
\item From three times a number I take 25 and obtain 47.
What is the number?
\footnotetext{Is the same principle applied here that is applied on page 12?}
\item Find a number which being multiplied by 5 and having 14
added to the product will equal 69.
\item I bought some tea and coffee for \$10.39. If I paid for the
tea 61 cents more than five times as much as for the coffee, how
much did I pay for each?
\item Two houses together contain 48 rooms. If the second house
has 3 more than twice as many rooms as the first, how many rooms
has each house?
\textit{ Illustrative Example}. Mr. Y gave \$6 to his three boys.
To the second he gave 25 cents more than to the third, and to the
first three times as much as to the second. How much did each
receive?
\begin{center}
\textbf{ Solution.}\\
\begin{tabular}{lr@{=}l}
Let &$x$& number of cents third boy received,\\
&$x + 25$& number of cents second boy received,\\
&$3x + 75$& number of cents first boy received.\\
&$x + x + 25 + 3x + 75$& 600\\
&$5x + 100$& 600\\
&$5x$& 500\\
&$x$& 100\\
&$x+ 25$& 125\\
&$3x + 75$& $375$\\
\end{tabular}
\begin{tabular}{c}
1st boy received \$3.75,\\
2d boy received \$1.25,\\
3d boy received \$1.00.\\
\end{tabular}
\end{center}
\item Divide the number 23 into three parts, such that the second
is 1 more than the first, and the third is twice the second.
\item Divide the number 137 into three parts, such that
the second shall be 3 more than the first, and the third
five times the second.
\item Mr. Ames builds three houses. The first cost \$2000
more than the second, and the third twice as much as the
first. If they all together cost \$18,000, what was the cost
of each house?
\item An artist, who had painted three pictures, charged
\$18 more for the second than the first, and three times as
much for the third as the second. If he received \$322 for
the three, what was the price of each picture?
\item Three men, A, B, and C, invest \$47,000 in business.
B puts in \$500 more than twice as much as A, and C puts
in three times as much as B. How many dollars does each
put into the business?
\item In three lots of land there are 80,750 feet. The
second lot contains 250 feet more than three times as
much as the first lot, and the third lot contains twice as
much as the second. What is the size of each lot?
\item A man leaves by his will \$225,000 to be divided
as follows: his son to receive \$10,000 less than twice as
much as the daughter, and the widow four times as much
as the son. What was the share of each?
\item A man and his two sons picked 25 quarts of berries.
The older son picked 5 quarts less than three times as
many as the younger son, and the father picked twice as
many as the older son. How many quarts did each pick?
\item Three brothers have 574 stamps. John has 15 less than Henry,
and Thomas has 4 more than John. How many has each?
\end{enumerate}
\subsubsection*{Exercise 5}.
\textit{ Illustrative Example}. Arthur bought some apples and
twice as many oranges for 78 cents. The apples cost 3 cents
apiece, and the oranges 5 cents apiece. How many of each did he
buy?
\begin{center}
\textbf{ Solution}.
\end{center}
\begin{center}
\begin{tabular}{l r c l}
Let & $x$ &=& \mbox{number of apples}, \\
& $2x$ &=& \mbox{number of oranges},\\
& $3x$ &=& \mbox{cost of apples},\\
& $10x$ &=& \mbox{cost of oranges}.\\
& $3x + 10x $&=& 78\\
& $13x$ &=& 78\\
& $x$ &=& 6\\
& $2x$ &=& 12\\
\end{tabular}
\end{center}
Arthur bought 6 apples and 12 oranges.
\begin{enumerate}
\item Mary bought some blue ribbon at 7 cents a yard, and three
times as much white ribbon at 5 cents a yard, paying \$1.10 for
the whole. How many yards of each kind did she buy?
\item Twice a certain number added to five times the double of
that number gives for the sum 36. What is the number?
\item Mr. James Cobb walked a certain length of time at the rate
of 4 miles an hour, and then rode four times as long at the rate
of 10 miles an hour, to finish a journey of 88 miles. How long did
he walk and how long did he ride?
\item A man bought 3 books and 2 lamps for \$14. The price of a
lamp was twice that of a book. What was the cost of each?
\item George bought an equal number of apples, oranges, and
bananas for \$1.08; each apple cost 2 cents, each orange 4 cents,
and each banana 3 cents. How many of each did he buy?
\item I bought some 2-cent stamps and twice as many 5-cent stamps,
paying for the whole \$1.44. How many stamps of each kind did I
buy?
\item I bought 2 pounds of coffee and 1 pound of tea for \$1.31;
the price of a pound of tea was equal to that of 2 pounds of
coffee and 3 cents more. What was the cost of each per pound?
\item A lady bought 2 pounds of crackers and 3 pounds of
gingersnaps for \$1.11. If a pound of gingersnaps cost 7 cents
more than a pound of crackers, what was the price of each?
\item A man bought 3 lamps and 2 vases for \$6. If a vase cost 50
cents less than 2 lamps, what was the price of each?
\item I sold three houses, of equal value, and a barn for
\$16,800. If the barn brought \$1200 less than a house, what was
the price of each?
\item Five lots, two of one size and three of another, aggregate
63,000 feet. Each of the two is 1500 feet larger than each of the
three. What is the size of the lots?
\item Four pumps, two of one size and two of another, can pump 106
gallons per minute. If the smaller pumps 5 gallons less per minute
than the larger, how much does each pump per minute?
\item Johnson and May enter into a partnership in which Johnson's
interest is four times as great as May's. Johnson's profit was
\$4500 more than May's profit. What was the profit of each?
\item Three electric cars are carrying 79 persons. In the first
car there are 17 more people than in the second and 15 less than
in the third. How many persons in each car?
\item Divide 71 into three parts so that the second part shall be
5 more than four times the first part, and the third part three
times the second.
\item I bought a certain number of barrels of apples and three
times as many boxes of oranges for \$33. I paid \$2 a barrel for
the apples, and \$3 a box for the oranges. How many of each did I
buy?
\item Divide the number 288 into three parts, so that the third
part shall be twice the second, and the second five times the
first.
\item Find two numbers whose sum is 216 and whose difference is
48.
\end{enumerate}
\subsubsection*{Exercise 6}.
\textit{ Illustrative Example}. What number added to twice itself
and 40 more will make a sum equal to eight times the number?
\begin{center}
\textbf{ Solution}.
\end{center}
\begin{center}
\begin{tabular}{l r c l}
Let & $x$ &=& the number. \\
& $x + 2x + 40$ &=& $8x$\\
& $3x + 40$ &=& $8x$\\
& 40 &=& $5x$\\
& $8 $&=& $x$\\
\end{tabular}
\end{center}
The number is 8.
\begin{enumerate}
\item What number, being increased by 36, will be equal to ten
times itself?
\item Find the number whose double increased by 28 will equal six
times the number itself.
\item If John's age be multiplied by 5, and if 24 be added to the
product, the sum will be seven times his age. What is his age?
\item A father gave his son four times as many dollars as he then
had, and his mother gave him \$25, when he found that he had nine
times as many dollars as at first. How many dollars had he at
first?
\item A man had a certain amount of money; he earned three times
as much the next week and found \$32. If he then had eight times
as much as at first, how much had he at first?
\item A man, being asked how many sheep he had, said, "If you will
give me 24 more than six times what I have now, I shall have ten
times my present number." How many had he?
\item Divide the number 726 into two parts such that one shall be
five times the other.
\item Find two numbers differing by 852, one of which is seven
times the other.
\item A storekeeper received a certain amount the first month; the
second month he received \$50 less than three times as much, and
the third month twice as much as the second month. In the three
months he received \$4850. What did he receive each month?
\item James is 3 years older than William, and twice James's age
is equal to three times William's age. What is the age of each?
\item One boy has 10 more marbles than another boy. Three times
the first boy's marbles equals five times the second boy's
marbles. How many has each?
\item If I add 12 to a certain number, four times this second
number will equal seven times the original number. What is the
original number?
\item Four dozen oranges cost as much as 7 dozen apples, and a
dozen oranges cost 15 cents more than a dozen apples. What is the
price of each?
\item Two numbers differ by 6, and three times one number equals
five times the other number. What are the numbers?
\item A man is 2 years older than his wife, and 15 times his age
equals 16 times her age. What is the age of each?
\item A farmer pays just as much for 4 horses as he does for 6
cows. If a cow costs 15 dollars less than a horse, what is the
cost of each?
\item What number is that which is 15 less than four times the
number itself?
\item A man bought 12 pairs of boots and 6 suits of clothes for
\$168. If a suit of clothes cost \$2 less than four times as much
as a pair of boots, what was the price of each?
\end{enumerate}
\subsubsection*{Exercise 7}.
\textit{ Illustrative Example}. Divide the number 72 into two
parts such that one part shall be one-eighth of the other.
\begin{center}
\textbf{ Solution}.
\end{center}
\begin{center}
\begin{tabular}{l r c l}
Let & $x$ &=& greater part,\\
& $\frac{1}{8}x$ &=& lesser part.\\
& $x + \frac{1}{8}x$ &=& $72$\\
& $\frac{9}{8}x $&=& $72$\\
& $\frac{1}{8}x $&=& $8$\\
& $x$&=& $64$\\
\end{tabular}
\end{center}
The parts are 64 and 8.
\begin{enumerate}
\item Roger is one-fourth as old as his father, and the sum of
their ages is 70 years. How old is each?
\item In a mixture of 360 bushels of grain, there is one-fifth as
much corn as wheat. How many bushels of each?
\item A man bought a farm and buildings for \$12,000. The
buildings were valued at one-third as much as the farm. What was
the value of each?
\item A bicyclist rode 105 miles in a day. If he rode one-half as
far in the afternoon as in the forenoon, how far did he ride in
each part of the day?
\item Two numbers differ by 675, and one is one-sixteenth of the
other. What are the numbers?
\item What number is that which being diminished by one-seventh of
itself will equal 162?
\item Jane is one-fifth as old as Mary, and the difference of
their ages is 12 years. How old is each?
\textit{ Illustrative Example}. The half and fourth of a certain
number are together equal to 75. What is the number?
\begin{center}
\textbf{ Solution}.
\end{center}
\begin{center}
\begin{tabular}{l r c l}
Let & $x$ &=& the number.\\
& $\frac{1}{2}x + \frac{1}{4}x $ &=& 75.\\
& $\frac{3}{4}x$ &=& $75$\\
& $\frac{1}{4}x $&=& $25$\\
& $x$&=& $100$\\
\end{tabular}
\end{center}
The number is 100.
\item The fourth and eighth of a number are together equal to 36.
What is the number?
\item A man left half his estate to his widow, and a fifth to his
daughter. If they both together received \$28,000, what was the
value of his estate?
\item Henry gave a third of his marbles to one boy, and a fourth
to another boy. He finds that he gave to the boys in all 14
marbles. How many had he at first?
\item Two men own a third and two-fifths of a mill respectively.
If their part of the property is worth \$22,000, what is the value
of the mill?
\item A fruit-seller sold one-fourth of his oranges in the
forenoon, and three-fifths of them in the afternoon. If he sold in
all 255 oranges, how many had he at the start?
\item The half, third, and fifth of a number are together equal to
93. Find the number.
\item Mr. A bought one-fourth of an estate, Mr. B one-half, and
Mr. C one-sixth. If they together bought 55,000 feet, how large
was the estate?
\item The wind broke off two-sevenths of a pine tree, and
afterwards two-fifths more. If the parts broken off measured 48
feet, how high was the tree at first?
\item A man spaded up three-eighths of his garden, and his son
spaded two-ninths of it. In all they spaded 43 square rods. How
large was the garden?
\item Mr. A's investment in business is \$15,000 more than Mr.
B's. If Mr. A invests three times as much as Mr. B, how much is
each man's investment?
\item A man drew out of the bank \$27, in half-dollars, quarters,
dimes, and nickels, of each the same number. What was the number?
\end{enumerate}
\subsubsection*{Exercise 8}.
\textit{ Illustrative Example}. What number is that which being
increased by one-third and one-half of itself equals 22?
\begin{center}
\textbf{ Solution}.
\end{center}
\begin{center}
\begin{tabular}{l r c l}
Let & $x$ &=& the number.\\
& $x + \frac{1}{3}x + \frac{1}{2}x $ &=& 22.\\
& $1\frac{5}{6}x$ &=& $22$\\
& $\frac{11}{6}x $&=& $22$\\
& $\frac{1}{6}x $&=& $2$\\
& $x$&=& $12$\\
\end{tabular}
\end{center}
The number is 12.
\begin{enumerate}
\item Three times a certain number increased by one-half of the
number is equal to 14. What is the number?
\item Three boys have an equal number of marbles. John buys
two-thirds of Henry's and two-fifths of Robert's marbles, and
finds that he then has 93 marbles. How many had he at first?
\item In three pastures there are 42 cows. In the second there are
twice as many as in the first, and in the third there are one-half
as many as in the first. How many cows are there in each pasture?
\item What number is that which being increased by one-half and
one-fourth of itself, and 5 more, equals 33?
\item One-third and two-fifths of a number, and 11, make 44. What
is the number?
\item What number increased by three-sevenths of itself will
amount to 8640?
\item A man invested a certain amount in business. His gain the
first year was three-tenths of his capital, the second year
five-sixths of his original capital, and the third year \$3600. At
the end of the third year he was worth \$10,000. What was his
original investment?
\item Find the number which, being increased by its third, its
fourth, and 34, will equal three times the number itself.
\item One-half of a number, two-sevenths of the number, and 31,
added to the number itself, will equal four times the number. What
is the number?
\item A man, owning a lot of land, bought 3 other lots adjoining,
-- one three-eighths, another one-third as large as his lot, and
the third containing 14,000 feet, -- when he found that he had
just twice as much land as at first. How large was his original
lot?
\item What number is doubled by adding to it two-fifths of itself,
one-third of itself, and 8?
\item There are three numbers whose sum is 90; the second is equal
to one-half of the first, and the third is equal to the second
plus three times the first. What are the numbers?
\item Divide 84 into three parts, so that the third part shall be
one-third of the second, and the first part equal to twice the
third plus twice the second part.
\item Divide 112 into four parts, so that the second part shall be
one-fourth of the first, the third part equal to twice the second
plus three times the first, and the fourth part equal to the
second plus twice the first part.
\item A grocer sold 62 pounds of tea, coffee, and cocoa. Of tea he
sold 2 pounds more than of coffee, and of cocoa 4 pounds more than
of tea. How many pounds of each did he sell?
\item Three houses are together worth six times as much as the
first house, the second is worth twice as much as the first, and
the third is worth \$7500. How much is each worth?
\item John has one-ninth as much money as Peter, but if his father
should give him 72 cents, he would have just the same as Peter.
How much money has each boy?
\item Mr. James lost two-fifteenths of his property in
speculation, and three-eighths by fire. If his loss was \$6100,
what was his property worth?
\end{enumerate}
\subsubsection*{Exercise 9}.
\begin{enumerate}
\item Divide the number 56 into two parts, such that one part is
three-fifths of the other.
\item If the sum of two numbers is 42, and one is three-fourths of
the other, what are the numbers?
\item The village of C---- is situated directly between two cities
72 miles apart, in such a way that it is five-sevenths as far from
one city as from the other. How far is it from each city?
\item A son is five-ninths as old as his father. If the sum of
their ages is 84 years, how old is each?
\item Two boys picked 26 boxes of strawberries. If John picked
five-eighths as many as Henry, how many boxes did each pick?
\item A man received 60-1/2 tons of coal in two carloads, one load
being five-sixths as large as the other. How many tons in each
carload?
\item John is seven-eighths as old as James, and the sum of their
ages is 60 years. How old is each?
\item Two men invest \$1625 in business, one putting in
five-eighths as much as the other. How much did each invest?
\item In a school containing 420 pupils, there are three-fourths
as many boys as girls. How many are there of each?
\item A man bought a lot of lemons for \$5; for one-third he paid
4 cents apiece, and for the rest 3 cents apiece. How many lemons
did he buy?
\item A lot of land contains 15,000 feet more than the adjacent
lot, and twice the first lot is equal to seven times the second.
How large is each lot?
\item A bicyclist, in going a journey of 52 miles, goes a certain
distance the first hour, three-fifths as far the second hour,
one-half as far the third hour, and 10 miles the fourth hour, thus
finishing the journey. How far did he travel each hour?
\item One man carried off three-sevenths of a pile of loam,
another man four-ninths of the pile. In all they took 110 cubic
yards of earth. How large was the pile at first?
\item Matthew had three times as many stamps as Herman, but after
he had lost 70, and Herman had bought 90, they put what they had
together, and found that they had 540. How many had each at first?
\item It is required to divide the number 139 into four parts,
such that the first may be 2 less than the second, 7 more than the
third, and 12 greater than the fourth.
\item In an election 7105 votes were cast for three candidates.
One candidate received 614 votes less, and the other 1896 votes
less, than the winning candidate. How many votes did each receive?
\item There are four towns, A, B, C, and D, in a straight line.
The distance from B to C is one-fifth of the distance from A to B,
and the distance from C to D is equal to twice the distance from A
to C. The whole distance from A to D is 72 miles. Required the
distance from A to B, B to C, and C to D.
\end{enumerate}
\section*{MODES OF REPRESENTING THE OPERATIONS.}
\addcontentsline{toc}{section}{\numberline{}MODES OF REPRESENTING
THE OPERATIONS.}
\subsection*{ADDITION.}\addcontentsline{toc}{subsection}{\numberline{}Addition.}
\begin{tabular}{cll}
\textbf{ 2.} &ILLUS. 1. & The sum of $y$ + $y$ + $y$ + etc.
written
seven times is 7$y$. \\
\\
&ILLUS. 2. & The sum of $m$ + $m$ + $m$ + etc. written $x$ times is $xm$.\\
\\
\end{tabular}
The 7 and $x$ are called the coefficients of the number
following.
The \textbf{ coefficient} is the number which shows how many times
the number following is taken additively. If no coefficient is
expressed, \textit{ one} is understood.
Read each of the following numbers, name the coefficient,
and state what it shows:
\[
6a,\; 2y,\; 3x,\; ax,\; 5m,\; 9c,\; xy,\; mn,\; 10z,\; a,\; 25n,\;
x,\; 11xy.
\]
\begin{tabular}{cll}
&ILLUS. 3. & If John has $x$ marbles, and his brother gives him
5\\
& & marbles, how many has he?\\
\\
&ILLUS. 4. &If Mary has $x$ dolls, and her mother gives her $y$\\
& &dolls, how many has she?\\
\end{tabular}
\textit{ \textbf{Addition is expressed by coefficient and by sign
plus(+).}}
When use the coefficient? When the sign?
\subsubsection*{Exercise 10.}
\begin{enumerate}
\item Charles walked $x$ miles and rode 9 miles. How far did he
go?
\item A merchant bought $a$ barrels of sugar and $p$ barrels of
molasses. How many barrels in all did he buy?
\item What is the sum of $b$ + $b$ + $b$ + etc. written eight
times?
\item Express the sum of $x$ and $y$.
\item There are $c$ boys at play, and 5 others join them. How many
boys are there in all?
\item What is the sum of $x$ + $x$ + $x$ + etc. written $d$ times?
\item A lady bought a silk dress for $m$ dollars, a muff for $l$
dollars, a shawl for $v$ dollars, and a pair of gloves for $c$
dollars. What was the entire cost?
\item George is $x$ years old, Martin is $y$, and Morgan is $z$
years. What is the sum of their ages?
\item What is the sum of $m$ taken $b$ times?
\item If $d$ is a whole number, what is the next larger number?
\item A boy bought a pound of butter for $y$ cents, a pound of
meat for $z$ cents, and a bunch of lettuce for $s$ cents. How much
did they all cost?
\item What is the next whole number larger than $m$?
\item What is the sum of $x$ taken $y$ times?
\item A merchant sold $x$ barrels of flour one week, 40 the next
week, and $a$ barrels the following week. How many barrels did he
sell?
\item Find two numbers whose sum is 74 and whose difference is 18.
\end{enumerate}
\subsection*{SUBTRACTION.}
\addcontentsline{toc}{subsection}{\numberline{}Subtraction.}
\begin{tabular}{cll}
\textbf{ 3}. &ILLUS. 1. & A man sold a horse for \$225 and gained
\$75.\\
& & What did the horse cost?\\
\\
&ILLUS. 2. & A farmer sold a sheep for $m$ dollars and gained\\
& & $y$ dollars. What did the sheep cost? \textit{Ans.} $m - y$
dollars.\\
\end{tabular}
\textit{\textbf{Subtraction is expressed by the sign minus}}
($-$).
\begin{tabular}{cll}
&ILLUS. 3. & A man started at a certain point and traveled\\
& & north 15 miles, then south 30 miles, then north 20 miles,\\
& &then north 5 miles, then south 6 miles. How far is he\\
& &from where he started and in which direction?\\
\\
&ILLUS. 4. & A man started at a certain point and traveled east $x$\\
& &miles, then west $b$ miles, then east $m$ miles, then east $y$\\
& &miles, then west $z$ miles. How far is he from where he started?\\
\end{tabular}
We find a difficulty in solving this last example, because we do
not know just how large $x, b, m, y$, and $z$ are with reference
to each other. This is only one example of a large class of
problems which may arise, in which we find direction east and
west, north and south; space before and behind, to the right and
to the left, above and below; time past and future; money gained
and lost; everywhere these opposite relations. This relation of
oppositeness must be expressed in some way in our representation
of numbers.
In algebra, therefore, numbers are considered as increasing from
zero in opposite directions. Those in one direction are called
Positive Numbers (or + numbers); those in the other direction
Negative Numbers (or - numbers).
In Illus. 4, if we call direction east positive, then direction
west will be negative, and the respective distances that the man
traveled will be $+x, - b, + m, + y$, and $-z$. Combining these,
the answer to the problem becomes $x - b + m + y - z$. If the same
analysis be applied to Illus. 3, we get 15 - 30 + 20 + 5 - 6 = +4,
or 4 miles north of starting-point.
\textbf{\textit{ The minus sign before a single number makes the
number negative, and shows that the number has a subtractive
relation to any other to which it may be united, and that it will
diminish that number by its value. It shows a relation rather than
an operation.}}
\textit{Negative numbers} are the second of the two things
referred to on page 7, the introduction of which makes all the
difference between arithmetic and algebra.
NOTE.---Negative numbers are usually spoken of as less than zero,
because they are used to represent losses. To illustrate: suppose
a man's money affairs be such that his debts just equal his
assets, we say that he is worth nothing. Suppose now that the sum
of his debts is \$1000 greater than his total assets. He is worse
off than by the first supposition, and we say that he is worth
less than nothing. We should represent his property by $-1000$
(dollars).
\subsubsection{Exercise 11.}
\begin{enumerate}
\item Express the difference between $a$ and $b$.
\item By how much is $b$ greater than 10?
\item Express the sum of $a$ and $b$ diminished by $c$.
\item Write five numbers in order of magnitude so that $a$ shall
be the middle number.
\item A man has an income of $a$ dollars. His expenses are $b$
dollars. How much has he left?
\item How much less than $c$ is 8?
\item A man has four daughters each of whom is 3 years older than
the next younger. If $x$ represent the age of the oldest, what
will represent the age of the others?
\item A farmer bought a cow for $b$ dollars and sold it for $c$
dollars. How much did he gain?
\item How much greater than 5 is $x$?
\item If the difference between two numbers is 9, how may you
represent the numbers?
\item A man sold a house for $x$ dollars and gained \$75. What did
the house cost?
\item A man sells a carriage for $m$ dollars and loses $x$
dollars. What was the cost of the carriage?
\item I paid $c$ cents for a pound of butter, and $f$ cents for a
lemon. How much more did the butter cost than the lemon?
\item Sold a lot of wood for $b$ dollars, and received in payment
a barrel of flour worth $e$ dollars. How many dollars remain due?
\item A man sold a cow for $l$ dollars, a calf for 4 dollars, and
a sheep for $m$ dollars, and in payment received a wagon worth $x$
dollars. How much remains due?
\item A box of raisins was bought for $a$ dollars, and a firkin of
butter for $b$ dollars. If both were sold for $c$ dollars, how
much was gained?
\item At a certain election 1065 ballots were cast for two
candidates, and the winning candidate had a majority of 207. How
many votes did each receive?
\item A merchant started the year with $m$ dollars; the first
month he gained $x$ dollars, the next month he lost $y$ dollars,
the third month he gained $b$ dollars, and the fourth month lost
$z$ dollars. How much had he at the end of that month?
\item A man sold a cow for \$80, and gained $c$ dollars. What did
the cow cost?
\item If the sum of two numbers is 60, how may the numbers be
represented?
\end{enumerate}
\subsection*{MULTIPLICATION}.
\addcontentsline{toc}{subsection}{\numberline{}Multiplication.}
\begin{tabular}{cll}
\textbf{ 4.} &ILLUS. 1. &$4 \cdot 5 \cdot a \cdot b \cdot c$, $7
\times 6$,
$x \times y$.\\
\\
&ILLUS. 2. &$abc$, $xy$, $amx$.\\
\\
&ILLUS. 3. &$x \cdot x = xx = x^2$.\\
&&$x \cdot x \cdot x = xxx = x^3$.
\end{tabular}
These two are read ``$x$ second power,'' or ``$x$ square,'' and
``$x$ third power,'' or ``$x$ cube,'' and are called powers of
$x$.
A \textbf{ power} is a product of like factors.
The 2 and the 3 are called the exponents of the power.
An \textbf{ exponent} is a number expressed at the right and a
little above another number to show how many times it is taken as
a factor.
\textbf{ \textit{Multiplication is expressed (1) by signs, i.e.
the dot and the cross; (2) by writing the factors successively;
(3) by exponent}.}
The last two are the more common methods.
When use the exponent? When write the factors successively?
\subsubsection*{Exercise 12}.
\begin{enumerate}
\item Express the double of $x$.
\item Express the product of $x, y$, and $z$.
\item How many cents in $x$ dollars?
\item Write $a$ times $b$ times $c$.
\item What will $a$ quarts of cherries cost at $d$ cents a quart?
\item If a stage coach, goes $b$ miles an hour, how far will it go
in $m$ hours?
\item In a cornfield there are $x$ rows, and $a$ hills in a row.
How many hills in the field?
\item Write the cube of $x$.
\item Express in a different way $a \times a \times a \times a
\times a \times a \times a \times a \times a$.
\item Express the product of $a$ factors each equal to $d$.
\item Write the second power of $a$ added to three times the cube
of $m$.
\item Express $x$ to the power $2m$, plus $x$ to the power $m$.
\item What is the interest on $x$ dollars for $m$ years at 6 \%?
\item In a certain school there are $c$ girls, and three times as
many boys less 8. How many boys, and how many boys and girls
together?
\item If $x$ men can do a piece of work in 9 days, how many days
would it take 1 man to perform the same work?
\item How many thirds are there in $x$?
\item How many fifths are there in $b$?
\item A man bought a horse for $x$ dollars, paid 2 dollars a week
for his keeping, and received 4 dollars a week for his work. At
the expiration of $a$ weeks he sold him for $m$ dollars. How much
did he gain?
\item James has $a$ walnuts, John twice as many less 8, and Joseph
three times as many as James and John less 7. How many have all
together?
\end{enumerate}
\subsection*{DIVISION}.
\addcontentsline{toc}{subsection}{\numberline{}Division.}
\begin{tabular}{cll}
\textbf{5.} & ILLUS. & $a \div b,\; \frac{\displaystyle x}{\displaystyle y}$\\
\end{tabular}
\textbf{ \textit{Division is expressed by the division sign, and
by writing the numbers in the fractional form}.}
\subsubsection*{Exercise 13}.
\begin{enumerate}
\item Express five times $a$ divided by three times $c$.
\item How many dollars in $y$ cents?
\item How many books at $a$ dimes each can be bought for $x$
dimes?
\item How many days will a man be required to work for $m$ dollars
if he receive $y$ dollars a day?
\item $x$ dollars were given for $b$ barrels of flour. What was
the cost per barrel?
\item Express $a$ plus $b$, divided by $c$.
\item Express $a$, plus $b$ divided by $c$.
\item A man had $a$ sons and half as many daughters. How many
children had he?
\item If the number of minutes in an hour be represented by $x$,
what will express the number of seconds in 5 hours?
\item A boy who earns $b$ dollars a day spends $x$ dollars a week.
How much has he at the end of 3 weeks?
\item A can perform a piece of work in $x$ days, B in $y$ days,
and C in $z$ days. Express the part of the work that each can do
in one day. Express what part they can all do in one day.
\item How many square feet in a garden $a$ feet on each side?
\item A money drawer contains $a$ dollars, $b$ dimes, and $c$
quarters. Express the whole amount in cents.
\item $x$ is how many times $y$?
\item If $m$ apples are worth $n$ chestnuts, how many chestnuts is
one apple worth?
\item Divide 30 apples between two boys so that the younger may
have two-thirds as many as the elder.
\end{enumerate}
\section*{ALGEBRAIC EXPRESSIONS.}
\addcontentsline{toc}{section}{\numberline{}ALGEBRAIC
EXPRESSIONS.}
\begin{tabular}{cll}
\textbf{ 6.} & ILLUS. & $ a,\; -c,\; b + 8,\; m-x+2c^2.$
\end{tabular}
An \textbf{ algebraic expression} is any representation of a
number by algebraic notation.
\begin{tabular}{lll}
\textbf{ 7.} & ILLUS. 1.& $-3a^2b,\; 2x+a^2z^3-5d^4.$
\end{tabular}
$-3a^2b$ is called a term, $2x$ is a term, $+a^2z^3$ is a term,
$-5d^4$ is a term.
A \textbf{ term} is an algebraic expression not connected with any
other by the sign plus or minus, or one of the parts of an
algebraic expression with its own sign plus or minus. If no sign
is written, the plus sign is understood. By what signs are terms
separated?
\begin{tabular}{l r r}
ILLUS. 2.&$a^2bc$&$3x^2y^3$\\
&$-7a^2bc$&$-x^2y^3$\\
&$5a^2bc$&$\frac{1}{2}x^2y^3$
\end{tabular}
The terms in these groups are said to be similar.
\begin{tabular}{l r r r}
ILLUS. 3.& $x^2y$&$xy$&$x^2y$\\
&$3a^2b$&$3x^2y$&$3ab$\\
\end{tabular}
The terms of these groups are said to be dissimilar.
\textbf{ Similar terms} are terms having the same letters affected
by the same exponents.
\textbf{ Dissimilar terms} are terms which differ in letters or
exponents, or both.
How may similar terms differ?
\begin{tabular}{ccr@{....}c@{....}l}
ILLUS. & 4.& $abxy$ & fourth degree & $7x^2y^2$\\
&& $x^3$ & third degree & $abc$\\
&&$3xy$ & second degree & $a^2$\\
&& $2a^2bx^3$ & sixth degree & $4a^5b$\\
\end{tabular}
The \textbf{ degree of a term} is the number of its literal
factors. It can be found by taking the sum of its exponents.
\begin{tabular}{lr}
ILLUS. 5. & $2x^4$ \\
& $-a^3y$\\
& $5x^2y^2$\\
\end{tabular}
How do these terms compare with reference to degree? They are
called \textit{homogeneous} terms.
What are homogeneous terms?
\[
\begin{array}{llll}
\textbf{8.}& \text{ILLUS.}& 3x^2y& \text{called a monomial.}\\
&& \left. \begin{array}{ll}
7x^3 - 2xy \\
3y^4 - z^2 & +3yz^2
\end{array} \right\}
& \text{ called polynomials.}
\end{array}
\]
A \textbf{monomial} is an algebraic expression of one term.
A \textbf{polynomial} is an algebraic expression of more
than one term.
A polynomial of two terms is called a \textbf{binomial}, and
one of three terms is called a \textbf{trinomial}.
The \textbf{degree of an algebraic expression} is the same
as the degree of its highest term. What is the degree
of each of the polynomials above? What is a homogeneous
polynomial?
\subsubsection*{Exercise 14.}
\begin{enumerate}
\item Write a polynomial of five terms. Of what degree is it?
\item Write a binomial of the fourth degree.
\item Write a polynomial with the terms of different degrees.
\item Write a homogeneous trinomial of the third degree.
\item Write two similar monomials of the fifth degree which shall
differ as much as possible.
\item Write a homogeneous trinomial with one of its terms of the
second degree.
\item Arrange according to the descending powers of $a$:
$-80a^3b^3 + 60a^4b^2 + 108ab^5 + 48a^5b + 3a^6 - 27b^6 -
90a^2b^4$.
What name? What degree?
\item Write a polynomial of the fifth degree containing six terms.
\item Arrange according to the ascending powers of $x$:
\[ 15x^2y^3 + 7x^5 - 3xy^5 - 60x^4y + y^7 + 21x^3y^2 \]
What name? What degree? What is the degree of
each term?
When $a = 1$, $b = 2$, $c = 3$, $d = 4$, $x = O$, $y = 8$, find
the value of the following:
\item $2a + 3b + c$.
\item $5b + 3a - 2c + 6x$.
\item $6bc - 3ax + 2xb - 5ac + 2cx$.
\item $3bcd + 5cxa - 7xab + abc$.
\item $2c^2 + 3b^3 + 4a^4$.
\item $\frac{1}{2}a^3c - b^3 - c^3 - \frac{3}{4}abc^3$.
\item $2a - b - \frac{2ab}{a + b}$.
\item $2bc - \frac{3}{4}c^3 + 3ab - 2a - x + \frac{4}{15}bx$.
\item $\frac{a^2bx + ab^2c + abc^2 + xac^2}{abc}$.
\item Henry bought some apples at 3 cents apiece, and twice as
many pears at 4 cents apiece, paying for the whole 66 cents. How
many of each did he buy?
\item Sarah's father told her that the difference between
two-thirds and five-sixths of his age was 6 years. How old was he?
\end{enumerate}
\chapter*{OPERATIONS.}
\addcontentsline{toc}{chapter}{\numberline{}OPERATIONS.}
\section*{ADDITION.}
\addcontentsline{toc}{section}{\numberline{}ADDITION.}
\textbf{ 9.} In combining numbers in algebra it must always be
borne in mind that negative numbers are the opposite of positive
numbers in their tendency.
\begin{tabular}{l r r}
ILLUS. 1.&$3ax$&$-7b^2y$\\
&$5ax$&$-3b^2y$\\
&$2ax$&$-4b^2y$\\
&$\overline{10ax}$&$\overline{-14b^2y}$
\end{tabular}
\textit{ To add similar terms with like signs, add the
coefficients, annex the common letters, and prefix the common
sign.}
\begin{tabular}{l r r}
ILLUS. 2.&$5a^2b$&$3x^2y^2$\\
&$-3a^2b$&$8x^2y^2$\\
&$-4a^2b$&$-5x^2y^2$\\
&$6a^2b$&$-7x^2y^2$\\
&$\overline{4a^2b}$&$\overline{-x^2y^2}$
\end{tabular}
\textit{ To add similar terms with unlike signs, add the
coefficients of the plus terms, add the coefficients of the minus
terms, to the difference of these sums annex the common letters,
and prefix the sign of the greater sum.}
\begin{tabular}{l c c}
ILLUS. 3.&$a$&$2x$\\
&$b$&$-5y$\\
&$c$&$-3a$\\
&$\overline{a + b + c}$&$\overline{2x - 5 - 3a}$\\
\end{tabular}
\textit{ To add dissimilar terms, write the terms successively,
each with its own sign}.
\begin{tabular}{lrrrr}
ILLUS. 4. &$2ab$ & $-3ax^2 $ & $+ 2a^2x$\\
&$-8ab $ & $-ax^2 $ & $- 5a^2x $&$+ ax^3$\\
&$12ab $&$+10ax^2 $ & $- 6a^2x$\\
\cline{2-5}\\
&$6ab $&$+6ax^2$ & $ - 9a^2x$ & $ + ax^3$\\
\end{tabular}
\textit{ To add polynomials, add the terms of which the
polynomials consist, and unite the results}.
\subsubsection*{Exercise 15.}
Find the sum of:
\begin{enumerate}
\item $3x$, $5x$, $x$, $4x$, $11x$.
\item $5ab$, $6ab$, $ab$, $13ab$.
\item $-3ax^3$, $-5ax^3$, $-9ax^3$, $-ax^3$.
\item $-x$, $-5x$, $-11x$, $-25x$.
\item $-2a^2$, $5a^2$, $3a^2$, $-7a^2$, $11a^2$.
\item $2abc^2$, $-5abc^2$, $abc^2$, $-8abc^2$.
\item $5x^2$, $3ab$, $-2ab$, $-4a^2$, $5ab$, $-2a^2$.
\item $5ax$, $-3bc$, $-2ax$, $7ax$, $bc$, $-2bc$.
Simplify:
\item $4a^2 - 5a^2 - 8a^2 - 7a^2$.
\item $x^5 + 5a^4b - 7ab - 2x^5 + 10ab + 3a^4b$.
\item $\frac{1}{3}a - \frac{1}{2}a + \frac{2}{3}a + a$.
\item $\frac{2}{3}b - \frac{3}{4}b - 2b - \frac{1}{3}b +
\frac{5}{6}b + b$.
\item A lady bought a ribbon for $m$ cents, some tape for $d$
cents, and some thread for $c$ cents. She paid $x$ cents on the
bill. How much remains due?
\item A man travels $a$ miles north, then $x$ miles south, then 5
miles further south, and then $y$ miles north. How far is he from
his starting point?
Add:
\item $a + 2b + 3c$, $5a + 3b + c$, $c - a - b$.
\item $x + y - z$, $x - y - z$, $y - x + z$.
\item $x + 2y - 3z + a$, $2x - 3y + z - 4a$, $2a - 3x + y - z$.
\item $x^3 + 3x^2 - x + 5$, $4x^2 - 5x^3 + 3 - 4x$, $3x + 6x^3 -
3x^2 + 9$.
\item $ca - bc + c^3$, $ab + b^3 - ca$, $a^3 - ab + bc$.
\item $3a^m - a^{m-1} - 1$, $3a^{m-1} + 1 - 2a^m$, $a^{m-1} + 1$.
\item $5a^5 - 16a^4b - 11a^2b^2c + 13ab$, $-2a^5 + 4a^4b +
12a^2b^2c - 10ab$, $6a^5 - a^4b - 6a^2b^2c + 10ab$, $-10a^5 +
8a^4b + a^2b^2c - 6ab$, $a^5 + 5a^4b + 6a^2b^2c - 7ab$.
\item $15x^3 + 35x^2 + 3x +7$, $7x^3 + 15x - 11x^2 + 9$, $9x - 10
+ x^3 - 4x^2$.
\item $9x^5y - 6x^4y^2 + x^3y^3 - 25xy^5$, $-22x^3y^3 - 3xy^5 -
9x^5y - 3x^4y^2$, $5x^3y^3 + x^5y + 21x^4y^2 + 20xy^5$.
\item $x - y - z - a - b$, $x + y + z + a + b$, $x + y + z + a -
b$, $x + y - z - a - b$, $x + y + z - a - b$.
\item $a^2c + b^2c + c^3 - abc - bc^2 - ac^2$, $a^2b + b^3 - bc^2
- ab^2 - b^2c - abc$, $a^3 + ab^2 + ac^2 - a^2b - abc - a^2c$.
\item A regiment is drawn up in $m$ ranks of $b$ men each, and
there are $c$ men over. How many men in the regiment?
\item A man had $x$ cows and $z$ horses. After exchanging 10 cows
with another man for 19 horses, what will represent the number
that he has of each?
\item In a class of 52 pupils there are 8 more boys than girls.
How many are there of each?
\end{enumerate}
What is the sum of two numbers equal numerically
but of opposite sign? How does the sum of a positive
and negative number compare in value with the positive
number? with the negative number? How does the
sum of two negative numbers compare with the numbers?
Illustrate the above questions by a man traveling
north and south.
\section*{SUBTRACTION.}
\addcontentsline{toc}{section}{\numberline{}SUBTRACTION.}
\textbf{ 10.} How is subtraction related to addition? How are
opposite relations expressed?
Given the typical series of numbers
$\mathbf{- 4a,\; - 3a,\; - 2a,\; - a,\; - 0,\; a,\; 2a,\; 3a,\;
4a,\; 5a.}$
What must be added to $2a$ to obtain $5a$? What then must be
subtracted from $5a$ to obtain $2a?$ $5a - 3a = ?$
What must be added to $-3a$ to obtain $4a$? What then must be
subtracted from $4a$ to obtain $-3a$? $4a - 7a = ?$
What must be added to $3a$ to obtain $-2a$? What
then must be subtracted from $-2a$ to obtain $3a$?
$(-2a)-(-5a)=?$
What must be added to $-a$ to obtain $-4a$? What
then must be subtracted from $-4a$ to obtain $-a$?
$(-4a)-(-3a)=?$
Examine now these results expressed in another form.
\begin{tabular}{llrlr}
1.&From&$5a$&To&$5a$\\
&take&$3a$&add&$-3a$\\
& & $\overline{\;2a}$& &$\overline{\;2a}$\\
\\
2.&From&4a&To&4a\\
&take&$7a$&add&$-7a$\\
& &$\overline{-3a}$& &$\overline{-3a}$\\
\\
3.&From&$2a$&To&$2a$\\
&take&$5a$&add&$-5a$\\
& &$\overline{-3a}$& &$\overline{-3a}$\\
\\
4.&From&$-4a$&To&$-4a$\\
&take&$-3a$&add&$3a$\\
& &$\overline{- a}$& &$\overline{- a}$
\end{tabular}
The principle is clear; namely,
\textbf{ \textit{The subtraction of any number gives the same
result as the addition of that number with the opposite sign.}}
\begin{tabular}{cc}
ILLUS.& \\
&$ 6a+3b- c $ \\
&$-4a+ b-5c$\\
&$\overline{10a+2b+4c}$
\end{tabular}
\textit{To subtract one number from another, consider the sign of
the subtrahend changed and add.}
What is the relation of the minuend to the subtrahend
and remainder? What is the relation of the
subtrahend to the minuend and remainder?
\subsubsection*{Exercise 16.}
\begin{enumerate}
\item From $5a^{3}$ take $3a^{3}$.
\item From $7a^{2}b$ take $-5a^{2}b$.
\item Subtract $7xy^{3}$ from $-2xy^{3}$.
\item From $-3x^{m}y$ take $-7x^{m}y$.
\item Subtract $3ax$ from $8x^{2}$.
\item From $5xy$ take $-7by$.
\item What is the difference between $4a^{m}$ and $2a^{m}$?
\item From the difference between $5a^{2}x$ and $-3a^{2}x$ take
the sum of $2a^{2}x$ and $-3a^{2}x$.
\item From $2a + b + 7c$ take $5a + 2b - 7c$.
\item From $9x - 4y + 3z$ take $5x - 3y + z$.
\item Subtract $3x^{4} - x^{2} + 7x - 14$ from $11x^{4} - 2x^{3} -
8x$.
\item From $10a^{2}b^{2} + 15ab^{2} + 8a^{2}b$ take $-10a^{2}b^{2}
+ 15ab^{2} - 8a^{2}b$.
\item Subtract $1- x + x^{2} - 3x^{3}$ from $x^{3} - 1 + x^{2} -
x$.
\item From $x^{m} - 2x^{2m} + x^{3m}$ take $2x^{3m} - x^{2m} -
x^{m}$.
\item Subtract $a^{2n} + a^{n}x^{n} + x^{2n}$ from $3a^{2n} -
17a^{n}x^{n} - 8x^{2n}$.
\item From $\frac{2}{3}a^{2} - \frac{5}{2}a - 1$ take
$-\frac{2}{3}a^{2} + a -\frac{1}{2}$.
\item From $x^{5} + 3xy^{4}$ take $x^{5} + 2x^{4}y + 3x^{3}y^{2} -
2xy^{4} + y^{5}$.
\item From $x$ take $y - a$.
\item From $6a^3 + 4a + 7$ take the sum of $2a^3 + 4a^2 + 9$ and
$4a^3 - a^2 + 4a - 2$.
\item Subtract $3x - 7x^3 + 5x^2$ from the sum of $2 + 8x^2 - x^3$
and $2x^3 - 3x^2 + x - 2$.
\item What must be subtracted from $15y^3 + z^3 + 4yz^2 - 5z^2x -
2xy^2$ to leave a remainder of $6x^3 - 12y^3 + 4z^3 - 2xy^2 +
6z^2x$?
\item How much must be added to $x^3 - 4x^2 + 16x$ to produce $x^3
+ 64$?
\item To what must $4a^2 - 6b^2 + 8bc - 6ab$ be added to produce
zero?
\item From what must $2x^4 - 3x^2 + 2x - 5$ be subtracted to
produce unity?
\item What must be subtracted from the sum of $3a^3 + 7a + 1$ and
$2a^2 - 5a - 3$ to leave a remainder of $2a^2 - 2a^3 - 4$?
\item From the difference between $10a^2b + 8ab^2 - 8a^2b^2 - b^3$
and $5a^2b - 6ab^3 - 7a^2b^2$ take the sum of $10a^2b^2 + 15ab^2 +
8a^2b$ and $8a^2b - 5ab^2 + a^2b^2$.
\item What must be added to $a$ to make $b$?
\item By how much does $3x - 2$ exceed $2x + 1$?
\item In $y$ years a man will be 40 years old. What is his present
age?
\item How many hours will it take to go 23 miles at $a$ miles an
hour?
\end{enumerate}
\subsection*{PARENTHESES}.
\addcontentsline{toc}{subsection}{\numberline{}PARENTHESES.}
\begin{tabular}{lcl}
\textbf{11.}& ILLUS. 1.& $5 (a + b)$.\\
&ILLUS. 2.& $(m + n) (x + y)$.\\
&ILLUS. 3.& $x - (a + y - c)$.\\
\end{tabular}
The parenthesis indicates that the numbers enclosed are considered
as one number.
Read each of the above illustrations, state the operations
expressed, and show what the parenthesis indicates.
Write the expressions for the following:
\begin{enumerate}
\item The sum of $a$ and $b$, multiplied by $a$ minus $b$.
\item $c$ plus $d$, times the sum of $a$ and $b$,---the whole
multiplied by $x$ minus $y$.
\item The sum of $a$ and $b$, minus the difference between two $a$
and three $b$.
\item $(x - y) + (x - y) + (x - y) +$ etc., written $a$ times.
\item The sum of $a + b$ taken seven times.
\item There are in a library $m + n$ books, each book has $c - d$
pages, and each page contains $x + y$ words. How many words in all
the books?
\end{enumerate}
\begin{tabular}{ll}
ILLUS. 4.& $a + (b - c - x) = a + b - c - x$.\\
&(By performing the addition.)\\
ILLUS. 5.& $a + c - d + e = a + (c - d + e)$.
\end{tabular}
\textbf{\textit{Any number of terms may be removed from a
parenthesis preceded by the plus sign without change in the
terms.}}
And conversely,
\textbf{\textit{Any number of terms may be enclosed in a
parenthesis preceded by the plus sign without change in the
terms}.}
\begin{tabular}{lc}
ILLUS. 6. &$x - (y + z - c) = x - y - z + c$.\\
&(By performing the subtraction.)\\
ILLUS. 7. &$a - b - c + d = a - (b + c - d)$.
\end{tabular}
\textbf{\textit{Any number of terms may be removed from a
parenthesis preceded by the minus sign by changing the sign of
each term}.}
And conversely,
\textbf{\textit{Any number of terms may be enclosed in a
parenthesis preceded by the minus sign by changing the sign of
each term}.}
\subsubsection*{Exercise 17}.
Remove the parentheses in the following:
\begin{enumerate}
\item $x + (a + b) + y + (c - d) + (x - y)$.
\item $a + (b - c) - b + (a + c) + (c - a)$.
\item $a^{2}b - (a^{3} + b^{3}) - a^{3} - (ab^{2} - a^{2}b)
-(b^{3} - a^{3})$.
\item $xy - (x^{2} + y^{2}) - y^{2} - (x^{2} - 2xy) - (y^{2} -
x^{2})$.
\item $(a + b - c) - (a - b + c) + (b - a - c) - (c - a - b)$.
\item $(x - y + z) + (x + y + z) - (y + x + z) - (z + x + y)$.
\item $a - (3b - 2c + a) - (2b - a - c) - (6 - c + a)$.
\item $\frac{1}{2}a - \frac{1}{2}c - (\frac{2}{3}b - \frac{1}{2}c)
- (a + \frac{1}{4}c - \frac{1}{3}b) - (\frac{2}{3}b - \frac{1}{4}c
- \frac{1}{2}a)$.
In each of the following enclose the last two terms in a
parenthesis preceded by a plus sign:
\item $x - y + 2c - d$.
\item $2 a^2 + 3a^3x-ab^2 + by^2$.
\item $10 m^3 +31m^2-20m-21$.
\item $ax^4 - x^3 + 2x - 2ax^2$.
In each of the following enclose the last three terms in a
parenthesis preceded by a minus sign:
\item $a^4 + a^3x + a^2x^2 - ax^3- 4x^4$.
\item $a^4 + a^3-6a^2+a + 3$.
\item $6a^3 - 17 a^2x + 14 ax^2 - 3x^3$.
\item $ax^3 + 2ax^2 + ax + 2a$.
\item A man pumps $x$ gallons of water into a tank each day, and
draws off $y$ gallons each day. How much water will remain in the
tank at the end of five days?
\item Two men are 150 miles apart, and approach each other, one at
the rate of $x$ miles an hour, the other at the rate of $y$ miles
an hour. How far apart will they be at the end of seven hours?
\item Eight years ago A was $x$ years old. How old is he now?
\item A had $x$ dollars, but after giving \$35 to B he has
one-third as much as B. How much has B?
\end{enumerate}
\section*{MULTIPLICATION.}
\addcontentsline{toc}{section}{\numberline{}MULTIPLICATION.}
\begin{align*}
\textrm{\textbf{12.} ILLUS. } 1.\quad & 8=2 \cdot 2 \cdot 2 & a^3 = a \cdot a \cdot a\\
& 6= 2 \cdot 3 & b^2 = b \cdot b \\
&\overline{48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3} &
\overline{a^3b^2 = a \cdot a \cdot a \cdot b \cdot b}\\
\\
\textrm{ILLUS. } 2.\quad & 2 a^2b^3c\\
& 3a^4b^2c^3\\
&\overline{6a^6b^5c^4}
\end{align*}
In arithmetic you learned that multiplication is the addition of
equal numbers, that the multiplicand expresses one of those equal
numbers, and the multiplier the number of them. In algebra we have
negative as well as positive numbers. Let us see the effect of
this in multiplication. We have four possible cases.
\begin{enumerate}
\item Multiplication of a plus number by a plus number.
\begin{tabular}{ccc}
& $+7$&\\
ILLUS. &$\underline{+ 4}$& This must mean \textit{four sevens}, or
28.
\end{tabular}
\item Multiplication of a minus number by a plus number.
\begin{tabular}{ccc}
&$-7$ &\\
ILLUS. &$\underline{+ 4}$ &This must mean \textit{four
minus-sevens}, or $-
28$.\\
\end{tabular}
\item Multiplication of a plus number by a minus number.
\begin{tabular}{ccl}
&$+7$&\\
ILLUS. &$\underline{- 4}$ &\\
\end{tabular}
This must mean the opposite of what $+4$ meant as a multiplier.
Plus four meant add, minus four must mean subtract.
\textit{Subtracting four sevens} gives $-28$.
\item Multiplication of a minus number by a minus number.
\begin{tabular}{ccl}
&$-7$&\\
ILLUS. &$\underline{-4}$& This must mean \textit{subtract four
minus-sevens}, or 28.
\end{tabular}
\end{enumerate}
\begin{tabular}{ccccc}
ILLUS. 3. &$+b$&$-b$&$+b$&$-b$\\
& $\underline{+a}$& $\underline{+a}$& $\underline{-a}$& $\underline{-a}$\\
&$ab$ &$-ab$&$-ab$&$ab$\\
\end{tabular}
\textit{To multiply a monomial by a monomial, multiply the
coefficients together for the coefficient of the product, add the
exponents of like letters for the exponent of the same letter in
the product, and give the product of two numbers having like signs
the plus sign, having unlike signs the minus sign.}
\subsubsection*{Exercise 18.}
Find the product of:
\begin{enumerate}
\item $5x$ and $7c$.
\item $51cy$ and $-xa$.
\item $3x^{3}y$ and $7axy^{2}$.
\item $5a^{2}bc$ and $2ab^{2}c^{3}$.
\item $-3x^{2}y$, $-2ax$, and $3cy^{2}$.
\item $5a^{2}$, $-3bc^{3}$, and $-2abc$.
\item $15x^{2}y^{2}$, $-\frac{2}{3} xz$, and $\frac{1}{10}
yz^{2}$.
\item $20a^{3}b^{2}$, $\frac{2}{5} ab^{2}$, and $-\frac{1}{8}
bc^{2}$.
\item $\frac{1}{2} xy$, $-\frac{2}{3} cx^{2}$, $-\frac{2}{5}
a^{2}y$, and $-\frac{5}{3} x^{2}y^{2}$.
\item $-\frac{2}{3} a^{2}b^{2}$, $\frac{1}{4} c^{2}$,
$-\frac{6}{5}ac$, and $-\frac{3}{4} b^{3}c$.
\item In how many days will $a$ boys eat 100 apples if each boy
eats $b$ apples a day?
\item How many units in $x$ hundreds?
\item If there are $a$ hundreds, $b$ tens, and $c$ units in a
number, what will represent the whole number of units?
\item If the difference between two numbers is 7, and one of the
numbers is $x$, what is the other number?
\end{enumerate}
\begin{tabular}{cr}
\textbf{13.} ILLUS. 1.&\\
&$a - b + c$\\
& $x$\\
&$\overline{ax-bx+cx}$
\end{tabular}
\textit{To multiply a polynomial by a monomial, multiply
each term of the polynomial by the monomial,
and add the results.}
ILLUS. 2. \[\begin{matrix}
\;x^3 + 2x^2 + 3x \\
\underline{3x^2 - 2x + 1} \\
3x^5 + 6x^4 + 9x^3 \\
\qquad\qquad\quad -2x^4 - 4x^3 -6x^2 \\
\qquad\qquad \underline{\qquad \qquad\qquad\quad x^3 + 2x^2 +3x} \\
\qquad\qquad\quad 3x^5 + 4x^4 +6x^3 - 4x^2 + 3x
\end{matrix}\]
\textit{To multiply a polynomial by a polynomial, multiply
the multiplicand by each term of the multiplier,
and add the products.}
How is the first term of the product obtained? How is
the last term obtained? The polynomials being arranged
similarly with reference to the exponents of some number,
how is the product arranged?
\subsubsection*{Exercise 19.}
Multiply:
\begin{enumerate}
\item $ x^2 + xy + y^2 \mbox{by} x^2y^2 $.
\item $ a^2 - ab + b^2 \mbox{by} a^2b $.
\item $ a^3 - 3a^2b + b^3 \mbox{by} -2ab $.
\item $ 8x^3 + 36x^2y + 27y^3 by 3xy^2 $.
\item $ \frac{5}{6}a^4 - \frac{1}{5}a^3b - \frac{1}{3}a^2b^2
\mbox{by} \frac{6}{5}ab^2 $.
\item $ x^2 - xy + y^2 \mbox{by} x + y $.
\item $x^4 - 3x^3 + 2x^2 - x + 1$ by $x-1$.
\item $x^3 - 2x^2 + x$ by $x^2 + 3x + 1$.
\item $xy + mn - xm - yn$ by $xy - mn + xm - yn$.
\item $x^4 - x^3 + x^2 - x + 1$ by $2 + 3x + 2x^2 + x^3$.
\item $a^5 - a^4b + a^3b^2 - a^2b^3 + ab^4 - b^5$ by $a + b$.
\item $x^2 - xy + y^2 - yz + z^2 - xz$ by $x + y + z$.
\item $x^6 + x^5y + x^4y^2 + x^3y^3 + x^2y^4 + xy^5 + y^6$ by $x -
y$.
\item $x^4 - 4a^2x^2 + 4a^4$ by $x^4 + 4a^2x^2 + 4a^4$.
\item $a^3 - 3a^2y^2 + y^3$ by $a^3 + 3a^2y^2 +y^3$.
\item $x^4 + 10x + 12 + 9x^2 + 3x^3$ by $-2x + x^2 - 1$.
\item $3x^2 - 2 + x^3 - 3x + 6x^4$ by $-2 + x^2 - 3x$.
\item If $x$ represent the number of miles a man can row in an
hour in still water, how far can the man row in 5 hours down a
stream which flows $y$ miles an hour? How far up the same stream
in 4 hours?
\item A can reap a field in 7 hours, and B can reap the same field
in 5 hours. How much of the field can they do in one hour, working
together?
\item A tank can be filled by two pipes in $a$ hours and $b$ hours
respectively. What part of the tank will be filled by both pipes
running together for one hour?
What does $x - y$ express? What two operations will
give that result? What operations will give $4x$ as a
result?
\end{enumerate}
\textbf{14.} ILLUS. 1.
\settowidth{\arraycolsep}{$\mskip0.5\thickmuskip$}
\[
\begin{array}{rclll}
x &+& 5 &&\\
x &+& 3 &&\\
\multispan{3}\hrulefill &&\\
x^2 &+& 5x &&\\
&& 3x &+& 15 \\
\multispan{5}\hrulefill \\
x^2 &+& 8x &+& 15 \\
\end{array}
\]
ILLUS. 2.
\[
\begin{array}{rclll}
x &-& 5 &&\\
x &-& 3 &&\\
\multispan{3}\hrulefill &&\\
x^2 &-& 5x &&\\
&-& 3x &+& 15 \\
\multispan{5}\hrulefill \\
x^2 &-& 8x &+& 15 \\
\end{array}
\]
ILLUS. 3.
\[
\begin{array}{rclll}
x &+& 5 &&\\
x &-& 3 &&\\
\multispan{3}\hrulefill &&\\
x^2 &+& 5x &&\\
&-& 3x &-& 15 \\
\multispan{5}\hrulefill \\
x^2 &+& 2x &-& 15 \\
\end{array}
\]
ILLUS. 4.
\[
\begin{array}{rclll}
x &-& 5 &&\\
x &+& 3 &&\\
\multispan{3}\hrulefill &&\\
x^2 &-& 5x &&\\
&& 3x &-& 15 \\
\multispan{5}\hrulefill \\
x^2 &-& 2x &-& 15 \\
\end{array}
\]
How many terms in the product? What is the first
term? How is the last term formed? How is the
coefficient of $x$ in the middle term formed?
The answers to the examples in the following exercise
are to be written directly, and not to be obtained by the
full form of multiplication:
\subsubsection*{Exercise 20.}
Expand:
\begin{enumerate}
\item $(x + 2)(x + 7)$.
\item $(x + 1)(x + 6)$.
\item $(x - 3)(x - 4)$.
\item $(x - 5)(x - 2)$.
\item $(x + 5)(x - 2)$.
\item $(x + 7)(x - 3)$.
\item $(x - 7)(x + 6)$.
\item $(x - 6)(x + 5)$.
\item $(x - 11)(x - 2)$.
\item $(x - 13)(x - 1)$.
\item $(y + 7)(y - 9)$.
\item $(x + 3)(x + 17)$.
\item $(y+2)(y-15)$.
\item $(y+2)(y+16)$.
\item $(a^2 + 7)(a^2 - 5)$.
\item$(a-9)(a+9)$.
\item $(m^2 - 2)(m^2 - 16)$.
\item $(b^3 + 12)(b^3 - 10)$.
\item $(x - \frac{1}{2})(x - \frac{1}{4})$.
\item$(y + \frac{1}{3})(y + \frac{1}{6})$.
\item $(m + \frac{2}{3})(m - \frac{1}{3})$.
\item $(a - \frac{2}{5})(a + \frac{3}{5})$.
\item $(x - \frac{2}{3})(x - \frac{1}{2})$.
\item $(y + \frac{3}{4})(y + \frac{1}{5})$.
\item $(3-x)(7-x)$.
\item $(5-x)(3-x)$.
\item $(6-x)(7+x)$.
\item$(11-x)(3+x)$.
\item$(x-3)(x+3)$.
\item $(y+5)(y-5)$.
\item Find a number which, being multiplied by 6, and having 15
added to the product, will equal 141.
\item Mr. Allen has 3 more cows than his neighbor. Three times his
number of cows will equal four times his neighbor's. How many has
Mr. Allen?
\end{enumerate}
\subsection*{INVOLUTION.}
\addcontentsline{toc}{subsection}{\numberline{}INVOLUTION.}
\textbf{ 15}. What is the second power of 5? What is the third
power of 4?
\textbf{ Involution} is the process of finding a power of a
number.
\begin{tabular}{ll}
ILLUS. 1. & $(5 a^2 b^3)^2 = 25 a^4 b^6$.\\
ILLUS. 2. & $(3 x y^2 z)^3 = 27 x^3 y^6 z^3$.\\
ILLUS. 3. & Find by multiplication the 2d, 3d, 4th,
and 5th powers of $+a$ and $-a$.\\
& Observe the signs of the odd and of the even powers.
\end{tabular}
\textit{To find any power of a monomial, raise the coefficient to
the required power, multiply the exponent of each letter by the
exponent of the power, and give every even power the plus sign,
every odd power the sign of the original number}.
\subsubsection*{Exercise 21}.
Expand:
\begin{enumerate}
\item $(a^2b)^2$.
\item $(xy^2)^3$.
\item $(-a^4b)^2$.
\item $(-x^3y^2)^3$.
\item $(3a^2y)^3$.
\item $(-7ab^2c^3)^2$.
\item $(xyz^2)^5$.
\item $(-m^2nd)^4$.
\item $(-5x^3y^4z)^3$.
\item $(11c^5d^12x^4)^2$.
\item $(\frac{1}{2}x^2am^3)^2$.
\item $(-\frac{1}{3}ab^3c)^2$.
\item $(-15c^6dx^2)^2$.
\item $(-9xy^5z^2)^3$.
\item $(a^9b^2c^4d^2)^4$.
\item $(-x^8yz^3m^2n)^5$.
\item $(-\frac{2}{3}a^2bc^4)^2$.
\item $(\frac{5}{6}mn^2x^3)^2$.
\item In how many days can one man do as much as $b$ men in 8
days?
\item How many mills in $a$ cents? How many dollars?
\end{enumerate}
\textbf{16.} Find by multiplication the following:
\[
(a+b)^2,\; (a-b)^2,\; (a+b)^3,\; (a-b)^3,\; (a+b)^4,\; (a-b)^4.
\]
Memorize the results.
It is intended that the answers in the following exercise
shall be written directly without going through the multiplication.
\begin{tabular}{cl}
ILLUS. 1. &$(x-y)^4=x^4-4x^3y+6x^2y^2-4xy^3+y^4$.\\
ILLUS. 2. &$(x-1)^3=x^3-3x^2+3x-1$.
\end{tabular}
\begin{displaymath}
\begin{array}{lll}
\text{ILLUS. 3.} &\multicolumn{2}{l}{ (2xy+3y^2)^4 } \\
\qquad & = (2xy)^4+4(2xy)^3(3y^2) & + 6(2xy)^2(3y^2)^2 \\
& &{}+ 4(2xy)(3y^2)^3+(3y^2)^4 \\
\qquad &\multicolumn{2}{l}{
= 16x^4y^4+96x^3y^5+216x^2y^6+216xy^7+81y^8.}
\end{array}
\end{displaymath}
\subsubsection*{Exercise 22.}
Expand:
\begin{enumerate}
\item $(z+x)^3$.
\item $(a+y)^4$.
\item $(x-a)^4$.
\item $(a-m)^3$.
\item $(m+a)^2$.
\item $(x-y)^2$.
\item $(x^2+y^2)^3$.
\item $(m^3-y^2)^2$.
\item $(c^2-d^2)^4$.
\item $(y^2+z^4)^3$.
\item $(x^2y+z)^2$.
\item $(a^2b-c)^4$.
\item $(a^2-b^3c)^3$.
\item $(x^2y-mn^3)^2$.
\item $(x+1)^3$.
\item $(m-1)^2$.
\item $(b^2-1)^4$.
\item $(y^3+1)^3$.
\item $(ab-2)^2$.
\item $(x^2y-3)^2$.
\item $(1-x)^4$.
\item $(1-y^2)^3$.
\item $(2x+3y^2)^2$.
\item $(3ab-x^2y)^3$.
\item $(4mn^3-3a^2b)^4$.
\item $(\frac{1}{2}x-y)^2$.
\item $(1-\frac{1}{3}x^2)^3$.
\item $(x^2-3)^4$.
\item John has $4a$ horses, James has $a$ times as many as John,
and Charles has $d$ less than five times as many as James. How
many has Charles?
\item A man bought $a$ pounds of meat at $a$ cents a pound, and
handed the butcher an $x$-dollar bill. How many cents in change
should he receive?
\item A grocer, having 25 bags of meal worth $a$ cents a bag, sold
$x$ bags. What is the value of the meal left?
\item If $a = 5$, $x
= 4$, $y = 3$, find the numerical value of
\[
\frac{7a}{11x-3y} + \frac{11x}{8x-7y} - \frac{10y}{7a-5x}.
\]
\item Find the value of
\[
a^2b - c^2d - (ab+cd)(ac-bd) - bc(a^2c-bd^2)
\]
when $a = 2$, $b = 3$, $c = 4$, and $d = 0$.
\end{enumerate}
\subsubsection*{Exercise 23. (Review.)}
\begin{enumerate}
\item Take the sum of $x^3 + 3x - 2$, $2x^3 + x^2 - x + 5$, and
$4x^3 + 2x^2 - 7x + 4$ from the sum of $2x^3 + 9x$ and $5x^3 +
3x^2$.
\item Multiply $b^4 - 2b^2$ by $b^4 + 2b^2 - 1$.
\item Simplify $11x^2 + 4y^2 - (2xy - 3y^2) + (2x^2 - 3xy) - (3x^2
- 5xy)$.
\item Divide $\$300$ among $A$, $B$, and $C$, so that $A$ shall
have twice as much as $B$, and $B$ $\$20$ more than $C$.
\item Find two numbers differing by $8$ such that four times the
less may exceed twice the greater by $10$.
\item What must be added to $3a^3 - 4a^2 - 4$ to produce $5a^3 +
6$?
\item Add $\frac{2}{3}a^2 - ab - \frac{5}{4}b^2$, $\frac{2}{3}a^2
+ \frac{1}{3}ab - \frac{1}{4}b^2$, and $-a^2 -\frac{2}{3}ab +
2b^2$.
\item Simplify $8ab^2c^4 \times (-3a^4bc^2) \times (-2a^2b^3c)$.
\item Expand $\left(-\frac{2}{3}xy^2z^3\right)^4$.
\item Simplify $(x-2)(x+7) + (x-8)(x-5)$.
\item Expand $(2a^2b-3xy)^3$.
\item What must be subtracted from $x^3-3x^2+2y-5$ to produce
unity?
\item Multiply $x^3+ 3x^2y+3xy^2 + y^3$ by $3xy^2 -
y^3-3x^2y+x^3$.
\item Expand $(x+1)(x-1)(x^2+1)$.
\item Add $4xy^3-4y^4$, $4x^3y-12x^2y^2+12xy^3-4y^4$,
$6x^2y^2-12xy^3+6y^4$ and $x^4-4x^3y+6x^2y^2-4xy^3+y^4$.
\item A man weighs 36 pounds more than his wife, and the sum of
their weights is 317 pounds. What is the weight of each?
\item A watch and chain cost \$350. What was the cost of each, if
the chain cost $\frac{3}{4}$ as much as the watch?
\item Simplify $3x^2-2x+1-(x^2+2x+3)-(2x^2-6x-6)$.
\item Simplify $(a + 2y)^2-(a-2y)^2$
\item What is the value of $1 + \frac{1}{2}a + \frac{1}{3}b$ times
$1- \frac{1}{2}a + \frac{1}{3}b$ ?
\end{enumerate}
\section*{DIVISION.}
\addcontentsline{toc}{section}{\numberline{}DIVISION.}
\textbf{17}. What is the relation of division to multiplication?
\begin{tabular}{ll}
ILLUS. & $3x^2 \times 2xy = $? then $6x^3y \div {2xy}= $?\\
\end{tabular}
\textbf{Division} is the process by which, when a product is given
and one factor known, the other factor is found.
What is the relation of the dividend to the divisor and quotient?
What factors must the dividend contain? What factors must the
quotient contain?
\begin{tabular}{c c}
ILLUS. 1.& $6a^4 b^4 c^6 \div 2a^3 b^2 c^3 = 3a b^2 c^3$.\\
\end{tabular}
\begin{center}
\begin{tabular}{c c|cc|cc|cc|c}
ILLUS. 2. & $+ab $&$+ab^2$& $-ab $&$+ab^2$& $+ab $&$-ab^2$& $-ab $&$-ab^2$\\
\cline{3-3}\cline{5-5}\cline{7-7}\cline{9-9}\\
\end{tabular}
\end{center}
From the relation of the dividend, divisor, and quotient, and the
law for signs in multiplication, obtain the quotients in Illus. 2.
\textit{To divide a monomial by a monomial, divide
the coefficient of the dividend by the coefficient
of the divisor for the coefficient of the quotient,
subtract the exponent of each letter in the divisor
from the exponent of the same letter in the dividend
for the exponent of that letter in the quotient: if
dividend and divisor have like signs, give the quotient
the plus sign; if unlike, the minus sign.}
\subsubsection*{Exercise 24.}
Divide:
\begin{enumerate}
\item $15x^2 y$ by $3x$.
\item $39a b^2$ by $3b$.
\item $27a^3 b^3 c$ by $9ab^2 c$.
\item $35x^4 y^4 z$ by $7x^2 yz$.
\item $-51cx^3 y$ by $3cyx^2$.
\item $121x^3 y^3 z$ by $-11y^2 z$.
\item $-28x^2 y^2 z^2$ by $-7x y^2$.
\item $-36a^3 b^2 c^4$ by $-4a b^2 c^2$.
\item $\frac{1}{3} a^4 b^5$ by $\frac{1}{6} a^2 b^2$.
\item $\frac{1}{5} x^3 y^4$ by $-\frac{1}{15} xy^3$.
\item $-45x^5 y^7 z$ by $9x^2 y^4 z$.
\item $60a^4 bc^{11}$ by $-4ab^2 c^7$.
\item $-\frac{2}{3} x^7 y^2$ by $-\frac{5}{6} x^4 y$.
\item $\frac{3}{4} a^5 m^4 n^3$ by $-\frac{1}{4} a^2 mn^3$.
\item $5m^4 n^2 x^5$ by $\frac{5}{8} mn^2 x$.
\item $4x^3 y^2 z^8$ by $-\frac{2}{3} xz^5$.
\item $10(x + y)^4 z^3$ by $5(x + y)^2 z$.
\item $15(a - b)^3 x^2$ by $3(a - b)x$.
\item Simplify $(-x^{2}y^{3}z^{2}) \times (-x^{4}y^{5}z^{4}) \div 2x^{3}y^{3}z^{4}$.
\item Simplify $a^{5}b^{2}c \times (-a^{3}b^{3}c^{3}) \div 3(a^{3}bc^{2})^{2}$.
\item Expand $(x^{3}y^{2}-3xy)^{3}$.
\item If a man can ride one mile for $a$ cents, how far can
two men ride for $b$ cents?
\item In how many days can $x$ men earn as much as 8
men in $y$ days?
\item $a$ times $b$ is how many times $c$?
\end{enumerate}
\textbf{18.} ILLUS.
\begin{tabular}{c|cccccc}
$-3ab^{3}$ & &$-6a^{3}b^{3}$&$+$&$15a^{2}b^{4}$&$-$&$3ab^{5}$ \\
\cline{2-7}
\multicolumn{2}{c}{} &$2a^{2}$&$-$&$5ab$&$+$&$b^{2}$ \\
\end{tabular}
\textit{To divide a polynomial by a monomial, divide each
term of the dividend by the divisor, and add the
quotients.}
\begin{center}
\subsubsection*{Exercise 25.}
\end{center}
Divide:
\begin{enumerate}
\item $18a^{4}b^{3}-42a^{3}b^{2}+90a^{6}bx$ by $6a^{3}b$.
\item $10x^{5}y^{2}+6x^{3}y^{2}-18x^{4}y^{4}$ by $2x^{3}y$.
\item $72x^{5}y^{6}-36x^{4}y^{3}-18x^{2}y^{2}$ by $9x^{2}y$.
\item $169a^{4}b-117a^{3}b^{2}+91a^{2}b$ by $13a^{2}$.
\item $-2a^{5}x^{3}+\frac{7}{2}a^{4}x^{4}$ by $\frac{7}{3}a^{3}x$.
\item $\frac{1}{2}x^{5}y^{2}-3x^{3}y^{4}$ by $-\frac{3}{2}x^3y^{2}$.
\item $32x^{3}y^{4}z^{6}-24x^{5}y^{4}z^{4}+8x^{4}y^{2}$ by $-8x^{3}y$.
\item $120a^{4}b^{3}c^{5}-186a^{5}b^{7}c^{6}$ by $6a^{3}b^{3}c^{4}$.
\item $4x^{8}-10x^{5}+2x^{6}-16x^{3}-6x^{4}$ by $4x^{2}$.
\item $24y^{3}+32y^{7}-48y^{6}$ by $3y^{3}$.
\item $\frac{1}{4}a^2x-\frac{1}{16}abx - \frac{3}{8}acx$ by $\frac{3}{8}ax$.
\item $-\frac{5}{2}x^2+\frac{5}{3}xy+\frac{10}{3}x$ by $-\frac{5}{6}x$.
\item An army was drawn up with $x$ men in front and $y$
men deep. How many men were there in the army?
\item In how many minutes will a train go $x$ miles at
the rate of $a$ miles an hour?
\item How many apples at $x$ cents apiece can be bought
for $b$ dollars?
\end{enumerate}
\textbf{ 19.} Since division is the reverse of multiplication, let
us consider an example in the multiplication of polynomials.
\begin{center}
\begin{math}
\begin{array}{ccccccccc}
x^3 & + & 2x^2 & + & 3x & & & & \\
3x^2 & - & 2x & + & 3 & & & & \\
\cline{1-5}
3x^5 & + & 6x^4 & + & 9x^3 & & & & \\
& - & 2x^4 & - & 4x^3 & - & 6x^2 & & \\
& & & & 3x^3 & + & 6x^2 & + & 9x \\
\hline
3x^5 & + & 4x^4 & + & 8x^3 & & & + & 9x \\
\end{array}
\end{math}
\end{center}
Which of these numbers will become the dividend in
our division? Take $x^3 + 2x^2 + 3x$ for the divisor. What
will be the quotient? Write these names opposite the
different numbers. What is the last operation performed
in obtaining the dividend? What then is the dividend?
How are these partial products obtained?
Keeping these facts in mind, we will start on the
work of division, using these same numbers for convenience.
ILLUS. 1.\footnotemark
\begin{center}
\begin{math}
\begin{array}{rcccclccl}
x^{3} + 2 x^{2} + 3 x ) & 3 x^{5} & + 4 x^{4} & + & 8 x^{3} & + & 9 x&(3 x^{2} & - 2 x + 3 \\
& 3 x^{5} & + 6 x^{4} & + & 9 x^{3}\\
\cline{2-6}
& &- 2 x^{4} & - & x^{3} & + & 9 x\\
& & -2 x^{4} & - & 4 x^{3} & - & 6 x \\
\cline{3-8}
& & & & 3 x^{3} & + & 6 x^{2}& + 9 x\\
& & & & 3 x^{3} & + & 6 x^{2}& + 9 x\\
\end{array}
\end{math}
\end{center}
How was the first term of the dividend formed? How
can the first term of the quotient be found? Knowing the
divisor and first term of the quotient, what can be formed?
Subtract this from the dividend. How was the first term of
the remainder formed? What can now be found? How?
What can then be formed? etc., etc. How long can this
process be continued?
ILLUS. 2.
\begin{center}
\begin{math}
\begin{array}{rccrllccl}
x^{2} - 3 x y + 2 y^{2} )& x^{4} & - 6 x^{3} y & + 12 x^{2} y^{2} & - 4 y^{4}& (x^{2} & - 3 x y + y^{2} + \frac{9 x y^{3} - 6 y^{4}}{x^{2} - 3 x y + 2 y^{2}} \\
& x^{4} & - 3 x^{3} y & + 2 x^{2} y^{2} \\
\cline{2-5}
& & - 3 x^{3} y & + 10 x^{2} y^{2} & - 4 y^{4}\\
& & - 3 x^{3} y & + 9 x^{2} y^{2} & - 6 x y^{3}\\
\cline{3-6}
& & & x^{2} y^{2} & + 6 x y^{3} & - 4 y^{4}\\
& & & x^{2} y^{2} & - 3 x y^{3} & + 2 y^{4}\\
\cline{4-6}
& & & & 9 x y^{3} & - 6 y^{4}
\end{array}
\end{math}
\end{center}
Why stop the work at the point given? What is the complete
quotient? Is the dividend exactly divisible by the divisor? When
is one number exactly divisible by another?
\footnotetext{It would be well for the teacher to work out this
example on the board with the class along the line of the
questions which follow the example.}
\textit{ To divide a polynomial by a polynomial, arrange the terms
of the dividend, and divisor similarly, divide the first term of
the dividend by the first term of the divisor for the first term
of the quotient, multiply the divisor by the quotient and subtract
the product from the dividend; divide the first term of the
remainder by the first term of the divisor for the next term of
the quotient, multiply and subtract as before; continue this work
of dividing, multiplying, and subtracting until there is no
remainder or until the first term of the remainder is not
divisible by the first term of the divisor.}
\subsubsection*{Exercise 26.}
Divide:
\begin{enumerate}
\item $x^2+8x-105$ by $x+15$.
\item $x^2+8x-33$ by $x+11$.
\item $x^4+x^2-20$ by $x^2-4$.
\item $y^4-y^2-30$ by $y^2+5$.
\item $x^4-31x^2+9$ by $x^2+5x-3$.
\item $a^4-12a^2+16$ by $a^2-2a-4$.
\item $x^3-y^3$ by $x-y$.
\item $a^3+b^3$ by $a+b$.
\item $16a^4-81b^4$ by $2a-3b$.
\item $81x^8-y^4$ by $3x^2-y$.
\item $x^5-x^4y-2x^3y^2-5x^2y^3-17xy^4-12y^5$ by $x^2-2xy-3y^2$.
\item $a^5+a^4b-14a^3b^2+15a^2b^3-4b^3$ by $a^2-3ab+2b^2$.
\item $x^6 - 5x^3 + 3 + 5x^4 - 10x - x^5 + 10x^2$ by $x^2 + 3 -
x$.
\item $x^6 - 2x^3 - 2 + x - 3x^5 + 2x^4 - 5x^2$ by $x^3 + 2 + x$.
\item $a^5 - a - 2a^2 - a^3$ by $a + a^3 + a^2$.
\item $x^6 - 2x^3 - x^2 - x^4$ by $1 + xx^2 + x$.
\item $a^{11} - a^2$ by $a^3 - 1$.
\item $a^{12} - a^4$ by $a^2 + 1$.
\item $x^4 + 4y^4$ by $x^2 - 2xy + y^2$.
\item $4a^4 + 81b^4$ by $2a^2 + 6ab + 9b^2$.
\item $\frac{1}{2}x^4 + \frac{3}{4}x^3y - \frac{1}{3}x^2y^2
+ \frac{7}{6}xy^3 - \frac{1}{3}y^4$
by $x^2 - \frac{1}{2}xy + y^2$.
\item $\frac{2}{9}y^3 - \frac{5}{36}x^2y + \frac{1}{6}xy^2 +
\frac{1}{6}x^3$
by $\frac{1}{2}x + \frac{1}{3}y$.
\item $\frac{1}{4}(x - y)^5 - (x - y)^3 - \frac{1}{2}(x - y)^2 -
\frac{1}{16}(x - y)$
by $\frac{1}{2}(x - y)^2 + (x - y) +\frac{1}{4}$.
\item $16x^8 - 81y^4$ by $27y^3 + 18x^2y^2 + 8x^6 + 12x^4y$.
\item $4x^4 - 10x^2 + 6$ by $x + 1$.
\item $4a^4 - 5a^2b^2 + b^4$ by $2a - b$.
\item $a^6 - b^6 + a^4 + b^4 + a^2b^2$ by $a^2 - b^2 + 1$.
\item $x^6 - y^6 - x^4 - y^4 - x^2y^2$ by $x^2 - y^2 - 1$.
\item $81a^{12} - 16b^8$ by $12a^3b^4 - 8b^6 - 18a^6b^2 + 27a^9$.
\item $1 + 3x$ by $1 + x$ to four terms of quotient.
\item $1 - 2a$ by $1 - a$ to four terms of quotient.
\item $4 + a$ by $2 - a$ to four terms.
\item $9 - x$ by $3 + x$ to four terms.
\item If a boy can do a piece of work in $x$ minutes, how many
hours would it take him to perform $12$ times as much work?
\item A man has $x$ dollars, $y$ acres of land worth $m$ dollars
an acre, and $c$ houses each worth $b$ dollars. What is my share
if I am one of $n$ heirs?
\item A storekeeper mixed $m$ pounds of coffee worth $a$ cents a
pound with $p$ pounds worth $b$ cents a pound. How much is the
mixture worth per pound?
\item If John is $y$ years old, how old was he 11 years ago?
\end{enumerate}
\subsection*{EVOLUTION.}
\addcontentsline{toc}{subsection}{\numberline{}EVOLUTION.}
\textbf{ 20.} ILLUS. $\sqrt{a}$, $\sqrt[3]{x^2 y}$,
$\sqrt[4]{x-y}$, $\sqrt{16}$, $\sqrt[3]{5}$, $\sqrt[5]{6 a^2 b
c}$.
\textbf{The root of a number} is indicated by the radical
sign and index. When no index is expressed, \textit{two} is
understood.
Express:
1. The square root of $x$, $2ab$, $7x - 3y^2$, $a^2 bc$.
2. The fifth root of $3y$, $2m - n$, $4x^2 yz^3$.
3. The cube root of 2, $x + y$, $17 x^2 y^4$, $m$.
4. The sixth root of $az$, $5m^2 n - 3xy + 14 - 3 ab^3 c$.
What is the square root of a number? the fifth root?
the fourth root? the cube root? the eleventh root?
\begin{tabular}{cccc}
ILLUS. 1. &$(3a^2 bc^3)^3$ = ? & Then& $\sqrt[3]{27a^6 b^3
c^9}$ = ? \\
ILLUS. 2. & $\left. \begin{tabular}{c}
$(+a)^4 = ? $ \\
$(-a)^4 = ?$
\end{tabular} \right\} $ & Hence &$\sqrt[4]{+a^4}$ = ?\\
& $(+a)^3$ = ? && $\sqrt[3]{+a^3}$ = ?\\
&$(-a)^3$ = ? && $\sqrt[3]{-a^3}$ = ?\\
\end{tabular}
\textit{To find the root of a monomial, find the required
root of the coefficient, divide the exponent of each
letter by the index of the root for the exponent of
that letter in the root, give to even roots of plus numbers
the plus-or-minus sign} ($\pm$) \textit{, to odd roots of plus
numbers the plus sign, and to odd roots of minus
numbers the minus sign.}
\subsubsection*{Exercise 27.}
Simplify:
\begin{enumerate}
\item $\sqrt{16 a^{2} b^{6}}$.
\item $\sqrt[4]{81 x^{4} y^{8}}$.
\item $\sqrt[3]{-8 x^{6} y^{3}}$.
\item $\sqrt[5]{-32 a^{10} b^{15}}$.
\item $\sqrt[5]{243 a^{5} b^{10}}$.
\item $\sqrt[3]{27 x^{3} y^{9}}$.
\item $\sqrt[4]{16 x^{8} y^{4}}$.
\item $\sqrt{9 x^{8} y^{6}}$.
\item $\sqrt{\frac{4}{9} m^{6} y^{4}}$.
\item $\sqrt[3]{\frac{8}{27} a^{9} b^{6}}$.
\item $\sqrt[3]{-\frac{27}{64} x^{9} y^{12}}$.
\item $\sqrt[5]{-\frac{32}{243} a^{5} b^{15}}$.
\item $\sqrt[6]{x^{12} \left(a - b \right)^{6}}$.
\item $\sqrt[3]{a^9 \left(x^{2} + y^{2} \right)^{3}}$.
\item $\sqrt{4 a^{2} b^{6} \left(x^{2} - y \right)^{4}}$.
\item $\sqrt{16 x^{4} y^{2} \left(m^{3} + y \right)^{6}}$.
\item $\sqrt{\frac{1}{9} a^{4} b^{6}} - \sqrt[3]{\frac{1}{8} a^{6}
b^{9}} - \sqrt[5]{\frac{32}{243} a^{10} b^{15}} + \sqrt[3]{a^{6}
b^{9}}$.
\item $ \sqrt[3]{\frac{1}{8} x^{6} y^{3}}
+ \sqrt[5]{-\frac{1}{32} x^{10} y^{5}}
- \sqrt[3]{-x^{6} y^{3}}
- \sqrt{\frac{1}{4} x^{4} y^{2}} $.
\item Multiply $\sqrt{25 a^{4} b^{2} c^{2}}$ by $-\sqrt[3]{-8
a^{3} b^{6} c^{9}}$.
\item Divide $\sqrt{144 x^{4} y^{4}}$ by $\sqrt[5]{243 x^{10}
y^{5}}$.
\item Multiply $-\sqrt[3]{-125 x^{3} y^{6} z^{6}}$ by $\sqrt{9
x^{4} y^{2} z^{6}}$.
\item Divide $\sqrt{100 a^{6} b^{12}}$ by $\sqrt[5]{32 a^{15}
b^{25}}$.
\item From two cities $a$ miles apart two trains start toward each
other, the one going $x$ miles an hour, and the other $y$ miles an
hour. How long before they will meet? How far will each train have
gone?
\item What number is that whose double exceeds its half by 39?
\item Mr. A. is $m$ years old, and 6 years ago he was one-half as
old as Mr. B. How old was Mr. B. then? How old is Mr. B. now?
\end{enumerate}
\textbf{ 21.} $(a + b)^{2} = a^{2} + 2ab + b^{2} = a^{2} + (2a +
b)b$.
\begin{tabular}{lc}
ILLUS. 1. & Find the square root of $9x^{2} - 12 xy +4y^{2}$.\\
\end{tabular}
\begin{tabular} {rrccc}
& & \multicolumn{2}{l|}{ $9x^{2} -12xy +4y^{2}$} & $3x-2y$ \\
$a^{2}=$& & \multicolumn{2}{l|}{$9x^{2}$} \\
\cline{3-4}
$2a+b=$ & $6x$&\multicolumn{1}{l|}{$ -2y$ }& $-12xy+4y^{2}$\\
$(2a+b)b=$ & \multicolumn{2}{c|}{}& $-12xy+4y^{2}$\\
\cline{4-4}
\end{tabular}
\begin{center}
\begin{tabular}{lc}
ILLUS. 2. & Find the square root of
$x^{6}-6x^{3}-4x+1+6x^{2}-2x^{5}+5x^{4}$.\\
\end{tabular}
\end{center}
\begin{tabular}{ccccccccc}
&&$x^{6}$&\multicolumn{5}{r|}{ $ -2x^{5} +5x^{4}-6x^{3}+6x^{2}-4x+1 $}&$ x^{3} - x^{2} +2x-1$ \\
&&\multicolumn{6}{l|}{$x^{6}$}\\
\cline{3-8}
&$ 2x^{3}$ & $ -x^{2}$&\multicolumn{5}{|l} {$ -2x^{5} + 5x^{4} - 6x^{3} +6x^{2} -4x +1$ }\\
&&&\multicolumn{6}{|l}{$ -2x^{5} + x^{4}$ }\\
\cline{4-8}
$ 2(x^{3}-x^{2})+2x=$ &$ 2x^{3}$ &
$-x^{2}$ & $ +2x$ &\multicolumn{5}{|l}{ $ 4x^{4} -6x^{3}+6x^{2}-4x+1$} \\
&&&&\multicolumn{5}{|l}{$ 4x^{4} -4x^{3}+4x^{2}$}\\
\cline{5-8}
$ 2(x^{3} - x^{2} +2x) + (-1) =$& $ 2x^{3}$ & $ -2x^{2}$ &$ +4x$ &
$-1$ & \multicolumn{4}{|l}{$ -2x^{3}+2x^{2}-4x+1$}\\
&&&&&\multicolumn{4}{|l}{$ -2x^{3}+2x^{2}-4x+1$}\\
\cline{6-8}
\end{tabular}
\textit{To find the square root of a polynomial, arrange the
terms with reference to the powers of some number;
take the square root of the first term of the polynomial
for the first term of the root, and subtract its
square from the polynomial; divide the first term of
the remainder by twice the root found for the next
term of the root, and add the quotient to the trial
divisor; multiply the complete divisor by the second
term of the root, and subtract the product from the
remainder. If there is still a remainder, consider the
root already found as one term, and proceed as before.}
\subsubsection*{Exercise 28.}
Find the square root of each of the following:
\begin{enumerate}
\item $4x^2-12xy+9y^2$.
\item $x^4+10x^3y^3+25x^2y^6$.
\item $16a^2b^2c^4-56abc^2xy^2z+49x^2y^4z^2$.
\item $\frac{1}{4}x^2-xy^2z+y^4z^2$.
\item $a^2b^6+\frac{2}{3}ab^3c^4+\frac{1}{9}c^8$.
\item $x^4-4x^3+2x^2+4x+1$.
\item $x^4+6x^3+17x^2+24x+16$.
\item $4x^4+9x^2+4-4x-4x^3$.
\item $6x^3-5x^2+1-2x+9x^4$.
\item $x^6+2x^5-x^4+3x^2-2x+1$.
\item $6x^4-4x^3+4x^5-15x^2-8x+x^6+16$.
\item $7x^2-6x-11x^4+10x^3-4x^5+1+4x^6$.
\item A is $x$ years old. If his age is as much above 50 as B's
age is below 40, what is B's age?
\item If $x$ represents the first digit, and $y$ the second digit,
of a number, what will represent the number?
\end{enumerate}
\textbf{ 22.} $(a + b)^{3} = a^{3} + 3 a^{2} b + 3 a b^{2} + b^{3}
= a^{3} + (3 a^{2} + 3 a b + b^{2}) b$
\begin{center}
\begin{tabular}{ll}
ILLUS. 1. &Find the cube root of $8 m^{6} + 12 m^{4} n^{3} + 6
m^{2} n^{6}$ $+ n^{9}$.\\
\end{tabular}
\end{center}
\begin{tabular}{rclcc}
&& \multicolumn{2}{l|}{$\scriptstyle 8m^6+12m^4 n^3 +6m^2 n^6 + n^9$} &$\scriptstyle 2m^2 + n^3$ \\
\cline{5-5}
$\scriptstyle a^3=$ &&\multicolumn{2}{l|}{$\scriptstyle 8m^6$}\\
\cline{3-4}
$\scriptstyle 3a^2+3ab+b^2=$&$\scriptstyle 12m^4+6m^2n^3$&$\scriptstyle +n^6 $&\multicolumn{1}{|c}{$\scriptstyle 12m^4 n^3 +6m^2 n^6 +n^9$}\\
$\scriptstyle
(3a^2+3ab+b^2)b=$&&&\multicolumn{1}{|c}{$\scriptstyle 12m^4 n^3
+6m^2 n^6
+n^9$}\\
\cline{4-4}
\end{tabular}
\begin{center}
\begin{tabular}{ll}
ILLUS. 2. &Find the cube root of $66 x^{2} + 33 x^{4} + 8 - 36 x$
$+ x^{6} - 63 x^{3} - 9 x^{5}$.\\
\end{tabular}
\end{center}
\begin{tabular}{rccccccccccc}
&&&\multicolumn{7}{r|}{$\scriptstyle x^6-9x^5 +33x^4 -63x^3 +66x^2
-36x +8$}
& $\scriptstyle x^2 -3x+2$\\
\cline{11-11}
&\multicolumn{4}{r}{$\scriptstyle x^6$}&\multicolumn{5}{r|}{}\\
\cline{4-10}
&&\multicolumn{2}{l}{$\scriptstyle 3x^4 - 9x^3+9x^2$} &
\multicolumn{6}{|r}{$\scriptstyle -9x^5 +33x^4
-63x^3 +66x^2 -36x +8$}\\
&&&&\multicolumn{6}{|l}{$\scriptstyle \quad -9x^5 +27x^4 -27x^3 $}\\
\cline{5-10}
$\scriptstyle 3(x^2 - 3x)^2 = $& &\multicolumn{2}{r}{$\scriptstyle
3x^4-18x^3 +27x^2$}
&&&\multicolumn{4}{|r}{$\scriptstyle 6x^4 -36x^3 + 66 x^2 -36x +8$}\\
$\scriptstyle 3(x^2 - 3x)^2 \times 2 =$&&&\multicolumn{3}{c}{$\scriptstyle \quad 6x^2 -18x$}&\multicolumn{4}{|c}{}\\
$\scriptstyle 2^2=$ &&&&&$\scriptstyle +4$&\multicolumn{4}{|c}{}\\
\cline{3-6}
& \multicolumn{5}{r}{$\scriptstyle 3x^4-18x^3 +33x^2 -18x +4$}& \multicolumn{5}{|l}{$\scriptstyle 6x^4 -36x^3 + 66 x^2 -36x +8$}\\
\cline{7-11}
\end{tabular}
\textit{To find the cube root of a polynomial, arrange
the terms with reference to the powers of some number;
take the cube root of the first term for the first
term of the root, and subtract its cube from the
polynomial; take three times the square of the root
already found for a trial divisor, divide the first
term of the remainder by it, and write the quotient
for the next term of the root; add to the trial
divisor three times the product of the first term by
the second and the square of the second; multiply
the complete divisor by the second term of the root,
and subtract the product from the remainder. If
there are other terms remaining, consider the root
already found as one term, and proceed as before.}
\subsubsection*{Exercise 29}.
Find the cube root of each of the following:
\begin{enumerate}
\item $27 x^{3} - 27 x^{2} y + 9 x y^2 - y^{3}$.
\item $15 x^{2} - 1 - 75 x^{4} + 125 x^{6}$.
\item $144 a^{2} b^{2} + 27 b^{6} + 108 a b^{4} + 64 a^{3}$.
\item $x^{6} - 8 y^{6} + 12 x^{2} y^{4} - 6 x^{4} y^{2}$.
\item $1 + 9 x + 27 x^{2} + 27 x{3}$.
\item $1 - 21 m - 343 m^{3} + 147 m^{2}$.
\item $3 x^{2} + 64 x^{6} - 24 x^{4} - \frac{1}{8}$.
\item $27 x^{9} + \frac{1}{27} + x^{3} + 9 x^{6}$.
\item $8 a^{6} + 18 a^{4} + 9 a^{2} - 12 a^{5} - 13 a^{3} - 3 a +
1$.
\item $x^{9} - 7 x^{6} + x^{3} - 3 x^{4} - 3 x^{8} + 6 x^{7} + 6
x^{5}$.
\item $5 x^{3} - 3 x - 3 x^{5} - 1 + x^{6}$.
\item $\frac{1}{8} a^{6} + \frac{3}{2} a^{5} + 5 \frac{1}{4} a^{4}
+ 2 a^{3} - 10 \frac{1}{2} a^{2} + 6 a - 1$.
\item A board is $8 x$ inches long and $2 x$ inches wide. What is
the length of a square board having the same area?
\item If $3 x$ represents the edge of a cubical box, what
represents the cubical contents of the box?
\item If a cubical cistern contains $64y^3$ cubic feet, how long
is one edge?
\item A man travels north $a$ miles, and then south $b$ miles. How
far is he from the starting-point? How far has he traveled?
\end{enumerate}
\subsubsection*{Exercise 30.}
Find the indicated roots:
\begin{enumerate}
\item $\sqrt{2025}$.
\item $\sqrt{9409}$.
\item $\sqrt{20449}$.
\item $\sqrt{904401}$.
\item $\sqrt{70.56}$.
\item $\sqrt{.9025}$.
\item $\sqrt{94864}$.
\item $\sqrt{.00000784}$
\item $\sqrt[3]{59.319}$.
\item $\sqrt[3]{389017}$.
\item $\sqrt[3]{241804.367}$.
\item $\sqrt{7039.21}$.
\item $\sqrt[3]{35.287552}$.
\item $\sqrt{2550.25}$.
\item $\sqrt{34.78312}$ to three decimal places.
\item $\sqrt{7}$ to three decimal places.
\item $\sqrt[3]{.1255}$ to three decimal places.
\item A merchant bought a bale of cloth containing just as many
pieces as there were yards in each piece. The whole number of
yards was 1089. What was the number of pieces?
\item A regiment, consisting of 5476 men, is to be formed into a
solid square. How many men must be placed in each rank?
\item What is the depth of a cubical cistern which contains 5000
gallons of water? (1 gallon = 231 cubic inches.)
\item A farmer plants an orchard containing 8464 trees, and has as
many rows of trees as there are trees in each row. What is the
number of trees in each row?
\end{enumerate}
\chapter*{FACTORS AND MULTIPLES}
\addcontentsline{toc}{chapter}{\numberline{}FACTORS AND
MULTIPLES.}
\section*{FACTORING.}
\addcontentsline{toc}{section}{\numberline{}FACTORING---Six
Cases.}
\textbf{23}. When we divide a number into two numbers,
which multiplied together will give a product equal to
the given number, we have found the factors of that
number. This process is called \textbf{factoring}.
Name two factors of 48, 27, 18, 35, 49, 72.
Name three factors of 24, 100, 75, 64, 72, 40.
\textbf{24. CASE I. To factor a polynomial which has
a factor common to all its terms}.
\begin{tabular}{ll}
ILLUS. & Factor $2 a b + 6 a c + 4 a d$.\\
\end{tabular}
\begin{center}
\begin{tabular}{rc rclcl}
$2a$ & \multicolumn{1}{|l}{$2ab$ + $6ac$ + $4ad$} \\
\cline{2-2}
& $b + 3c + 2d $ \\
\multicolumn{2}{c}{$ \therefore 2 a b + 6 a c + 4 a d = 2 a
\left(b + 3 c + 2 d
\right) $.}\\
\end{tabular}
\end{center}
\textit{Divide the polynomial by the largest factor common
to the terms. The quotient and divisor are the
factors of the polynomial}.
\subsubsection*{Exercise 31.}
Factor:
\begin{enumerate}
\item $5a^2 - 25$.
\item $16 + 64xy$.
\item $2a - 2a^2$.
\item $15a^2 - 225a^4$.
\item $x^3 - x^2$.
\item $3a^2 + a^5$.
\item $a^2 - ab^2$.
\item $a^2 + ab$.
\item $6a^3 + 2a^4 + 4a^5$.
\item $7x - 7x^3 +14x^4$.
\item $3x^3 - x^2 + x$.
\item $a^3 - a^2 y + ay^2$.
\item $3a(x + y) + 5mb(x + y) - 9d^2 x(x + y)$.
\item $4(a - b) - 15 x y (a - b) + (a - b) - 5 a^2 b(a - b)$.
\item $4x^3 y - 12a x^2 - 8 x y^3$.
\item $6 a x^3 y^5 - 4 a x^2 y^6 + 2 a x y^7 - 2 a^2 x y^9$.
\item $51 x^5 y - 34 x^4 y^2 + 17 x^2 y^4$.
\item $6 a^2 b^2 - 3 a^3 b^3 c - 9 a b^3 c + 3 abc^2$.
\item $3 a x^7 - 24 a x + 9 ax^5 - 3 ax^4 - 9 ax^6$.
\item $27 a^8 b^2 c^3 - 81 a^7 b^3 c^3 + 81 a^6 b^4 c^3 - 27 a^5
b^5 c^3 - 27 a^5 b^2 c^6$.
\item A lady bought a ribbon for $m$ cents, some tape for $d$
cents, and some thread for $c$ cents, for which she paid $x$ cents
on account. How much remains due?
\item Julia has the same number of beads in each hand. If she
should change two from her left hand to her right hand, the right
hand would contain twice as many as the left. How many beads has
she?
\end{enumerate}
Sometimes a polynomial in the form given has no
factor common to all its terms, but has factors common
to several terms. It may be possible then to
group the terms in parentheses so that there will be
a binomial or trinomial factor common to all the terms
of the polynomial in its new form.
\begin{tabular}{c}
\begin{tabular}{ll}
ILLUS. 1. & Factor $2am+2ax+bm+bx$.\\
\end{tabular}\\
\begin{tabular}{c}
$2am+2ax+bm+bx=2a(m+x)+b(m+x).$\\
\end{tabular}\\
\begin{tabular}{lll}
$ m+x$ &\multicolumn{1}{|l}{$ 2a(m+x)$}&$ + b(m+x) $\\
\cline{2-3}
& $2a $&$+ b$\\
\end{tabular}\\
\begin{tabular}{c}
$\therefore 2am+2ax+bm+bx=(m+x)(2a+b).$
\end{tabular}\\
\begin{tabular}{ll}
ILLUS. 2. &Factor $a^8+a^6-a^5-a^3+a^2+1$.\\
\end{tabular}\\
\begin{tabular}{c}
$a^8+a^6-a^5-a^3+a^2+1=a^6(a^2+1)-a^3(a^2+1)+(a^2+1).$
\end{tabular}\\
\begin{tabular}{clll}
$ a^2+1$ &\multicolumn{1}{|l}{$ a^6(a^2+1)$}&$ - a^3(a^2+1)$&$ + (a^2+1)$ \\
\cline{2-4} &$ a^6$ &$- a^3 $&$+ 1$\\
\end{tabular}\\
\begin{tabular}{c}
$\therefore a^8+a^6-a^5-a^3+a^2+1=(a^2+1)(a^6-a^3+1).$
\end{tabular}
\end{tabular}
\subsubsection*{Exercise 32.}
Factor:
\begin{enumerate}
\item $ax+ay+bx+by$.
\item $x^2+ax+bx+ab$.
\item $ax^2+ay^2-bx^2-by^2$.
\item $x^2-ax+5x-5a$.
\item $ax-bx+ab-x^2$.
\item $x^2+mxy-4xy-4my^2$.
\item $2x^4-x^3+4x-2$.
\item $mx-ma-nx+na$.
\item $x^3+x^2+x+1$.
\item $y^3-y^2+y-1$.
\item $x^5+x^4-x^3-x^2+x+1$.
\item $a^2x+abx+ac+aby+b^2y+bc$.
\item $ax-bx+by+cy-cx-ay$.
\item $3ax+3ay-2bx-2by$.
\item $2ax-3by+cy-2ay+3bx-cx$.
\item $6amx+3amy-6anx-3any$.
\item A man had 250 acres of land and 30 houses. After trading $x$
of his houses for $y$ acres of land, how many has he of each?
\item What is the number that will become four times as large by
adding 36 to it?
\item The fifth and seventh of a number are together equal to 24.
What is the number?
\end{enumerate}
\textbf{ 25. CASE II. To factor the difference of the squares of
two numbers.}
ILLUS. 1. $a^2-b^2=(a+b)(a-b)$.
ILLUS. 2. $9x^2y^4-49a^4b^{12}=(3xy^2+7a^2b^6)(3xy^2-7a^2b^6)$.
ILLUS. 3.
\begin{eqnarray*}
x^8-y^8 & = & (x^4+y^4)(x^4-y^4)=(x^4+y^4)(x^2+y^2)(x^2-y^2) \\
& = & (x^4+y^4)(x^2+y^2)(x+y)(x-y). \\
\end{eqnarray*}
\textit{ Write two factors, of which one is the sum and the other
the difference of the square roots of the terms.}
\subsubsection*{Exercise 33.}
Factor:
\begin{enumerate}
\item $x^2-y^2$.
\item $m^2-n^2$.
\item $a^2b^4-c^2d^2$.
\item $m^2p^4-x^6y^4$.
\item $a^6b^2x^4-m^4c^8y^{10}$.
\item $x^2y^4z^4-c^2d^2m^4$.
\item $x^4y^2-a^6y^4$.
\item $g^6c^6-x^6z^8$.
\item $4a^2-9x^2$.
\item $16m^2-9n^2$.
\item $81x^2y^4-25b^2d^2$.
\item $729m^4c^2x^{10}-10,000y^4$.
\item $121m^2-64x^2$.
\item $x^4-y^4$.
\item $m^8 - a^8$.
\item $a^4b^8 - l$.
\item $x^16 - b^16$.
\item $16a^4 - 1$.
\item $a^4 - ax^2$.
\item $5b^4 - 5a^2b^2$.
\item $ax^2 - ay^2 - bx^2 + by^2$.
\item $5ax - 5a^3x + 5ay - 5a^3y$.
\item $m^2 - y^2 - am + ay$.
\item $a^2 - x^2 - a - x$.
\item By how much does $x$ exceed $3y$?
\item Eleven years ago C was three times as old as D whose age was
$x$ years. What is C's present age ?
\end{enumerate}
\textbf{ 26. CASE III. To factor the sum of the cubes of two
numbers}.
ILLUS. 1. Divide $a^3 + b^2$ by $a + b$.
ILLUS. 2. Divide $m^3 + n^3y^3$ by $m + ny$.
ILLUS. 3. Divide $8a^6 + b^3c^9$ by $2a^2 + bc^3$.
Notice in each case above:
\begin{enumerate}
\item That the divisor is the sum of the cube roots of the terms
of the dividend.
\item That the quotient is the square of the first term of the
divisor, minus the product of the first term by the second, plus
the square of the second.
\end{enumerate}
\textit{ Write two factors, one of which is the sum of the cube
roots of the terms, and the other the quotient obtained by
dividing the original number by the first factor}.
\subsubsection*{Exercise 34}
Factor:
\begin{enumerate}
\item $x^5 + y^5$
\item $c^3 + d^3$
\item $a^3 + b^3c^3$
\item $a^3x^3 + y^3$
\item $8a^5b^3c^6 + m^6$
\item $x^6y^3 + 216a^3$
\item $a^6 + b^6$
\item $64x^6 + y^6$
\item $x^3 + 8$
\item $27 + a^3b^6$
\item $y^3 + 1$
\item $1 + b^3c^3$
\item $\frac{1}{8}a^6b^3+ c^0$
\item $\frac{1}{27}x^3+ 1$
\item $(m + n)^3+ 8$
\item $1 + (x - y)^3$
\item $2a^2x^3y^6 + 2a^8b^9$
\item $mx + my - nx - ny$
\item $a^3x + b^3x - a^3y - b^3y$
\item $a^6 - b^6$
\item $729x^6 - 64y^6$
\item $1 - x^8$
\item A had $d$ dollars, but, after giving \$26 to B, he had
one-third as many as B. How many has B? How many had B at first?
\item How many units in $y$ tens?
\item If the sum of two numbers is $x$, and one of the numbers is
8, what is the other number?
\item What does $a^3$ mean? What does $3a$ stand for? What is the
product of $x^4$ and $0$?
\end{enumerate}
\textbf{27. CASE IV. To factor the difference of the
cubes of two numbers.}
ILLUS. I. Divide $a^3-b^3$ by $a-b$.
ILLUS. 2. Divide $27a^6b^9 - c^3d^12$ by $3a^2b^3 - cd^4$.
Notice in each case above:
\begin{enumerate}
\item That the divisor is the difference of the cube roots of the
terms of the dividend.
\item That the quotient is the square of the first term of the
divisor, plus the product of the first by the second, plus the
square of the second.
\end{enumerate}
\textit{Write two factors, one of which is the difference
of the cube roots of the terms, and the other the
quotient obtained by dividing the original number
by the first factor.}
\subsubsection*{Exercise 35.}
Factor:
\begin{enumerate}
\item $x^3 - a^3$
\item $c^3 - b^3$
\item $a^3 - x^3y^3.$
\item $m^3n^3 - c^3.$
\item $27m^3 - 8x^3.$
\item $8x^3 -64y^3$
\item $64a^3x^6b^3 - 125m^9c^3y^6.$
\item $27b^3c^6y^3 - 216a^9m^6x^6.$
\item $8x^9y^3 - 125.$
\item $27 - 64m^3x^6y^3.$
\item $a^3-b^6.$
\item $m^6 - x^3.$
\item $x^3 - 1.$
\item $1 - y^3.$
\item $\frac{1}{27}x^3y^6 - b^9.$
\item $8 - \frac{1}{64}m^6n^3.$
\item $1 - (a + b)^3.$
\item $x^3y^3 - (x - y^2)^3.$
\item $x^7 - xy^3.$
\item $ab^3 - ac^3 + mb^3 - mc^3.$
\item $x^6 - y^6$ into four factors.
\item $x^6 - x^5 + x^3 - x^2 - x + 1.$
\item $a^2 - b^2 + a^3 -b^3.$
\item $mx^3 + my^3 - x - y.$
\item How many hours will it take $x$ men to dig 75 bushels of
potatoes if each man digs $y$ bushels an hour?
\item If there are $x$ tens, $y$ units, and $z$ hundreds in a
number, what will represent the whole number of units?
\end{enumerate}
\textbf{ 28. CASE V. To factor trinomials which are perfect
squares.}
Square $c+b, c-b, x^2-y^2, 3mn^3+y^2, 2a^2bc-3x^2yz^3$. How are
the first and last terms of these trinomial squares formed? How is
the middle term formed?
When is a trinomial a square?
Name those of the following trinomials which are squares:
\begin{enumerate}
\item $m^2-2mp+p^2$.
\item $x^2+2xy-y^2$.
\item $4x^2-4xy+y^2$.
\item $x^4+6x^2y+9y^2$.
\item $a^4-18a^2+9$.
\item $9b^4+12d^2+4$.
\item $16y^4-8y^2+1$.
\item $25c^8d^6+20c^4d^3x+4x^2$.
\end{enumerate}
ILLUS. 1. $a^2+2ab+b^2=(a+b)(a+b)=(a+b)^2$.
ILLUS. 2. $a-2ab+b=(a-b)(a-b)=(a-b)^2$.
ILLUS. 3. $9a^2-12ab+4b^2=(3a-2b)^2$.
\textit{ Write two binomial factors, each of which consists of the
square roots of the squares connected by the sign of the middle
term.}
\subsubsection*{Exercise 36.}
Factor:
\begin{enumerate}
\item $a^2 + 2ax + x^2$.
\item $c^2 - 2cd + d^2$.
\item $4a^2 + 4ay + y^2$.
\item $a^2 + 4ab + 4b^2$.
\item $x^2 - 6cx + 9c^2$.
\item $16x^2 - 8xy + y^2$.
\item $a^2 + 2a + 1$.
\item $9 - 6x + x^2$.
\item $x^2 - 10x + 25$.
\item $4y^2 - 12y + 9$.
\item $9x^2 + 24x + 16$.
\item $81a^4 - 18a^2 + 1$.
\item $9c^2 + 66cd + 121d^2$.
\item $4y^2 - 36y + 81$.
\item $x^4 - 6x^2y + 9y^2$.
\item $9 - 12x^2 + 4x^4$.
\item $16x^2y^4 - 24a^3xy^2 + 9a^6$.
\item $25b^2 + 30bc^2y + 9c^4y^2$.
\item $49a^2 + 28ax^2y + 4x^4y^2$.
\item $\frac{1}{9}x^4 - \frac{2}{3}x^2y^2 + 4y^4$.
\item $\frac{1}{4}a^2 + 2ab + 4b^2$.
\item $\frac{4}{9}x^6y^2 - \frac{4}{3}x^3yz^4 + z^8$.
\item $x^9 - 4x^6y^4 + 4x^3y^8$.
\item $18a^2y + 24ay^3 + 8y^5$.
\item $3a^3x^5 - 30a^2bx^4 + 75ab^2x^3$.
\item $(x+y)^2 - 2a^2(x+y) + a^4$.
\item $(m^2 - n^2)^2 - 2(m^4 - n^4) + (m^2 + n^2)^2$.
\item $a^2 + 2ab + b^2 + 6a + 6b$.
\item $x^2 + y^2 - 3x - 2xy + 3y$.
\item $x^6 + y^6 - 2x^3y^3$.
What must be added to the following to make them
perfect squares?
\item $a^2 + 2xy$.
\item $m^6 + 6m^3y$.
\item $c^2 + d^2$.
\item $(x - y)^4 + 2(x - y)^2$.
\item $(c - d)^2 - 6(c -d )$.
\item $9x^4y^2 - 12x^2y^3$.
\item $30xy^4 + 9x^2y^6$.
\item $25a^2b^2 + 36b^4c^2$.
\item $49a^2b^2c^2 + 25a^2b^4d^2$.
\item $a^4 - 22a^2 + 9$ (two numbers).
\item $64a^2 - 177ay + 121y^2$.
\item $a^4 - 10a^2b^2 + 9b^4$.
\item $x^4 + x^2 + 1$.
\item $a^2 + a + 1$.
\item A stream flows at the rate of $a$ miles an hour, and a man
can row in still water $b$ miles an hour. How far can the man row
up the stream in an hour? In 6 hours? How far down the stream in
an hour? In 3 hours?
\item A cistern can he filled by two pipes in 3 hours and 5 hours
respectively. What part of the cistern will be filled by both
pipes running together for one hour?
\item Nine years ago Henry was three times as old as Julius. If
Henry is $b$ years old, how old was Julius then? How old is Julius
now?
\end{enumerate}
\textbf{29. CASE VI. To factor trinomials in the form}
$x^2 \pm cx \pm d.$
This is the reverse of the case under Multiplication
given in Art. 14.
ILLUS. 1. $x^2 + 14x + 45 = (x + 9)(x + 5)$.
ILLUS. 2. $x^2 - 6x + 5 = (x - 5)(x - 1)$.
ILLUS. 3. $x^2 + 2x - 3 = (x + 3)(x - 1)$.
ILLUS. 4. $x^2 - 8x - 20 = (x - 10)(x + 2)$.
\textit{Write two binomial factors, the first term of each
being the square root of the first term of the given
trinomial, and for the second terms of the factors
find two numbers whose algebraic sum is the coefficient
of the second term and whose product is the
last term.}
\subsubsection*{Exercise 37.}
Factor:
\begin{enumerate}
\item $a^2+3a+2$.
\item $x^2+9x+18$.
\item $x^2-5x+6$.
\item $a^2-7a+10$.
\item $y^2-10y+16$.
\item $c^2-c-6$.
\item $x^2+4x-5$.
\item $x^2+5x-6$.
\item $y^2+8y-65$.
\item $a^2-4a-77$.
\item $x^2-2x-63$.
\item $a^2+10a-75$.
\item $a^2-24a+143$.
\item $x^6-4x^3-117$.
\item $x^6+4x^3-77$.
\item $30+11x+x^2$.
\item $21+10a+a^2$.
\item $35-12x+x^2$.
\item $36-13x+x^2$.
\item $c^2+2cd-3d^2$.
\item $a^2+8ax+15x^2$.
\item $x^2-xy-20y^2$.
\item $x^4+x^2y-12y^2$.
\item $x^4-14x^2y^2+45y^4$.
\item $x^5-23x^4+132x^3$.
\item $a^6-12a^5+35a^4$.
\item $3ax^4-39ax^2+108a$.
\item $3a^3-12a^2b+12ab^2$.
\item $c^5d^3-c^2-a^2c^3d^3+a^2$.
\item $ax^2+bx^2-5bx-5ax+6b+6a$.
\item A field can be mowed by two men in $a$ hours and $b$ hours
respectively. What part of the field can be mowed by both men
working together for one hour?
\item In how many days can two men do as much as $x$ men in 7
days?
\end{enumerate}
\subsubsection*{Exercise 38. (Review.)}
\begin{enumerate}
\item Divide $50a+9a^4+24-67a^2$ by $a+a^2-6$.
\item Find the square root of
\[
12y^5-14y^3+1-8y^4+4y+9y^6.
\]
\item Expand $(x+y)(x-y)(x^2+y^2)$.
\item What must be subtracted from $a^3-5a^2+27a-1$ to produce
$a+1$?
\item Expand $\left(x^2y-4z^3a^4\right)^3$.
Factor:
\item $x^2-11x+10$.
\item $\left(a+b\right)^2-\left(c+d\right)^2$.
\item $6x^3+4x^2-9x-6$.
\item $9x^8-66x^6+121x^4$.
\item $8c^6-d^9$.
\item $1+64x^3$.
\item $a^6-1$.
\item $x^3+2x^2-x-2$.
\item $x^5-y^5$.
\item $27+12x+x^2$.
\item Find the cube root of $96m-64-40m^3+m^6+6m^5$.
\item Simplify $\left(m+2n\right)^2-\left(2m-n\right)^2$.
\item Simplify $(5+7x)(5-7x)-\left(3+2x\right)^2+(x-9)(x-4)$.
\item Simplify $(y+x)(y^2-xy+x^2)-(y-x)(y^2+yx+x^2)$.
\item Find three consecutive numbers whose sum is 57.
\item What number, being increased by three-fifths of itself, will
equal twice itself diminished by 24?
\item Find the value of $(4a + 5b) (3a+4b)-a^2b+b^3c^2-c^3$ when
$a = 0$, $b = 1$, and $c = 2$.
\end{enumerate}
\section*{GREATEST COMMON FACTOR.}
\addcontentsline{toc}{section}{\numberline{}GREATEST COMMON
FACTOR.}
\textbf{30.} What are the factors of $9a^4b^2+9a^3b^3$? Of $3a^4b-3a^2b^3$?
Which are factors of each of them? What is the largest
number that is a factor of each of them? This number
is called their \textit{Greatest Common Factor}. What factors of
the numbers does it contain?
ILLUS. Find the G.C.F. of
\begin{center}
$3ac+3bc$ and $6a^2x+12abx+6b^2x$.
\[
\begin{array}{rcll}
3ac+3bc & = & 3c(a+b) \\
6a^2x+12abx+6b^2x & = & 6x(a+b)(a+b) \\
\cline{3-3}
G.C.F. & = & \multicolumn{2}{l}{$3(a+b)=3a+3b$}
\end{array}
\]
\end{center}
\textit{To find the G.C.F. of two or more numbers, find the prime
factors of each of the numbers and take the product of the common
factors}.
\subsubsection*{Exercise 39.}
Find the G.C.F. of each of the following:
\begin{enumerate}
\item $3a^4 b^3 + 6a^2 b^5$ and $9a^3 b^2 + 18 a b^3$.
\item $5 x^5 y - 15 x^2 y^2$ and $15x^3 y^3 - 45 x y^5$.
\item $2x^5 y^4 + 2x^2 y^7$ and $6 x^3 y^3 - 6x y^5$.
\item $3a^6 b - 3a^3 b^4$ and $12a^4 b^4 - 12a^2 b^6$.
\item $mx - ma - nx + na$ and $m^3 - n^3$.
\item $81 x^8 - 16$ and $81x^8-72x^4 + 16$.
\item $x^2 - 20 - x$, $3x^2 - 24 x + 45$, and $x^2 - 5x$.
\item $x^2 +x -6$, $x^2-15 - 2x$, and $3x^2-27$.
\item $a^4 - 16$, $a2 -a -6$, and $(a^2 -4)^2$.
\item $y^3 - y$, $y^3 + 9y^2 - 10y$, and $y^4-y$.
\item $x^2 - y^2$, $xy - y^2 + xz - yz$, and $x^3 - x^2 y + xy^2 -
y^3$.
\item $3a c^5 d^3 - 3a c^2 - 3a^3 c^3 d^3 + 3a3$ and $9a^2 c^4 -
9a^6$.
\item $64x^{11} - 8x^2 y^6$ and $12x^8 + 3x^2 y^4 - 12x^5 y^2$.
\item A merchant mixes $a$ pounds of tea worth $x$ cents a pound
with $b$ pounds worth $y$ cents a pound. How much is the mixture
worth per pound?
\item If a man bought a horse for $x$ dollars and sold him so as
to gain $5 \%$, what will represent the number of dollars he
gained?
\item The difference between two numbers is 6, and if 4 be added
to the greater, the result will be three times the smaller. What
are the numbers?
Of how many terms does the expression $x^{3} - 4 x^{2} y + y^{3}$
consist? How many factors has each of the terms?
What is the value of a number, one of whose factors is
zero?
\end{enumerate}
\section*{LEAST COMMON MULTIPLE.}
\addcontentsline{toc}{section}{\numberline{}LEAST COMMON
MULTIPLE.}
\textbf{31}. ILLUS. 1. $12 a^{2} b^{3}$ is the least common
multiple of $3 a^{2} b$ and $4 a b^{3}$. How many of the factors
of $3 a^{2} b$ are found in the L.C.M.? How many of the factors of
$4 a b^{3}$?
ILLUS. 2. Find the L.C.M. of $9 a c + 9 b c$, $3 a^{2} x - 3 b^{2}
x$, and $a x^{2} - b x^{2}$.
\begin{tabular}{rcl}
$9 a c + 9 b c$ & = & $9 c (a + b)$ \\
$3 a^{2} x - 3 b^{2} x$ & = & $3 x (a + b) (a - b)$ \\
$a x^{2} - b x^{2}$ & = & $x^{2} (a - b)$ \\ \hline
L.C.M. & = & $9 c x^{2} (a + b) (a - b)$
\end{tabular}
\textit{To find the L.C.M. of two or more numbers, find
the prime factors of each number, take the product
of the different factors, using each the greatest number
of times it is found in any of the numbers}.
\subsubsection*{Exercise 40}.
Find the L.C.M. of each of the following:
\begin{enumerate}
\item $a^{2} - 4$ and $a^{2} + 3 a - 10$.
\item $x^{3} + 1$ and $x^{2} + 2 x + 1$.
\item $x^{2} - 2 x - 15$ and $x^{2} - 9$.
\item $x^{4} - 4 x^{2} + 3$ and $x^{6} - 1$.
\item $x^2 - 1$, $x^2 - 4x + 3$, and $2x^2 - 2x - 12$.
\item $a^3 + 1 + 3a + 3a^2$ and $am - 2 - 2a + m$.
\item $a^2 - 4$, $a^2 + 3a - 10$, $a^2 - 25$, $a^2 - 9$, $a^2 - 8a
+ 15$, and $a^2 + 5a + 6$.
\item $x^3 - 1 - 3x^2 + 3x$ and $xy - 3 - y +3x$.
\item $x^2 - 1$, $x^2 - 9$, $x^2 - 2x - 3$, $x^2 - 16$, $x^2 - x -
12$, $x^2 + 5x + 4$.
\item $x^6 + x^3$, $2x^4 - 2x^2$, and $x^2 + x$.
\item $a^4 + 2a^2 + 1$, $1 - 2a^2 + a^4$, and $1 - a^4$.
\item $a^2z - x^2z$, $3ax - 3x^2$, and $2ax + 2a^2$.
\item $am + an - 3m - 3n$, $m^2 - n^2$, and $a^2 - 10a + 21$.
\item $3b - 3b^2$, $1 - b^3$, and $2x - 2b^2x$.
\item $a^2 - x^2 - a - x$, $5a^2b - 10abx + 5bx^2$, and $a^2b -
abx - ab$.
\item The thermometer now indicates $c$ degrees above zero, but
yesterday it indicated $y$ degrees below zero. How much warmer is
it to-day than yesterday?
\item A certain county extends from $b$ degrees north latitude to
$y$ degrees north latitude. What is the extent of the county from
north to south?
\item If A can build a wall in $x$ days, what part of the wall
will he build in two days?
\item How many times can $x^3 + 12$ be subtracted from $x^6 + 24
x^3 + 144$?
\item Divide \$2142 between two men so that one shall receive six
times as much as the other.
\end{enumerate}
\subsubsection*{Exercise 41.\footnotemark}
\footnotetext{This exercise should be conducted orally, and if, at
any point, the students do not readily recall the method, the
examples of that class should be duplicated till the principle is
clear.}
\begin{enumerate}
\item Reduce to lowest terms:
$\frac{3}{6}$, $\frac{6}{9}$, $\frac{4}{10}$, $\frac{12}{14}$, $\frac{2}{16}$, $\frac{9}{36}$, $\frac{8}{22}$, $\frac{8}{20}$, $\frac{7}{8}$, $\frac{9}{30}$, $\frac{25}{150}$, $\frac{490}{560}$, $\frac{75}{325}$.
\item Change:
$a$. $\frac{1}{4}$ to $8ths$.
$b$. $\frac{5}{6}$ to $12ths$.
$c$. $\frac{7}{8}$ to $32ds$.
$d$. $\frac{3}{5}$ to $25ths$.
$e$. $\frac{2}{3}$ to $21sts$.
$f$. $\frac{9}{10}$ to $50ths$.
$g$. $\frac{3}{7}$ to $28ths$.
$h$. $\frac{5}{9}$ to $36ths$.
$i$. $\frac{6}{13}$ to $39ths$.
\item How many 15ths in $\frac{3}{5}$, $\frac{2}{3}$,
$\frac{4}{5}$, $3$, $1\frac{2}{5}$, $2\frac{2}{3}$?
\item How many 12ths in $\frac{1}{6}$, $\frac{3}{4}$,
$\frac{5}{6}$, $4$, $9$, $2\frac{1}{3}$, $7\frac{3}{6}$?
\item Change to equivalent fractions:
$a$. $2\frac{5}{6}$.
$b$. $3\frac{3}{4}$.
$c$. $12\frac{2}{3}$.
$d$. $27\frac{1}{8}$.
$e$. $9\frac{6}{7}$.
$f$. $18\frac{2}{5}$.
\item Change to equivalent entire or mixed numbers:
$a$. $\frac{12}{6}$.
$b$. $\frac{15}{8}$.
$c$. $\frac{17}{4}$.
$d$. $\frac{84}{12}$.
$e$. $\frac{57}{8}$.
$f$. $\frac{61}{5}$.
$g$. $\frac{125}{6}$.
$h$. $\frac{97}{11}$.
$i$. $\frac{225}{7}$.
\item Change to equivalent fractions having L.~C.~D.:
$a$. $\frac{1}{2}, \frac{3}{4}, \frac{2}{3}$.
$b$. $\frac{2}{3}, \frac{5}{8}, \frac{7}{12}$.
$c$. $\frac{1}{4}, \frac{2}{5}, \frac{3}{10}$.
$d$. $\frac{2}{3}, \frac{4}{5}, \frac{1}{6}$.
$e$. $\frac{7}{8}, \frac{1}{5}, \frac{1}{2}$.
$f$. $\frac{14}{15}, \frac{11}{20}, \frac{7}{9}, \frac{1}{5}$.
\item Add:
$a$. $\frac{1}{2}$ and $\frac{1}{3}$.
$b$. $\frac{1}{4}$ and $\frac{1}{5}$.
$c$. $\frac{1}{6}$ and $\frac{1}{2}$.
$d$. $\frac{2}{3}$ and $\frac{3}{4}$.
$e$. $\frac{2}{5}$ and $\frac{1}{6}$.
$f$. $\frac{3}{7}$ and $\frac{5}{6}$.
$g$. $2\frac{1}{3}$ and $3\frac{1}{5}$.
$h$. $4\frac{2}{5}$ and $11\frac{5}{6}$.
$i$. $14\frac{3}{4}$ and $27\frac{4}{7}$.
\item Subtract:
$a$. $\frac{1}{4}$ from $\frac{1}{2}$.
$b$. $\frac{1}{7}$ from $\frac{1}{4}$.
$c$. $\frac{1}{9}$ from $\frac{1}{6}$.
$d$. $\frac{2}{5}$ from $\frac{7}{10}$.
$e$. $\frac{3}{7}$ from $\frac{5}{6}$.
$f$. $\frac{4}{9}$ from $\frac{1}{2}$.
$g$. $2 \frac{1}{5}$ from $5 \frac{1}{2}$.
$h$. $6 \frac{3}{5}$ from $15 \frac{3}{6}$.
$i$. $27 \frac{7}{8}$ from $29 \frac{1}{3}$.
\item Find the product of:
$a$. $\frac{2}{7}$ by $3$.
$b$. $\frac{3}{10}$ by $2$.
$c$. $\frac{3}{8}$ by $6$.
$d$. $5$ by $\frac{2}{9}$.
$e$. $9$ by $\frac{7}{18}$.
$f$. $4$ by $\frac{5}{6}$.
$g$. $2 \frac{3}{4}$ by $5$.
$h$. $12 \frac{3}{9}$ by $3$.
$i$. $25$ by $2 \frac{2}{5}$.
$j$. $\frac{1}{2}$ by $\frac{1}{5}$.
$k$. $\frac{1}{3}$ by $\frac{4}{5}$.
$l$. $\frac{5}{9}$ by $\frac{3}{7}$.
$m$. $\frac{33}{54}$ by $\frac{12}{44}$.
$n$. $15 \frac{2}{5}$ by $\frac{2}{3}$.
$o$. $24 \frac{1}{4}$ by $\frac{5}{8}$.
$p$. $36 \frac{2}{5}$ by $\frac{5}{9}$.
$q$. $2 \frac{1}{3}$ by $5 \frac{1}{2}$.
$r$. $3 \frac{5}{6}$ by $4 \frac{3}{5}$.
\item Divide:
$a$. $\frac{12}{17}$ by $3$.
$b$. $\frac{10}{27}$ by $5$.
$c$. $\frac{5}{7}$ by $4$.
$d$. $\frac{3}{4}$ by $12$.
$e$. $728 \frac{14}{15}$ by $7$.
$f$. $843 \frac{1}{5}$ by $8$.
$g$. $679 \frac{1}{2}$ by $6$.
$h$. $\frac{1}{4}$ by $\frac{1}{8}$.
$i$. $\frac{2}{3}$ by $\frac{2}{7}$.
$j$. $\frac{4}{9}$ by $\frac{3}{8}$.
$k$. $6$ by $\frac{2}{3}$.
$l$. $9$ by $\frac{5}{6}$.
$m$. $\frac{12}{25}$ by $\frac{9}{20}$.
$n$. $3 \frac{1}{2}$ by $1 \frac{3}{4}$.
$o$. $3 \frac{3}{5}$ by $2 \frac{2}{5}$.
$p$. $48$ by $3 \frac{1}{5}$.
$q$. $63$ by $4 \frac{2}{3}$.
$r$. $\frac{5}{6}$ by $\frac{3}{8}$.
\item Simplify:
$a$. $\frac{4}{5} + \frac{1}{2} - \frac{1}{3} =$ ?
$b$. $\frac{\frac{3}{4} + \frac{2}{3}}{\frac{3}{4} - \frac{2}{3}} =$ ?
$c$. $\frac{5}{6} - \frac{1}{4} + \frac{4}{5} =$ ?
$d$. $\frac{2 \frac{1}{3}}{4 \frac{1}{5}} =$ ?
\item $16$ is $\frac{4}{7}$ of what number?
\item $\frac{3}{4}$ is what part of $7$?
\item $\frac{2}{5}$ is what part of $\frac{5}{6}$?
\item What is $\frac{5}{8}$ of $\frac{4}{15}$?
\item If $\frac{2}{3}$ of a number is $20$, what is $\frac{2}{5}$
of the number?
\item $\frac{2}{3}$ of $60$ is $\frac{4}{9}$ of what number?
\end{enumerate}
\chapter*{FRACTIONS.}
\addcontentsline{toc}{chapter}{\numberline{}FRACTIONS.}
\textbf{ 32.} In the previous exercise the different operations
performed upon fractions in arithmetic have been reviewed. The
principles and methods of operation are the same in algebra.
\section*{REDUCTION OF FRACTIONS.}
\addcontentsline{toc}{section}{\numberline{}REDUCTION OF
FRACTIONS.}
\textbf{ 33.} \textsc{ILLUS.} 1. Reduce $\frac{5a^2b}{10ab^2}$ to
lowest terms.
\[
\frac{5a^2b \div 5ab}{10ab^2 \div 5ab} = \frac{a}{2b}
\]
\textsc{ILLUS.} 2. Reduce $\frac{a^2bx-b^3x}{a^2bx-ab^2x}$ to
lowest terms.
\begin{displaymath}
\frac{a^2bx-b^3x}{a^2bx-ab^2x} = \frac{bx(a^2-b^2) \div bx(a-b)}{abx(a-b) \div bx(a-b)} = \frac{a+b}{a}
\end{displaymath}
\textit{ To reduce a fraction to its lowest terms, divide the
terms of the fraction by their greatest common factor.}
\subsubsection*{Exercise 42.}
Reduce to lowest terms:
\begin{enumerate}
\item $\frac{\displaystyle 15x^3y^2z}{\displaystyle 40x^2y^2z^2}$.
\item $\frac{\displaystyle 12x^5y^2z^3}{\displaystyle 30xy^3z^3}$.
\item $\displaystyle \frac{x^2-7x+12}{x^3+x-20}$.
\item $\displaystyle \frac{x^2+9x+18}{x^2-2x-15}$.
\item $\displaystyle \frac{a^6+a^4}{a^4-1}$
\item $\displaystyle \frac{x^5-x^2}{x^6-1}$
\item $\displaystyle \frac{mx - ny + nx - my}{ax-2by+2bx-ay}$
\item $\displaystyle \frac{ac-bd+ad-bc}{ax-2by+2ay-bx}$
\item $\displaystyle \frac{ac^2d-a^3d^3}{a^3c+a^4d}$
\item $\displaystyle \frac{a^2xy-x^3y^3}{ax^2-x^3y}$
\item $\displaystyle \frac{a^4-b^4}{(a^2+2ab+b^2)(a^2+b^2)}$
\item $\displaystyle \frac{x^8 -y^8}{(x^4+y^4)(x^4-2x^2y^2+y^4)}$
\item $\displaystyle \frac{a^2x^2-16a^2}{ax^2+9ax+20a}$
\item $\displaystyle \frac{a^4-14a^2-51}{a^4-2a^2-15}$
\item $\displaystyle \frac{3+4x+x^2}{6+5x+x^2}$
\item $\displaystyle \frac{a^2-a^2b^2}{(a-ab)^2}$
\item At two-thirds of a cent apiece, what $b$ apples cost?
\item James is $x$ times as old as George. If James is $a$ years
old, how old is George?
\end{enumerate}
\textbf{34.} ILLUS. 1. Change $\frac{ac-bc-d}{c}$ to an equivalent
entire or mixed number.
\[
\frac{ac-bc-d}{c} = a - b -\frac{d}{c}
\]
\textit{To find an entire or mixed number equivalent to
a given fraction, divide the numerator by the denominator.}
ILLUS. 2. Change to equivalent fractions $b + \frac{a}{c}$, $b - \frac{a - x}{c}$.
\[
b + \frac{a}{c} = \frac{bc + a}{c},\quad b - \frac{a - x}{c} =
\frac{bc - a + x}{c}
\]
\textit{ To find a fraction equivalent to a given mixed number,
multiply the entire part by the denominator of the fraction, add,
the numerator if the sign of the fraction be plus, subtract it if
the sign be minus, and write the result over the denominator}.
How may an entire number be changed to a fraction having a given denominator?
ILLUS. 3. Change $\frac{a}{b}$, $\frac{c}{d}$, and $\frac{x}{ab}$ to equivalent fractions having a common denominator.
\[
\begin{array}{ccccc}
a & \times & ad & = &a^2d\\
\cline{1-1} \cline{5-5}
b & \times & ad & &abd\\
c & \times & ab & = &abc\\
\cline{1-1} \cline{5-5}
d & \times & ab & &abd\\
x & \times & d & = &xd\\
\cline{1-1} \cline{5-5}
ab & \times & d & &abd\\
\end{array}
\]
\textit{ To change fractions to equivalent fractions having a
common denominator, multiply the terms of each fraction by such a
number as will make its denominator equal to the L.C.M. of the
given denominators.}
\subsubsection*{Exercise 43.}
Change to equivalent entire or mixed numbers:
\begin{enumerate}
\item $ \displaystyle \frac{bx - cx + m}{x}$
\item $ \displaystyle \frac{mn + an + x}{n}$
\item $\displaystyle \frac{x^2 + y^2 + 3}{x - y}$
\item $\displaystyle \frac{a^3 + b^3 + 3}{x - y}$
\item $\displaystyle \frac{6 a^3 b^2 c - 9 a^2 b^2 + 3 c}{3 a^2
b}$
\item $\displaystyle \frac{6 x^3 y^2 + 10 x^2 y^2 z - 2 m}{2 x
y^2}$
\item $\displaystyle \frac{x^3 + 2 x^2 - 2 x + 1}{x^2 - x - 1}$
\item $\displaystyle \frac{2 a^3 + a^2 - 2a + 1}{a^2 + a - 2}$
\item $\displaystyle \frac{x^3 + y^3}{x - y}$
\item $\displaystyle \frac{a^3 - b^3}{a + b}$
\item $\displaystyle \frac{8a^3}{2a - 1}$
\item $\displaystyle \frac{27 x^3}{3x + 1}$
\item $\displaystyle \frac{3x^3 + 8x^2 + 2}{x^2 + 2x - 1}$
\item $\displaystyle \frac{2a^3 + 3a^2 + 10a - 4}{a^2 + 3a + 2}$
\item $\displaystyle \frac{2a^4 + 6a^3 - 6a + 2}{a^2 +a - 1}$
\item $\displaystyle \frac{3x^4 - 5x^3 + x - 1}{x^2 - x - 1}$
Change to equivalent fractions:
\item $\displaystyle x + y - \frac{xy}{x - y}$
\item $\displaystyle a - b - \frac{2 ab}{a + b}$
\item $\displaystyle -c + d + \frac{c^3 + d^3}{c^2 + cd + d^2}$
\item $\displaystyle \frac{x^2y + xy^2}{x - y} + x^2 - y^2$
\item $\displaystyle \frac{x+2}{3x - 1} - x - 2$
\item $\displaystyle 2a - 1 - \frac{a-2}{a+3}$
\item $\displaystyle a^2 - 3a + 2 - \frac{a + 3}{2a^2 - 1}$
\item $\displaystyle 2 x^2 + x - 3 - \frac{x - 2}{3 x^2 + 1}$
\item $\displaystyle \frac{3x + 2}{x^2 + x + 2} - 1$.
\item $\displaystyle 1 - \frac{2a^2 + 3}{a^2 - 2a + 3}$.
\item $\displaystyle \frac{a^2}{a^2 - a + 3} - a^2 - a - 1$.
\item $\displaystyle \frac{x^4}{x^2 + x - 1} - x^2 + x - 1$.
Change to equivalent fractions having a common
denominator:
\item $\displaystyle \frac{a^2}{2}, \frac{xy}{3},
\frac{5ab^2}{4}.$
\item $\displaystyle \frac{x^3}{3}, \frac{am}{2},
\frac{3x^2y}{5}.$
\item $\displaystyle \frac{7x^2}{3y}, \frac{5xy}{2a},
\frac{x^3}{ay}.$
\item $\displaystyle \frac{2a^2}{7m}, \frac{5ab}{3n},
\frac{b^4}{mn}.$
\item $\displaystyle \frac{5}{y+x}, \frac{3x}{x-y},
\frac{2ab}{x^2-y^2}.$
\item $\displaystyle \frac{2}{3+a}, \frac{5a}{a-3},
\frac{2ax}{a^2-9}.$
\item $\displaystyle \frac{b^2}{a^2-ab}, \frac{a^2b}{a^2-b^2}.$
\item $\displaystyle \displaystyle \frac{m^3}{nm+n^2},
\frac{m^2n}{m^2-n^2}.$
\item $\displaystyle \frac{2}{x^4-y^4}, \frac{3}{x^2 + xy -
2y^2}.$
\item $\displaystyle \frac{5}{a^8-b^8}, \frac{2}{a^4 - 4a^2b^2 +
3b^4}.$
\item $\displaystyle \frac{a-1}{a^2-2a-15}, \frac{a+2}{a^2+a-6},
\frac{a+3}{a^2-7a+10}.$
\item $\displaystyle \frac{x+1}{x^2-x-6}, \frac{x-2}{x^2+6x+8},
\frac{x+2}{x^2+x-12}.$
\item $\displaystyle \frac{x^2+3x+2}{x^2-x-6},
\frac{x^2-x}{x^2+5x+4}, \frac{x^2-6x+9}{x^2+x-12}.$
\item If $x$ quarts of milk cost $m$ cents, what will one pint
cost?
\item Express four consecutive numbers of which $a$ is the
largest.
\item What is the next even number above $2m$?
\item What is the next odd number below $4a+1$?
\end{enumerate}
\section*{OPERATIONS UPON FRACTIONS.}
\addcontentsline{toc}{section}{\numberline{}OPERATIONS UPON
FRACTIONS.}
\subsection*{ADDITION AND SUBTRACTION.}
\addcontentsline{toc}{subsection}{\numberline{}Addition and
Subtraction.}
\textbf{35.} ILLUS. 1. Find the sum of $\frac{6a^2}{9x^2}$,
$\frac{2a^2-a}{9x^2}$, and $-\frac{3a^2+1}{9x^2}$.
\begin{align*}
\frac{6a^2}{9x^2} + \frac{2a^2-a}{9x^2} + \left(-\frac{3a^2+1}{9x^2}\right)&=\frac{6a^2 + 2a^2 - a - 3a^2 - 1}{9x^2}\\
&= \frac{5a^2 - a - 1}{9x^2}
\end{align*}
ILLUS. 2. Find the sum of $\frac{x}{xy-y^2}$, $\frac{1}{x-y}$, and
$-\frac{1}{y}$.
\begin{align*}
\frac{x}{xy-y^2} + \frac{1}{x-y} + (-\frac{1}{y})
&= \frac{x}{y(x-y)} + \frac{y}{y(x-y)} - \frac{x-y}{y(x-y)}\\
&= \frac{2y}{y(x-y)} = \frac{2}{x-y}
\end{align*}
\textit{To add fractions, find equivalent fractions having a
common denominator, add their numerators, write the sum over the
common denominator, and reduce to lowest terms.}
ILLUS. 3. Subtract $\frac{a-4b}{a-2b}$ from $\frac{a-2b}{a}$.
\[
\frac{a-2b}{a}-\frac{a-4b}{a-2b}=\frac{a^2-4ab+4b^2}{a(a-2b)}-\frac{a^2-4ab}{a(a-2b)}=\frac{4b^2}{a(a-2b)}
\]
Make a statement of the method of subtracting one
fraction from another.\\
\subsubsection*{Exercise 44.}
Find the value of:
\begin{enumerate}
\item $\displaystyle \frac{2a}{3}+\frac{a}{4}-\frac{5a}{6}$.
\item $\displaystyle \frac{2x}{5}+\frac{1}{3} x-\frac{2x}{3}$.
\item $\displaystyle \frac{2x}{3}-\frac{3x}{4}-\frac{4x}{5}$.
\item $\displaystyle \frac{4a}{b}+\frac{3x}{2m}$.
\item $\displaystyle \frac{2x}{3}-x+\frac{3x}{5}$.
\item $\displaystyle \frac{m^2}{n^2}-2+\frac{n^2}{m^2}$.
\item $\displaystyle \frac{x}{mn}-\frac{x+mn}{3n}+2m$.
\item $\displaystyle \frac{2b+x}{3x}+\frac{5b-4x}{9x}$.
\item $\displaystyle
\frac{3m-a}{am}+\frac{b-2m}{bm}-\frac{3b-2a}{ab}$.
\item $\displaystyle \frac{2a^2}{a^2-b^2}-\frac{2a}{a+b}$.
\item $\displaystyle \frac{2a-3b}{a-2b}-\frac{2a-b}{a-b}$.
\item $\displaystyle \frac{x+4}{x+5}-\frac{x+2}{x+3}$.
\item $\displaystyle \frac{x-4y}{x-2y}-\frac{x^2-4y^2}{x^2+2xy}$.
\item $\displaystyle \frac{x-7}{x+2}+\frac{x+4}{x-3}$.
\item $\displaystyle
\frac{\left(x+2a\right)^2}{x^3-8a^3}-\frac{1}{x-2a}$.
\item $\displaystyle
\frac{x^6+x^3y^3+y^6}{x^3+y^3}+\frac{x^6-x^3y^3+y^6}{x^3-y^3}$.
\item $\displaystyle \frac{m - 3}{m + 2} - \frac{m - 2}{m+3} +
\frac{1}{m - 1}$
\item $\displaystyle \frac{2 (4a + b)}{15 a^2 - 15 b^2} -
\frac{1}{5 (a+b)} - \frac{1}{3a - 3b}$
\item $\displaystyle \frac{3x^3 - 3x^2 + x - 1}{3x^3 - 3x^2 - x +
1} - \frac{3x^3 + 3x^2 - x - 1}{3x^3 + 3x^2 + x + 1}$
\item $\displaystyle \frac{1}{a^2 - 7a + 12} - \frac{1}{a^2 - 5a +
6}$
\item $\displaystyle \frac{a-1}{a-2} + \frac{5 - 2a}{a^2 - 5a + 6}
+ \frac{a-2}{a-3}$
\item $\displaystyle \frac{1}{a^2 + 3a + 2} + \frac{2a}{a^2 + 4a +
3} + \frac{1}{a^2 + 5a + 6}$
\item $\displaystyle \frac{x+2}{x-5} + \frac{x-3}{x+4} -
\frac{2x^2 - 3x - 2}{x^2 - x - 20}$
\item $\displaystyle \frac{m - n}{mn} + \frac{p - m}{mp} +
\frac{n-p}{np}$
\item $\displaystyle \frac{a+b}{ab} - \frac{a-c}{ac} -
\frac{c-b}{bc}$
\item $\displaystyle \frac{x^2 - yz}{(x+y)(x+z)} + \frac{x^2 -
xz}{(y+z)(y+x)} + \frac{z^2}{(z+x)(z+y)}$
\item $\displaystyle \frac{m^2 - bx}{(m+b)(m+x)} - \frac{mx -
b^2}{(b+x)(b+m)} - \frac{mb - x^2}{(x+m)(x+b)}$
\item $x$ is how many times $y$?
\item If $a$ is $\frac{2}{5}$ of a number, what is $\frac{1}{5}$
of the number?
\item If $x$ is $\frac{3}{7}$ of a number, what is the number?
\item Seven years ago $A$ was four times as old as $B$. If $B$ is
$x$ years old, what is $A$'s present age?
\end{enumerate}
\textbf{ 36.} What is the effect of multiplying a number twice by
$-1$? How many signs to a fraction?
Note carefully in the following illustrations the variety of
changes that may be made in the signs without changing the value
of the fraction:
ILLUS. 1.
\[
\frac{a}{b}=\frac{-a}{-b}=-\frac{-a}{b}=-\frac{a}{-b}.
\]
In case the terms of the fraction are polynomials, notice that the
change in sign affects every term of the numerator or denominator.
ILLUS. 2.
\[
\frac{a-b}{x-y}=\frac{b-a}{y-x}=-\frac{b-a}{x-y}=-\frac{a-b}{y-x}.
\]
ILLUS. 3.
\[
\frac{a-b+c}{x+y+z}=\frac{b-c-a}{-x-y-z}=-\frac{b-c-a}{x+y+z}\\
=-\frac{a-b+c}{-x-y-z}
\]
When the denominator of the fraction is expressed in its factors,
the variety of changes is increased.
ILLUS. 4.
\begin{align*}
\frac{a}{(x-y)(m-n)} =& \frac{a}{(y-x)(n-m)} = \frac{-a}{(y-x)(m-n)} \\
=& \frac{-a}{(x-y)(n-m)} = \frac{-a}{(x-y)(m-n)} \\
=& \frac{a}{(y-x)(m-n)} =\frac{a}{(y-x)(n-m)} \\
\end{align*}
ILLUS. 5.
\begin{align*}
\frac{a-b}{(x-y)(c-d)}&= \frac{b-a}{(y-x)(c-d)} = \frac{a-b}{(y-x)(d-c)}\\
&= -\frac{a-b}{(y-x)(c-d)} = \textrm{etc.}
\end{align*}
What is the effect on the value of a fraction of changing the
signs of two factors of either denominator or numerator? Why? If
the signs of only one factor of the denominator are changed, what
must be done to keep the value of the fraction the same?
Write three equivalent fractions for each of the following by
means of a change in the signs:
\begin{enumerate}
\item $\displaystyle \frac{xy}{mn}$
\item $\displaystyle \frac{3ab}{2x^3}$
\item $\displaystyle \frac{x+y}{a-b}$
\item $\displaystyle \frac{1-x}{3c-a^2}$
\item $\displaystyle \frac{x-y-x}{c+d-a}$
\item $\displaystyle \frac{3a-x+y^2}{m^2+2c^2d-z}$
Write six equivalent fractions for each of the following:
\item $\displaystyle \frac{x}{(a-b)(m-n)}$
\item $\displaystyle \frac{3a^2bc}{(2x-y)(a-z)}$
\item $\displaystyle \frac{a-m}{(c-d)(x-y)}$
\item $\displaystyle \frac{2c+d}{(a-b+c)(x-z)}$
Write as many equivalent fractions as possible for
each of the following:
\item $\displaystyle \frac{c}{(a-b)(x-y)(m-n)}$
\item $\displaystyle \frac{a}{(c-d)(m-x)(y-b)}$
\item $\displaystyle \frac{a^2x}{(2m-n)(c-x)(d-y^2)}$
\item $\displaystyle \frac{(x-y)(2a-b)}{(m-x)(a-c)(d-y)}$
\end{enumerate}
ILLUS. 1. Find the value of $\frac{1}{x+1}-\frac{1}{1-x}-\frac{x}{x^2-1}$.
\[
\begin{array}{rl}\displaystyle
\frac{1}{x+1}-\frac{1}{1-x}-\frac{x}{x^2-1}
&\displaystyle = \frac{1}{x+1}+\frac{1}{x-1}-\frac{x}{x^2-1}\\
&\displaystyle = \frac{x-1}{x^2-1}+\frac{x+1}{x^2-1}-\frac{x}{x^2-1}\\
&\displaystyle = \frac{x}{x^2-1}
\end{array}
\]
ILLUS. 2. Find the value of $\frac{1}{(a-b)(b-c)} + \frac{1}{(b-a)(a-c)} + \frac{1}{(c-a)(c-b)}$.
\[
\begin{array}{c}
\displaystyle \frac{1}{(a-b)(b-c)} + \frac{1}{(b-a)(a-c)} + \frac{1}{(c-a)(c-b)}\\
\displaystyle = \frac{1}{(a-b)(b-c)} - \frac{1}{(a-b)(a-c)} + \frac{1}{(a-c)(b-c)}\\
\displaystyle = \frac{a-c}{(a-b)(b-c)(a-c)} - \frac{b-c}{(a-b)(b-c)(a-c)} + \frac{a-b}{(a-b)(b-c)(a-c)}\\
\displaystyle = \frac{2a-2b}{(a-b)(b-c)(a-c)}\\
\displaystyle = \frac{2}{(b-c)(a-c)}
\end{array}
\]
\subsubsection*{Exercise 45.}
Find the value of:
\begin{enumerate}
\item $\displaystyle \frac{2x}{x^2-4} + \frac{1}{2-x} +
\frac{1}{2+x}$.
\item $\displaystyle \frac{3a}{a^2-9} + \frac{1}{3-a} -
\frac{1}{3+a}$.
\item $\displaystyle m^2 - \frac{am^2}{a-m} - \frac{am^2}{m+a} -
\frac{2a^2m^2}{m^2-a^2}$.
\item $\displaystyle
\frac{20a-4}{4a^2-1}+\frac{3}{1-2a}-\frac{6}{1-2a}$.
\item $\displaystyle \frac{1}{x-y} + \frac{3y^3}{y^3-x^3} -
\frac{1}{3(1+a)}$.
\item $\displaystyle
\frac{a+3}{6(a^2-1)}+\frac{1}{2(1-a)}+\frac{1}{3(1+a)}$.
\item $\displaystyle
\frac{1}{5(3b-y^2)}-\frac{1}{2(3b+y^2)}-\frac{11b-7y^2}{10(y^4-9b^2)}$.
\item $\displaystyle
\frac{3}{(1-x)(3-x)}+\frac{1}{(2-x)(x-3)}-\frac{1}{(x-1)(x-2)}$.
\item $\displaystyle
\frac{a}{(a-b)(b-c)}+\frac{1}{c-a}-\frac{a-b}{(c-a)(c-b)}$.
\item $\displaystyle
\frac{1}{(z-a)(z-y)}+\frac{1}{(a-z)(a-y)}+\frac{1}{(y-z)(y-a)}$.
\item $\displaystyle
\frac{1}{(1-x)(1-y)}-\frac{x^2}{(x-1)(y-x)}-\frac{y^2}{(y-1)(x-y)}$.
\item $\displaystyle a-\frac{a^2}{a+1}-\frac{a}{1-a}$.
\item $\displaystyle 1-a+a^2-a^3+\frac{a}{1+a}$.
\item $\displaystyle
\frac{1}{x^2-7x+12}-\frac{2}{x^2-6x+8}+\frac{2}{x^2-5x+6}$.
\item What will $a$ pounds of rice cost if $b$ pounds costs 43\\
cents?
\item $x$ is $\frac{4}{9}$ of what number?
\item $m$ is $\frac{5}{x}$ of what number?
\item $y$ is $\frac{a}{b}$ of what number?
\end{enumerate}
\subsection*{MULTIPLICATION AND DIVISION.}
\addcontentsline{toc}{subsection}{\numberline{}Multiplication and
Division.}
\textbf{ 37.} ILLUS. $\displaystyle \frac{x^3}{y} \times c =
\frac{x^3c}{y}$, $\displaystyle \frac{4x^y}{5a^2bc^3}\times ab =
\frac{4x^2y}{5ac^3}$
\textit{ A fraction is multiplied by multiplying the numerator or
dividing the denominator.}\footnotemark
\subsubsection*{Exercise 46.}
Multiply:
\begin{enumerate}
\item $\displaystyle \frac{a}{b^2}$ by $x$.
\item $\displaystyle \frac{3a^2bc}{7x^2y^3}$ by $y^2$.
\item $\displaystyle \frac{1}{2c^2d}$ by $a^2d$.
\item $\displaystyle \frac{4abc^2}{9x^2y}$ by $3xy$.
\item $\displaystyle \frac{3mn}{2x^2y^2}$ by $6x^2y$.
\item $\displaystyle \frac{x-y}{2mn}$ by $3x$.
\item $\displaystyle \frac{2a-b}{3x^2-xy}$ by $x$.
\item $\displaystyle \frac{x^2}{x^3-y^3}$ by $x-y$.
\item $\displaystyle \frac{3x+3y}{x-y}$ by $x^2-y^2$.
\item $\displaystyle \frac{a^2-4a-21}{a^2-3a-10}$ by $a-5$.
\item $\displaystyle x+y-\frac{4xy}{x+y}$ by $x+y$.
\item $\displaystyle a-b+\frac{4ab}{a-b}$ by $a-b$.
\item $\displaystyle \frac{1}{x-y+z}+\frac{2z}{(x-y)^2-z^2}$ by
$x^2-xy-xz$.
\item $\displaystyle \frac{1}{a-b+c}-\frac{2b}{(a+c)^2-b^2}$ by
$ac+bc+c^2$.
\footnotetext{In arithmetic, which of these two methods did you
find would apply to all examples? When either method may he
applied to any given example, which is preferable, and why?}
\item How many units of the value of $\frac{1}{5}$ are there in 2?
\item How many units of the value of $\frac{1}{x}$ are there in 5?
\item How many sixths are there in $4a$?\\
\end{enumerate}
\textbf{ 38.} ILLUS. $\displaystyle \frac{xy^3}{2c}\div y^3=\frac{x}{3c}, \frac{5abc}{3mn^2}$\\
\textbf{ \textit{ A fraction is divided by dividing the numerator
or multiplying the denominator.\footnotemark}}
\subsubsection*{Exercise 47.}
Divide:
\begin{enumerate}
\item $\displaystyle \frac{a^2x}{b}$ by $ax$.
\item $\displaystyle \frac{3m^2n}{2xy}$ by $2x$.
\item $\displaystyle \frac{18cd^5}{5x}$ by $6cd^3$.
\item $\displaystyle \frac{6x^2y}{m}$ by $9mn$.
\item $\displaystyle \frac{a}{c+d}$ by $3x$.
\item $\displaystyle \frac{3x^3-3xy}{2m^2n}$ by $3x$.
\item $\displaystyle \frac{2ab-2b^4}{5x^2yz}$ by $2ab$.
\item $\displaystyle \frac{5(a^2-b^2)}{xy}$ by $a-b$.
\item $\displaystyle \frac{m+n}{2m^2-2mn}$ by $m^2-n^2$.
\item $\displaystyle \frac{x^2+5x-14}{x^2-7x+12}$ by $x-2$.
\item $\displaystyle ax+bx+a+b+\frac{a+b}{3x}$ by $a+b$.
\item Multiply $\displaystyle \frac{x^2-5x+6}{x^2+3x-4}$ by $x-1$.
\footnotetext{See previous foot-note.}
\item Divide $\displaystyle \frac {5 b c^2}{6 a x^3} $ by $10 a b
c$.
\item Multiply $\displaystyle 1 + \frac{3ac}{4 x^2 y} $ by $ 2 a
c $.
\item Divide $\displaystyle \frac{5 x^2 y - 5 y^3}{2 x^2 z} $ by
$ 4 x + 4 y $.
\item Divide $\displaystyle \frac{4 x^2 y}{3 m n^2} $ by $ 6 a x
y $.
\item A can do a piece of-work in $2 \frac{1}{3}$ days, and B in
$2\frac{1}{2}$ days. How much of the work can they both together
do in one day?
\item If C can do a piece of work in $m$ days, and D works half as
fast as G, how much of the work can D do in one day?
\end{enumerate}
\textbf{ 39.} ILLUS. 1. $\displaystyle \frac{x}{y} \times
\frac{a}{4} = \frac{a x}{4 y} $
ILLUS. 2. $\displaystyle \frac{7 x^5 y^4}{5 a^3 z^2} \times
\frac{20a^2 z^3}{42 x^4y^3} = \frac{2 xyz}{3 a}$
ILLUS. 3. $\displaystyle \frac{ab-ax-2 b+2 x}{b^3-x^3} \times
\frac{b^2 x+b x^2+x^3}{a-2} $
\begin{center} $\displaystyle = \frac{(a-2) (b-x) x (b^2+b x+x^2)}{(b-x) (b^2+b x+x^2) (a-2)} = x$\\ \end{center}
\textit{ To multiply one fraction by another, multiply the
numerators together for the numerator of the product and the
denominators for its denominator, and reduce to lowest terms.}
\subsubsection*{Exercise 48.}
Simplify:
\begin{enumerate}
\item $\displaystyle \frac{7a^2b^2c}{18x^2y^2z} \times
\frac{9xyz^2}{28abc^2}$
\item $\displaystyle \frac{9a^2b^2}{8nx^3y^2} \times
\frac{5x^2y^2}{2am^2n} \times \frac{24m^2n^2x}{90ab^2}$
\item $\displaystyle \frac{x^2 - 16y^2}{xy - 4y^2} \times
\frac{2y}{x + 4y}$
\item$\displaystyle \frac{3a - b}{2b} \times \frac{18ab +
6b^2}{9a^2 - b^2}$
\item$\displaystyle \frac{abd + cd^2}{a^2d - abc} \times \frac{acd
- bc^2}{ab^2 + bcd}$
\item$\displaystyle \frac{2ax - 4y}{mn^2 + any} \times \frac{mny +
ay^2}{a^2x - 2ay}$
\item$\displaystyle \frac{x^2 - x - 6}{x^2 + x - 2} \times
\frac{x^2 + 3x - 4}{x^2 - 2x - 3}$
\item$\displaystyle \frac{a^2 + 2a - 3}{a^2 + a - 2} \times
\frac{a^2 + 7a + 10}{a + 3}$
\item$\displaystyle \frac{x^4 - 64x}{3x^2 - 2x} \times \frac{9x^2
- 4}{x^2 - 4x}$
\item$\displaystyle \frac{m^2 - 25}{m^2 + 2m - 15} \times
\frac{m^4 - 27m}{m^2 - 5m}$
\item$\displaystyle \frac{a^3 - a^2y + ay^2}{x - 3} \times
\frac{ax + xy - 3a -3y}{a^3 + y^3}$
\item$\displaystyle \frac{x^3 + x^2 - x - 1}{x^2 + 6x + 9} \times
\frac{x^2 + 2x - 3}{2x^3 + 4x^2 + 2x}$
\item$\displaystyle \frac{a^3 - a^2 - a + 1}{a^2 + 4a + 4} \times
\frac{a^2 + 3a + 2}{3a^3 - 6a^2 + 3a}$
\item$\displaystyle (m + \frac{mn}{m - n})(n - \frac{mn}{m + n})$
\item A grocer purchased $y$ pounds of tea for \$25. Another
grocer purchased 4 pounds less for the same money. What was the
price per pound which each paid?
\item What is $\displaystyle \frac{a}{3}$ of $\displaystyle
\frac{2}{c}$?
\item Two numbers differ by 28, and one is eight-ninths of the
other. What are the numbers?
\end{enumerate}
\textbf{ 40.} ILLUS. $\displaystyle \frac{b}{c}\div
\frac{x}{y}=\frac{b}{c}\times\frac{y}{x}=\frac{by}{cx}$
\textit{ To divide one fraction by another, invert the divisor and
proceed as in multiplication}.
\subsubsection*{Exercise 49.}
Simplify:
\begin{enumerate}
\item $\displaystyle \frac{18a^6b^2c}{35x^3y^3z}\div
\frac{3a^4b}{5x^2yz}$.
\item $\displaystyle \frac{7axy^2}{8m^2n}\div
\frac{2xz^3}{3ab^2m}$.
\item $\displaystyle \frac{4x^2y^3z^4}{3a^2b^3c^4}\div
\frac{3x^4y^3z^2}{4a^4b^3c^2}$.
\item $\displaystyle \frac{2am^3n^2}{3x^3yz^2}\div
\frac{3a^3mn^2}{2x^3yz^2}$.
\item $\displaystyle \frac{x^2-7x+10}{x^2}\div
\frac{x^2-4}{x^2+5x}$.
\item $\displaystyle \frac{x-6}{x-3}\div \frac{x^2-3x}{x^2-5x}$.
\item $\displaystyle \frac{x-2}{x-7}\div
\frac{x^2-9x+20}{x^2-10x+21}\div \frac{x^2-4x+3}{x^2-5x+4}$.
\item $\displaystyle \frac{a^2-7a}{a-8}\div
\frac{a^2+10a+24}{a^2-14a+48}\div \frac{a^2-7a+6}{a^2+3a-4}$.
\item $\displaystyle \frac{a+b}{(a-b)^2}div
\frac{a^2+b^2}{a^2-b^2}\times\frac{a^4-b^4}{(a+b)^3}$.
\item $\displaystyle
\frac{x^2-y^2}{x^2+y^2}\times\frac{x^4-y^4}{(x-y)^3}\div
\frac{(x+y)^2}{x-y}$.
\item $\displaystyle \frac{a^2-2a-8}{a^2+2a-15}\div
\frac{a^2+5a+6}{a^2-4a+3}\div \frac{a^2-5a+4}{a^2+8a+15}$.
\item $\displaystyle \frac{x^2-9x+20}{x^2-5x-14}\div
\frac{x^2-7x+12}{x^2-x-42}\times\frac{x^2-x-6}{x^2+11x+30}$.
\item $\displaystyle \frac{a^2 - a - 2}{a^2 + 2a - 8} \times
\frac{a^2 + 5a}{ab + b} \div \frac{a^2 - 25}{a^2 - a - 20}$.
\item $\displaystyle \frac{m - 2}{2m - 14} \times \frac{m^2 - 5m -
14}{2m^2 + 4m} \times \frac{4m^2}{m^2 - 4} \div \frac{2mn -
14n}{m^2 - 5m - 14}$.
\item $ \displaystyle \left(\frac{a+1}{a-1} + 1\right)
\left(\frac{a-1}{a+1} + 1\right)
\div
\left(\frac{a+1}{a-1} - 1\right) \left(1 - \frac{a-1}{a+1}\right)$.
\item $\displaystyle \left(1 + \frac{x}{1-x}\right) \left(1 -
\frac{x}{1+x}\right) \div \left(1 + \frac{1+x}{1-x}\right) \left(1
- \frac{1-x}{1+x}\right)$.
\item How much times 7 is 21?
\item How much times $\frac{3}{14}$ is $\frac{6}{7}$?
\item How much times $\displaystyle \frac{c}{d}$ is $\displaystyle
\frac{x}{4}$?
\item How much times $\displaystyle \frac{5bz}{7mx^3}$ is
$\displaystyle \frac{3xy^2z}{4amn^2}$?
\end{enumerate}
What may be done to a fraction without changing its value? How
multiply a fraction? When is a fraction in its lowest terms? How
reduce a fraction to lowest terms? How divide one fraction by
another? How add fractions? How divide a fraction? What is the
effect of increasing the denominator of a fraction? What is the
effect of dividing the numerator of a fraction? What is the effect
of subtracting from the denominator of a fraction? How multiply
two or more fractions together? What is the effect of adding to
the numerator of a fraction? What is the effect of multiplying a
fraction by its denominator? What changes in the signs of a
fraction can be made without changing the value of the fraction?
How change an entire number to a fraction with a given
denominator?
\subsection*{INVOLUTION, EVOLUTION, AND FACTORING.}
\addcontentsline{toc}{subsection}{\numberline{}Involution,
Evolution and Factoring.}
\textbf{ 41.} ILLUS. 1. $\displaystyle \left(\frac{a}{b}\right)^2
= \frac{a}{b} \times \frac{a}{b} = \frac{a^2}{b^2}$.
What is the square of $\frac{3x}{2y}$? What is the cube of $\frac{x}{y}$? of\\
$\frac{2a^2b}{xy}$? What is the square root of $\frac{64x^2}{9y^4}$? What is the\\
cube root of $\frac{8a^3x^6}{27b^9y^3}$? How find any power of a fraction?\\
How find any root of a fraction?\\
ILLUS. 2. $\displaystyle \left(\frac{m}{n} + \frac{1}{x}\right)\left(\frac{m}{n} - \frac{1}{x}\right) = \frac{m^2}{n^2} - \frac{1}{x^2}$.\\
ILLUS. 3. $\displaystyle \left(\frac{x}{y} - 3\right)\left(\frac{x}{y} - 6\right) = \frac{x^2}{y^2} - \frac{9x}{y} + 18$.\\
ILLUS. 4. Factor $ \frac{b^4}{a^4} - \frac{y^4}{x^4}$.\\
\begin{center}
$\displaystyle \frac{b^4}{a^4} - \frac{y^4}{x^4} =
\left(\frac{b^2}{a^2} + \frac{y^2}{x^2}\right) \left(\frac{b}{a} +
\frac{y}{x}\right) \left( \frac{b}{a} - \frac{y}{x}\right)$.
\end{center}
ILLUS. 5. Factor $x^4 + x^3 + \frac{1}{4}$.
\begin{center}
$\displaystyle x^4 + x^2 + \frac{1}{4} = \left(x^2 +
\frac{1}{2}\right)^2$.
\end{center}
\subsubsection*{Exercise 50.}
Find by inspection the values of each of the following:
\begin{enumerate}
\item $\displaystyle \left(\frac{2x^2}{ab^3}\right)^2$.
\item $\displaystyle \left(\frac{a^2b^3}{4y}\right)^3$.
\item $\displaystyle \left(-\frac{2xy}{3a^2m^3}\right)^5)$.
\item $\displaystyle \left(\frac{x(a-b)}{3a^2b}\right)^4$.
\item $\displaystyle \left(-
\frac{5x^2y(a+b^2)^2}{2ab^3(x^2-y)^3}\right)^3$.
\item $\displaystyle \left(-
\frac{3am^4(2a+3b)^3}{4x^2y^2(m-n)^2}\right)^3$.
\item $\displaystyle \left( -\frac{ 3a^5xy^2z^3 }{ 2bc^4d^4 }
\right)^4$.
\item $\displaystyle \left( -\frac{ 4x^7y^2z^3 }{ 3ab^6d^3 }
\right)^4$.
\item $\displaystyle \sqrt[3]{ \frac{ 8a^3b^6 }{ 27m^6n^9 } }$.
\item $\displaystyle \sqrt{ \frac{ 36m^2n^8 }{ 121a^4b^6 } }$.
\item $\displaystyle \sqrt[4]{ \frac{ 256x^4y^8 }{ 81a^4b^{12} }
}$.
\item $\displaystyle \sqrt[5]{ - \frac{32x^5y^10}{ 243m^10n^15 }
}$.
\item $\displaystyle \sqrt[3]{ -\frac{ 27x^6(a-b)^9 }{ 64a^6b^{12}
} }$.
\item $\displaystyle \sqrt{ \frac{ 4x^2 + 12xy + 9y^2 }{ 16x^4y^8
} }$.
\item $\displaystyle \sqrt{ \frac{ 8x^2(x+y)^5 }{ 50y^4(x+y) } }$.
\item $\displaystyle \sqrt[3]{ -\frac{ 81a^3(a-b)^7 }{ 24b^9(a-b)
} }$.
\item $\displaystyle \left( \frac{x}{y} + \frac{a}{b} \right)
\left( \frac{x}{y} - \frac{a}{b} \right)$.
\item$\displaystyle \left( \frac{a}{b} - \frac{c}{d} \right)
\left( \frac{a}{b} + \frac{c}{d} \right)$.
\item $\displaystyle 3ab\left(\frac{2x}{ab}+ \frac{x^2}{2mn}-
\frac{ax}{3mb}\right)$.
\item $\displaystyle \frac{x^2}{yz}
\left( \frac{2x}{3} - \frac{3y^2z}{2x} + \frac{x^2y}{m^2z} \right)$.
\item $\displaystyle \left( \frac{a^4}{b^4} + \frac{c^4}{d^4}
\right)
\left( \frac{a^2}{b^2} + \frac{c^2}{d^2} \right)
\left( \frac{ a }{ b } + \frac{ c }{ d } \right)
\left( \frac{ a }{ b } - \frac{ c }{ d } \right)$.
\item $\displaystyle \left( \frac{x^2}{16} + \frac{9y^2}{25m^1}
\right)
\left( \frac{x}{4} + \frac{3y}{5m} \right)
\left( \frac{x}{4} - \frac{3y}{5m} \right)$.
\item $\displaystyle \left( \frac{x}{y} + 1 \right)
\left( \frac{x^2}{y^2} - \frac{x}{y} + 1 \right)$.
\item $\displaystyle \left( \frac{a}{b} - 1 \right)
\left( \frac{a^2}{b^2} + \frac{a}{b} + 1 \right)$.
\item $\displaystyle \left( \frac{x}{y} - \frac{3a^2}{2b}
\right)$.
\item $\displaystyle \left( \frac{2y}{c^2} + \frac{9}{2d}
\right)^2$.
\item $\displaystyle \left( \frac{a}{b} + 2 \right) \left(
\frac{a}{b} - 5 \right)$.
\item $\displaystyle \left( \frac{x}{y} - \frac{a}{b} \right)^3$.
Factor:
\item $\displaystyle \frac{x^4}{a^2} - \frac{b^2}{y^4}$
\item $\displaystyle \frac{a^2}{b^4} - \frac{x^8}{y^2}$
\item $\frac{a^4}{m^4} - \frac{b^4}{x^4}$
\item $\displaystyle \frac{8a^3}{y^3} + \frac{b^3}{c^3}$
\item $\displaystyle \frac{x^3}{27a^3} - \frac{y^3}{c^3}$
\item $\displaystyle \frac{81a^4}{b^4} - \frac{x^4y^4}{625z^4}$
\item $\displaystyle \frac{m^2}{y^2} + \frac{2m}{y} - 15$
\item $\displaystyle \frac{x^2}{a^2} - \frac{2x}{a} - 8$
\item $\displaystyle \frac{y^2}{4} + 2 + \frac{4}{y^2}$
\item $\displaystyle \frac{x^2}{a^2} + \frac{a^2}{x^2} - 2$
\item A dog can take 2 leaps of $a$ feet each in a second. How
many feet can he go in 9 seconds?
\item How many weeks would it take to build a stone wall if
$\frac{1}{a}$ of it can be built in one day?
\end{enumerate}
\section*{COMPLEX FRACTIONS.}
\addcontentsline{toc}{section}{\numberline{}COMPLEX FRACTIONS.}
\textbf{ 42} ILLUS.$ \displaystyle \frac{a + \frac{b}{c}}{d}$ ,
$\displaystyle \frac{a}{d - \frac{x}{y}}$, $\displaystyle \frac{a
+ \frac{b}{c}}{d - \frac{x}{y}}$, $\displaystyle
\frac{\frac{a}{x}}{\frac{b}{c}}$
A \textbf{ complex fraction} is one which has a fraction in one or
both of its terms.
What is a simple fraction? What is the effect of multiplying a
simple fraction by its denominator or by any multiple of its
denominator? By what must the numerator of the complex fraction
$\displaystyle \frac{ a + \frac{ax}{b} }{ \frac{c}{d} +
\frac{x}{ab} } $be multiplied to make the numerator an entire
number? By what multiply the denominator to make it an entire
number? If both numerator and denominator are multiplied, under
what conditions will the value of the fraction remain the same?
ILLUS. 1. Simplify $\displaystyle \frac{ a + \frac{ax}{b} }{
\frac{c}{d} + \frac{x}{ab} }$.
\[
\begin{array}{ccccc}
a &+& \frac{ax}{b} & \times & abd \\
\cline{1-3}
\frac{c}{d} &+& \frac{x}{ab} & \times & abd
\end{array}
= \frac{ a^2bd + a^2dx }{ abc + dx }
\]
ILLUS. 2. Simplify $\displaystyle \frac{ \frac{1}{1-x} -
\frac{1}{1+x} }
{ \frac{1}{1-x} + \frac{1}{1+x} }$.
\[
\begin{array}{ccccc}
\frac{1}{1-x} &-& \frac{1}{1+x} & \times & (1-x)(1+x) \\
\cline{1-3}
\frac{1}{1-x} &+& \frac{1}{1+x} & \times & (1-x)(1+x)
\end{array}
= \frac{1 + x - 1 + x}{1 + x + 1 - x} = \frac{2x}{2} = x
\]
\textit{To simplify a complex fraction, multiply each term of the
complex fraction by the L.C.M. of the denominators of the
fractions in the terms, and reduce.}
\subsubsection*{Exercise 51.}
Simplify:
\begin{enumerate}
\item $\displaystyle \frac{1+\frac{a}{b}}{\frac{x}{b}-1}$.
\item $\displaystyle \frac{x+\frac{a}{y}}{m-\frac{b}{y}}$.
\item $\displaystyle \frac{x}{a+\frac{b}{c}}$.
\item $\displaystyle \frac{x-\frac{1}{x^2}}{1-\frac{1}{x}}$.
\item $\displaystyle \frac{\frac{a}{b}-\frac{b}{a}}{a-b}$.
\item $\displaystyle \frac{1+m^3}{1+\frac{1}{m}}$.
\item $\displaystyle
\frac{\frac{x}{y}-\frac{z}{x}}{\frac{a}{y}-\frac{b}{x}}$.
\item $\displaystyle \frac{\frac{ab}{c}-3d}{3c-\frac{ab}{d}}$.
\item $\displaystyle \frac{1+\frac{1}{a-1}}{1-\frac{1}{a+1}}$.
\item $\frac{1+a+a^2}{1+\frac{1}{a}+\frac{1}{a^2}}$.
\item $\displaystyle \frac{x-3-\frac{2}{x-4}}{x-1+\frac{2}{x-4}}$.
\item $\displaystyle
\frac{\frac{a}{a+b}+\frac{a}{a-b}}{\frac{2a}{a^2-b^2}}$.
\item $\displaystyle
\frac{\frac{a+1}{a-1}+\frac{a-1}{a+1}}{\frac{a+1}{a-1}-\frac{a-1}{a+1}}$.
\item $\displaystyle
\frac{\frac{a^3+b^3}{a^2-b^2}}{\frac{a^2-ab+b^2}{a-b}}$.
\item $\displaystyle 1-\frac{1}{1+\frac{2}{a-2}}$.
\item $\displaystyle
\frac{\frac{a+2b}{b}-\frac{a}{a+b}}{\frac{a+2b}{a+b}+\frac{a}{b}}$.
\item How many pounds of pepper can be bought for $y$ dollars, if
$x$ pounds cost $2x$ dimes?
\item How many inches in $y$ feet? How many yards?
\item A man bought $x$ pounds of beef at $x$ cents a pound,
and handed the butcher a $y$-dollar bill. How many cents
change should he receive?
\item $x$ times $I$ is how many times $m$?
\end{enumerate}
\subsubsection*{Exercise 52. (Review.)}
\begin{enumerate}
\item Divide $x^3 - 19x + 6x^7 + 20 + 8x^2 + 16x^4-x^6-11x^5$
by $x^2 + 4-3x+2x^3$.
\item Find two numbers whose sum is 100 and whose
difference is 10.
\item Find the G.C.F. of $x^4-1$, $x^5+ x^4-x^3-x^2 + x + 1$, and
$x^2 - x - 2$.
\item Factor $x^{10} - 14x^5y + 49y^2$, $a^9-b^9$, $3a^2-3a-216$.
\item Reduce $\displaystyle
\frac{(2a+2b)(a^2-b^2)}{(a^2+2ab+b^2)(a-b)}$ to lowest terms.
\item Factor $\displaystyle
\frac{16x^4}{a^4b^4}-\frac{c^4}{81y^4}$.
\item If $x$ and $y$ stand for the digits of a number of two
places, what will represent the number?
\item Find the L.C.M. of $a^2-5a + 6$, $a^2-16$, $a^2-9$, $a^2- 7a
+ 12$, and $a^2 - 4$.
\item If one picture costs $a$ cents, how many can be bought
for $x$ dollars?
Simplify:
\item $\displaystyle \frac{x - 3}{x - 2} + \frac{2 (1 - x)}{x^2 -
6x + 8} - \frac{x - 1}{x - 4}$.
\item $\displaystyle \frac{1}{(2 - x)(3 - x)} - \frac{2}{(x - 1)(x
- 3)} + \frac{1}{(x - 1)(x - 2)}$.
\item $\displaystyle \frac{x^2 + xy}{x - y} \times \frac{x^3 -
3x^2y + 3xy^2 - y^3}{x^2 - y^2} \div \frac{2xy - 2y^2}{3}$.
\item $\displaystyle \left( \frac{1}{m} + \frac{1}{n} \right) (a +
b) - \left( \frac{a + b}{m} \right) - \left( \frac{a - b}{n}
\right)$.
\item $\displaystyle \left( x - \frac{1}{1 + \frac{2}{x - 1}}
\right) \div \frac{x + \frac{1}{x}}{\frac{1}{x} + 1}$.
\item $\displaystyle \frac{\frac{a}{b} + \frac{b}{a} -
1}{\frac{a^2}{b^2} + \frac{a}{b} + 1} \times \frac{1 +
\frac{b}{a}}{a - b} \div \frac{1 + \frac{b^3}{a^3}}{\frac{a^2}{b}
- \frac{b^2}{a}}$.
\item Prove that $3(a + b)(a + c)(b + c) = (a + b + c)^3 - (a^3 +
b^3 + c^3)$.
\item How many sevenths in $6xy$?
\item Divide $\displaystyle 2x^5 - \frac{x^4}{12} +
2\frac{3}{4}x^3 - 2x^2 - x$ by $3x^2 + x$.
\end{enumerate}
\chapter*{EQUATIONS}
\addcontentsline{toc}{chapter}{\numberline{}EQUATIONS.}
\addcontentsline{toc}{section}{\numberline{}SIMPLE.}
\begin{tabular}{llc}
\textbf{43}.& ILLUS. 1.& $27 + 10x = 13x + 23$.\\
&ILLUS. 2. & $\displaystyle \frac{a^2}{x} + \frac{b}{2} =
\frac{4b^2}{x} +
\frac{a}{4}$.\\
\end{tabular}
An \textbf{equation} is an expression of the equality of two
numbers. The parts of the expression separated by the
sign of equality are called the \textbf{members} of the equation.
The last letters of the alphabet are used to represent
unknown numbers, and known numbers are represented by
figures or by the first letters of the alphabet.
\begin{tabular}{lcr}
\textbf{44}. &ILLUS. 1. & $5x+20 = 105$. \\
&& $5x=85$. \\
&ILLUS. 2. & $3x-18=42$. \\
&& $3x=60$.\\
&ILLUS. 3. & $\frac{x}{12}=2$. \\
&& $x=24$.\\
&ILLUS. 4. &$7x=49$.\\
&& $x=7$. \\
\end{tabular}
\textbf{\textit{Any changes may be made in an equation which do
not destroy the equality of the members.}}
Name some of the ways in which such changes may
be made.
\begin{tabular}{lcl}
\textbf{45}. &ILLUS. 1. &$x + b = a$. Subtracting $b$ from each
member, $x = a - b$.\\
&ILLUS. 2. &$x-b=c$. Adding $b$ to each member, $x = c + b$.
\end{tabular}
In each of these illustrations $b$ has been transposed
(changed over) from the first to the second member,
and in each case its sign has been changed. Hence,
\textbf{\textit{Any term may be transposed from one member of an
equation to the other provided its sign be changed.}}
\textbf{46.} ILLUS. $\displaystyle \frac{ab + x}{b^2} - \frac{b^2
- x}{a^2b} = \frac{x - b}{a^2} - \frac{ab - x}{b^2}$.
Multiply both members by $a^2b^2$,
\begin{equation*}
a^3b + a^2x - b^3 + bx = b^2 x - b^3 - a^3b + a^2x.
\end{equation*}
\textit{To clear an equation of fractions, multiply each member of
the equation by the L.C.M. of the denominators of the fractional
terms.}
\textbf{47.} ILLUS. 1. Solve \begin{eqnarray*}
x + 4 + 2(x - 1) & = & 3x + 4 - (5x - 8) \\
x + 5 + 2x - 2 & = & 3x + 4 - 5x - 8 \\
\text{Transposing, } x + 2x - 3x + 5x & = & 4 + 8 - 4 + 2 \\
5x & = & 10 \\
x & = & 2 \\
\end{eqnarray*}
ILLUS. 2. Solve $\displaystyle \frac{5x + 3}{8} - \frac{3 - 4x}{3}
+ \frac{x}{2} = \frac{31}{2} - \frac{9 - 5x}{6}$. Multiply by 24,
\begin{eqnarray*}
3(5x + 3) - 8(3 - 4x) + 12x & = & 372 - 4(9 - 5x) \\
15x + 9 - 24 + 32x + 12x & = & 372 - 36 + 20x \\
\text{Transposing, } 15x + 32x + 12x - 20x & = & 372 - 36 - 9 + 24 \\
39x & = & 351 \\
x & = & 9 \\
\end{eqnarray*}
\textit{ To solve an equation, clear of fractions if necessary,
transpose the terms containing the unknown number to one member
and the known terms to the other, unite the terms, and divide both
members by the coefficient of the unknown number}.
\subsubsection*{Exercise 53.}
Solve:
\begin{enumerate}
\item $22-6x=34-12x$.
\item $5x-4=10x+ 11$.
\item $23-8x=80-11x$.
\item $5x-21=7x + 5$.
\item $18x-43=17-6x$.
\item $18-8x=12x- 87$.
\item $9x-(2x-5)=4x+(13 + x)$.
\item $15x-2(5x-4)-39 = 0$.
\item $12x-18x+17=8x+3$.
\item $21x-57=6x-14x+30$.
\item $5x-27-11x+16=98-40x-41$.
\item $14(x-2)+3(x+1)= 2(x-5)$.
\item $6(23-x)-3x=3(4x-27)$.
\item $3(x-1)-2(x-3)+(x-2)-5=0$.
\item $(x+5)(x-3)=(x+2)(x-5)$.
\item $(x+4)(x+7)=(x+2)(x+11)$.
\item $(x-1)(x+4)(x-2)=x(x-2)(x+2)$.
\item $(x-5)(x+3)-(x-7)(x-2)-2(x-1)=-12$.
\item $(x+2)^{2}-(x-1)^{2}=5(2x+3)$.
\item $(2x+3)(x+3)-14=(2x+1)(x+1)$.
\item $(x+1)^{2}+(x-5)^{2}=2(x+5)^{2}$.
\item $7x - 15 + 4x - 6 = 4x - 9 - 9x$.
\item Divide the number 105 into three parts, such that the second
shall be 5 more than the first, and the third three times the
second.
\item A man had a certain amount of money; he earned four times as
much the next week, and found \$30. If he then had seven times as
much as at first, how much had he at first?
\item How many fourths are there in $7x$?
\item How long will it take a man to build $x$ yards of wall if he
builds $z$ feet a day?
\item $\displaystyle 6x - \frac{x + 4}{3} = \frac{x}{3} + 28$.
\item $\displaystyle \frac{2x - 1}{5} - \frac{x + 12}{3} -
4\frac{4}{5} = \frac{2x}{3}$.
\item $\displaystyle x - \frac{x}{4} + 25 = \frac{x}{3} +
\frac{x}{2} + 21$.
\item $\displaystyle \frac{x - 3}{3} + \frac{5}{21} = -\frac{x -
8}{7}$.
\item $\displaystyle \frac{8 - 5x}{12} + \frac{5x - 6}{4} -
\frac{7x + 5}{6} = 0$.
\item $\displaystyle \frac{3 + 5x}{4} + \frac{x + 2}{2} =
1\frac{5}{9}$.
\item $\displaystyle \frac{2x - 1}{3} - \frac{13}{42} = \frac{5x -
4}{6}$.
\item $\displaystyle \frac{1 - 11x}{7} - \frac{7x}{13} =
\frac{2}{13} - \frac{8x - 15}{3}$.
\item $\displaystyle \frac{2}{x}-\frac{3}{2x} =
\frac{7}{24}-\frac{2}{3x}$.
\item $\displaystyle \frac{1}{4}+\frac{1}{3x} =
\frac{11}{36}+\frac{1}{6x}$.
\item $\displaystyle
\frac{3}{4x}-\frac{2}{x}+\frac{x-2}{2x}+7\frac{5}{12} =
5+\frac{4}{6x}$.
\item $\displaystyle \frac{2x+3}{5x}-\frac{3}{x}+4 =
\frac{1}{2x}+\frac{3}{4x}+2\frac{23}{40}$.
\item $\displaystyle \frac{x+9}{11}-\frac{2-x}{5} =
\frac{x+5}{7}$.
\item $\displaystyle \frac{x+4}{5}-\frac{4-x}{7} = \frac{x+1}{3}$.
\item $\displaystyle \frac{2}{5}(x-6)-\frac{3}{16}(x-1) =
\frac{5}{12}(4-x)-\frac{5}{48}$.
\item $\displaystyle \frac{4+x}{4}-\frac{1-x}{7}-\frac{1}{5}(8-x)
= \frac{x-23}{5}+7$.
\item How long will it take a man to walk $x$ miles if he walks 15
miles in $b$ hours?
\item What is the interest on $m$ dollars for one year at 5 per
cent?
\item What are the two numbers whose sum is 57, and whose
difference is 25?
\item What is the interest on $b$ dollars for $y$ years at 4 per
cent?
\item $(c+a)x+(c-b)x = c^2$.
\item $(a-b)x+(a+b)x = a$.
\item $2x+a(x-2) = a+6$.
\item $b(2x-a)-a^2 = 2x(a+b)-3ab$.
\item $\displaystyle a^2+c^2=\frac{cx}{a}+\frac{ax}{c}$.
\item $b^4-x^2+2bx=(b^2+x)(b^2-x)$.
\item $x^2+4a^2+a^4=\left(x+a^2\right)^2$.
\item $b^2(x-b)+a^2(x-a)=abx$.
\item $\displaystyle \frac{2x+5}{5x+3}=\frac{2x-4}{5x-6}$.
\item $\displaystyle \frac{6x+5}{2x-3}=\frac{3x-4}{x+1}$.
\item $\displaystyle \frac{2+9x}{3(6x+7)}=\frac{2x+9}{35+4x}$.
\item $\displaystyle \frac{3}{2-5x}-\frac{4}{1-3x}=0$.
\item $\displaystyle \frac{2(3x+4)}{1+2x}-1=\frac{2(19+x)}{x+12}$.
\item $\displaystyle 1-\frac{x}{x+2}=\frac{4}{x+6}$.
\item $\displaystyle
\frac{x^2}{1-x^2}+\frac{x+1}{x-1}=\frac{3}{x+1}$.
\item $\displaystyle \frac{2+3x}{1-x}+5=\frac{2x-4}{x+2}$.
\item $\displaystyle
\frac{5}{6+2x}+\frac{2}{x+1}=\frac{2\frac{1}{2}}{2+2x}+\frac{4}{3+x}$.
\item $\displaystyle
\frac{2(1-2x)}{1-3x}+\frac{1}{6}=\frac{1-3x}{1-2x}$.
\item $\displaystyle
\frac{x-8}{x-6}-\frac{x}{x-2}=\frac{x-9}{x-7}-\frac{x+1}{x-1}$.
\item $\displaystyle \frac{x+5}{x+8} -
\frac{x+6}{x+9}=\frac{x+2}{x+5}-\frac{x+3}{x+6}$.
\item Find three consecutive numbers whose sum is 81. \item A's
age is double B's, B's is three times C's, and C is $y$ years old.
What is A's age?
\item How many men will be required to do in $a$ hours what $x$
men do in 6 hours?
\item Find the sum of three consecutive odd numbers of which the
middle one is $4x + 1$.
\end{enumerate}
\subsubsection*{Exercise 54}.
\begin{enumerate}
\item In a school of 836 pupils there is one boy to every
three girls. How many are there of each?
\item Divide 253 into three parts, so that the first part shall
be four times the second, and the second twice the third.
\item The sum of the ages of two brothers is 44 years, and
one of them is 12 years older than the other. Find their
ages.
\item Find two numbers whose sum is 158, and whose difference
is 86.
\item Henry and Susan picked 16 quarts of berries.
Henry picked 4 quarts less than three times as many as
Susan. How many quarts did each pick?
\item Divide 127 into three parts, such that the second
shall be 5 more than the first, and the third four times
the second.
\item Twice a certain number added to four times the
double of that number is 90. What is the number?
\item I bought some five-cent stamps, and twice as many
two-cent stamps, paying for the whole 81 cents. How
many stamps of each kind did I buy?
\item Three barns contain 58 tons of hay. In the first
barn there are 3 tons more than in the second, and 7 less
than in the third. How many tons in each barn?
\item If I add 18 to a certain number, five times this
second number will equal eleven times the original number.
What is the original number?
\item In a mixture of 48 pounds of coffee there is one-third
as much Mocha as Java. How much is there of
each?
\item The half and fifth of a number are together equal to
56. What is the number?
\item What number increased by one-third and one-fourth
of itself, and 7 more, equals 45?
\item What number is doubled by adding to it three-eighths
of itself, one-third of itself, and 14?
\item A grocer sold 27 pounds of sugar, tea, and meal.
Of meal he sold 3 pounds more than of tea, and of sugar
6 pounds more than of meal. How many pounds of each
did he sell?
\item A son is two-sevenths as old as his father. If the
sum of their ages is 45 years, how old is each?
\item Two men invest \$2990 in business, one putting in
four-ninths as much as the other. How much does each
invest?
\item In an election 47,519 votes were cast for three candidates.
One candidate received 2061 votes less, and the
other 1546 votes less, than the winning candidate. How
many votes did each receive?
\item John had twice as many stamps as Ralph, but after
he had bought 65, and Ralph had lost 16, they found that
they had together 688. How many had each at first?
\item Find three consecutive numbers whose sum is 192.
\item If 17 be added to the sum of two numbers whose
difference is 12, the result will be 61. What are the
numbers?
\item Divide 120 into two parts such that five times one
part may be equal to three times the other.
\item Mr. Johnson is twice as old as his son; 12 years
ago he was three times as old. What is the age of each?
\item Henry is six times as old as his sister, but in 3 years
from now he will be only three times as old. How old is
each?
\item Samuel is 16 years older than James; 4 years ago
he was three times as old. How old is each?
\item Martha is 5 years old and her father is 30. In
how many years will her father be twice as old as Martha?
\item George is three times as old as Amelia; in 6 years
his age will be twice hers. What is the age of each?
\item Esther is three-fourths as old as Edward; 20 years
ago she was half as old. What is the age of each?
\item Mary is 4 years old and Flora is 9. In how many
will Mary be two-thirds as old as Flora?
\item Harry is 9 years older than his little brother; in
6 years he will be twice as old. How old is each?
\item Divide $2x^4+27xy^3-81y^4$ by $x+3y$.
\item Prove $\left(a^2+ab+b^2\right)^2-\left(a^2-ab+b^2\right)^2=4ab(a^2+b^2)$.
\item Find the value of $\displaystyle
\frac{x-y}{y}+\frac{2x}{x-y}-\frac{x^3+x^2y}{x^2y-y^3}$.
\item Solve $\displaystyle \frac{5x-7}{2}-3x=\frac{2x+7}{3}-14$.
\item Mr. Ames has \$132, and Mr. Jones \$43. How
much must Mr. A. give to Mr. J. so that Mr. J. may have
three-fourths as much as Mr. A.?
\item A has \$101, and B has \$35; each loses a certain
sum, and then A has four times as much as B. What was
the sum lost by each?
\item A certain sum of money was divided among A, B, and C; A and B
received \$75, A and C \$108, and B and C \$89. How much did each
receive?
\textit{ Suggestion}. Let $x$ equal what A received.
\item Mary and Jane have the same amount of money.
If Mary should give Jane 40 cents, she would have one-third
as much as Jane. What amount of money has
each?
\item An ulster and a suit of clothes cost \$43; the ulster and a
hat cost \$27; the suit of clothes and the hat cost \$34. How much
did each cost?
\item John, Henry, and Arthur picked berries, and sold them; John
and Henry received \$4.22, John and Arthur \$3.05, Henry and
Arthur \$3.67. How much did each receive for his berries?
\item A can do a piece of work in 4 days, and B can do it
in 6 days. In what time can they do it working together?
\textit{ Suggestion}. Let $x$ equal the required time. Then find
what part of the work each can do in one day.
\item Mr. Brown can build a stone wall in 10 days, and Mr.
Mansfield in 12 days. How long would it take them to do
it working together?
\item Mr. Richards and his son can hoe a field of corn in
9 hours, but it takes Mr. Richards alone 15 hours. How
long would it take the son to hoe the field?
\item A can do a piece of work in 4 hours, B can do it in
6 hours, and C in 3 hours. How long would it take them
working together?
\item A can mow a field in 6 hours, B in 8 hours, and with
the help of C they can do it in 2 hours. How long would
it take C working alone?
\item A tank can be emptied by two pipes in 5 hours and
7 hours respectively. In what time can it be emptied
by the two pipes together?
\item A cistern can be filled by two pipes in 4 hours and
6 hours respectively, and can be emptied by a third in 15
hours. In what time could the cistern be filled if all three
pipes were running?
\item A and B together can do a piece of work in 8 days,
A and C together in 10 days, and A by himself in 12 days.
In what time can B and C do it? In what time can A, B,
and C together do it?
\item John and Henry can together paint a fence in 2
hours, John and Lewis together in 4 hours, and John by
himself in 6 hours. In what time can the three together
do the painting?
\item C can do a piece of work in $a$ days, and D can do the
same work in $b$ days. In how many days can they do it
working together?
\item James and Thomas can do a piece of work in $d$ days
and James alone can do it in $c$ days. How long would it
take Thomas alone?
\item Solve $\displaystyle
\frac{3+x}{3-x}-\frac{1+x}{1-x}-\frac{2+x}{2-x}=1$.
\item Find the value of $\displaystyle
\frac{x^2}{(x-y)(x-z)}+\frac{y^2}{(y-x)(y-z)}+\frac{z^2}{(z-x)(z-y)}$.
\item Expand $(x^2-2)(x^2+2)(x^2+3)(x^2-3)$.
\item Factor $9a^2+12ab+4b^2$, $12+7x+x^2$, $ac-2bc-3ad+6bd$.
\textit{ Illustrative Example}. At what time between 1 o'clock and
2 o'clock are the hands of a clock (1) together? (2) at right
angles? (3) opposite to each other?
How far does the hour hand move while the minute
hand goes around the whole circle? How far while the
minute hand goes half around? What part of the distance
that the minute hand moves in a given time does the hour
hand move in the same time?
\begin{figure}[htbp]
\centering \includegraphics[scale=0.75]{fig1.eps}\\
\caption{}
\end{figure}
\begin{figure}[htbp]
\centering \includegraphics[scale=0.75]{fig2.eps}\\
\caption{}
\end{figure}
\begin{figure}[htbp]
\centering \includegraphics[scale=0.75]{fig3.eps}\\
\caption{}
\end{figure}
(1) Let $AM$ and $AH$ in all the figures denote the positions
of the minute and hour hands at 1 o'clock, and $AX$
(Fig. 1) the position of both hands when together.
\[
\begin{array}{rrcl}
\text{Let}\qquad & x &=& \text{number of minute spaces in arc } MX.\\
&MX &=& MH + HX. \\
& x &=& 5 + \frac{x}{12}. \text{ Solution gives } x=5\frac{5}{11}.
\end{array}
\]
Hence, the time is $5\frac{5}{11}$ minutes past 1 o'clock.
(2) Let $AX$ and $AB$ (Fig. 2) denote the positions of
the minute and hour hands when at right angles.
\[
\begin{array}{rrcl}
\text{Let } & x &=& \text{ number of minute spaces in arc } MBX. \\
& MBX &=& MH + HB + BX. \\
&x &=&5 + \frac{x}{12} + 15.\text{ Solution gives } x=21\frac{9}{11}.
\end{array}
\]
Hence, the time is $21\frac{9}{11}$ minutes past 1 o'clock.
(3) Let $AX$ and $AB$ (Fig. 3) denote the positions of
the minute and hour hands when opposite.
\begin{tabular}{rrcl}
Let & $x$ &=& number of minute spaces in arc $MBX$. \\
&$MBX$ &=& $MH +HB + BX.$ \\
& $x$ &=& $5+\frac{x}{12}+30$. Solution gives $x=38\frac{2}{11}$.
\end{tabular}
Hence, the time is $38\frac{2}{11}$ minutes past 1 o'clock.
\item At what time are the hands of a clock together
between 2 and 3? Between 5 and 6? Between 9 and 10?
\item At what time are the hands of a clock at right
angles between 2 and 3? Between 4 and 5? Between 7
and 8?
\item At what time are the hands of a clock opposite each
other between 3 and 4? Between 8 and 9? Between 12
and 1?
\item At what times between 4 and 5 o'clock are the hands
of a watch ten minutes apart?
\item At what time between 8 and 9 o'clock are the
hands of a watch 25 minutes apart?
\item At what time between 5 and 6 o'clock is the minute
hand three minutes ahead of the hour hand?
\item It was between 12 and 1 o'clock; but a man, mistaking
the hour hand for the minute hand, thought that
it was 55 minutes later than it really was. What time
was it?
\item At what time between 11 and 12 o'clock are the
hands two minutes apart?
\textit{Illustrative Example}. A courier who travels at the rate
of 6 miles an hour is followed, 5 hours later, by another
who travels at the rate of $8\frac{1}{2}$ miles an hour. In how many
hours will the second overtake the first?
\begin{tabular}{rrcl}
Let & $x$ &=& number of hours the second is traveling. \\
& $x + 5$ &=& number of hours the first is traveling. \\
& $8\frac{1}{2}x$ &=& distance the second travels. \\
& $6(x+5)$ &=& distance the first travels. \\
& $8\frac{1}{2}x$ &=& $6 (x + 5)$. Solution gives $x=12$. \\
\multicolumn{4}{l}{He will overtake the first in 12 hours.}
\end{tabular}
\item A messenger who travels at the rate of 10 miles an
hour is followed, 4 hours later, by another who travels at
the rate of 12 miles an hour. How long will it take the
second to overtake the first?
\item A courier who travels at the rate of 19 miles in 4 hours
is followed, 8 hours later, by another who travels at the rate
of 19 miles in 3 hours. In what time will the second
overtake the first? How far will the first have gone
before he is overtaken?
\item A train going at the rate of 20 miles an hour is
followed, on a parallel track, 4 hours later, by an express
train. The express overtakes the first train in $5\frac{1}{3}$ hours.
What is the rate of the express train?
\item A messenger started for Washington at the rate of
$6\frac{1}{2}$ miles an hour. Six hours later a second messenger
followed and in $4\frac{7}{8}$ hours overtook the first just as he was
entering the city. At what rate did the second messenger
go? How far was it to Washington?
\item How far could a man ride at the rate of 8 miles an
hour so as to walk back at the rate of 4 miles an hour and
be gone only 9 hours?
\item Two persons start at 10 A.M. from towns A and B,
$55\frac{1}{2}$ miles apart. The one starting from A walks at the
rate of $4\frac{1}{4}$ miles an hour, but stops 2 hours on the way;
the other walks at the rate of $3\frac{3}{4}$ miles an hour without
stopping. When will they meet? How far will each
have traveled?
\textit{ Suggestion}. Let x equal the number of hours.
\item A boy who runs at the rate of $12\frac{1}{2}$ yards per second,
starts 16 yards behind another whose rate is 11 yards per
second. How soon will the first boy be 8 yards ahead of
the second?
\item A rectangle whose length is 4 ft. more than its
width would have its area increased 56 sq. ft. if its length
and width were each made 2 ft. more. What are its
dimensions?
\item The length of a room is double its width. If the
length were 3 ft. less and the width 3 ft. more, the area
would be increased 27 sq. ft. Find the dimensions of the
room.
\item A floor is two-thirds as wide as it is long. If the
width were 2 ft. more and the length 4 ft. less, the area
would be diminished 22 sq. ft. What are its dimensions?
\item A rectangle has its length and width respectively
4 ft. longer and 2 ft. shorter than the side of an equivalent
square. Find its area.
\item An enclosed garden is 24 ft. greater in length than in
width. 684 sq. ft. is used for a walk 3 ft. wide extending
around the garden inside the fence. How long is the
garden?
\item Factor $\displaystyle \frac{x^2}{4}-\frac{y^2z^4}{9m^6}$,
$x^6-27y^3$, $a^{16}-b^{16}$, $2c-4c^3+2c^5$.
\item Extract the square root of $12x^4-24x+9+x^6-22x^3-4x^5+28x^2$.
\item What must be subtracted from the sum of
$4x^3+3x^2y-y^3$, $4x^2y-3x^3$, $7x^2y+9y^3-2x^2y$, to leave the remainder
$2x^3-3x^2y+y^3$?
\item Find the G.C.F. of $x\left(x+1\right)^2$, $x^2(x^2-1)$, and
$2x^3-2x^2-4x$.
\item From one end of a line I cut off 5 feet less than one-fifth
of it, and from the other end 4 feet more than one-fourth of it,
and then there remained 34 feet. How long was the line?
\item A can do twice as much work as B, B can do twice
as much as C, and together they can complete a piece of
work in 4 days. In what time can each alone complete the
work.
\item Separate 57 into two parts, such that one divided by
the other may give 5 as a quotient, with 3 as a remainder.
\item Divide 92 into two parts, such that one divided by
the other may give 4 as a quotient, with 2 as a remainder.
\item Fourteen persons engaged a yacht, but before sailing,
four of the company withdrew, by which the expense
of each was increased \$4. What was paid for the yacht?
\item Find two consecutive numbers such that a fifth of
the larger shall equal the difference between a third and an
eighth of the smaller.
\item A is 24 years older than B, and A's age is as much
above 50 as B's is below 40. What is the age of each?
\item Find the number, whose double added to 16 will
be as much above 70 as the number itself is below 60.
\item A hare takes 5 leaps to a dog's 4, but 3 of the dog's
leaps are equal to 4 of the hare's; the hare has a start of
20 leaps. How many leaps will the hare take before he is
caught?
\textit{ Suggestion}. Let $5x$ equal the number of leaps the hare
will take, and let $m$ equal the length of one leap.
\item A greyhound takes 3 leaps to a hare's 5, but 2 of
the greyhound's leaps are equal to 4 of the hare's. If the
hare has a start of 48 leaps, how soon will the greyhound
overtake him?
\item A hare has 40 leaps the start of a dog. When will
he be caught if 5 of his leaps are equal to 4 of the dog's,
and if he takes 7 leaps while the dog takes 6?
\end{enumerate}
\section*{SIMULTANEOUS EQUATIONS.}
\addcontentsline{toc}{section}{\numberline{}SIMULTANEOUS.}
\[
\textbf{48. } \textrm{ILLUS. } \left. \begin{array}{cc} x + y = 8, & x=3\\
4x-y=7, & y=5 \end{array} \right\} \textrm{ in both equations. }
\]
\textbf{Simultaneous equations} are equations in which the
same unknown numbers have the same value.
One equation containing more than one unknown
number cannot be solved. There must be as many
simultaneous equations as there are unknown numbers.
\[
\textrm{ILLUS. 1. Solve} \left\{ \begin{array}{c} x + 3y = 17,\\
2x+y=9. \end{array} \right.
\]
Multiply the first equation by 2;
\[
\left. \begin{array}{cc} \textrm{then} & 2x + 6y = 34, \\
\textrm{but} & \underline{2x+y=9}\\
\textrm{ Subtracting, } & 5y=25\\
& y=5. \end{array} \right.
\]
To find the value of $x$, substitute the value of $y$ in the
second equation:
\[
2x + 5 = 9, 2x = 4, x = 2.
\]
\[
Ans. \left\{ \begin{array}{l} x = 2,\\
y=5 \end{array} \right.
\]
\[
\textrm{ILLUS. 2. Solve} \left\{ \begin{array}{c} 3x + 4y = 12,\\
5x - 6y=1. \end{array} \right.
\]
Multiply the first equation by 3, and the second equation
by 2,
\[ \begin{array}{l rrr l}
& 9x & {}+ 12y = & 36 \\
& 10x & {}- 12y = & 2 \\
\cline{2-4} \text{Adding, } & 19x & & 38 & \therefore x
= 2.
\end{array}
\]
Substituting, $6 + 4y = 12$, $4y = 6$, $y = 1\frac{1}{2}$.
\textit{Multiply one or both of the equations by such a number
that one of the unknown numbers shall have like coefficients. If
the signs of the terms having like coefficients are alike,
subtract one equation from the other; if unlike, add the
equations}.
\subsubsection*{Exercise 55.}
Solve: \begin{enumerate} \item
$
\left\{ \begin{array}{rcrcl}
x &+& y &=& 4, \\
3x &-& 2y &=& 7 .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
x &-& y &=& 2, \\
2x &+& 5y &=& 18 .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
5x &+& 2y &=& 47, \\
2x &-& y &=& 8 .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
4x &-& 3y &=& 10, \\
6x &+& 4y &=& 49 .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
8x &-& 2y &=& 6, \\
10x &+& 7y &=& 36 .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
2x &-& 5y &=& -11, \\
3x &+& y &=& 9 .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
7x &-& 3y &=& 41, \\
2x &+& y &=& 12 .
\end{array} \right.
$ \item
$
\left\{ \begin{array}{rcrcl}
2x &+& 9y &=& -5, \\
11x &+& 15y &=& 7 .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
4y &-& 2x &=& 4, \\
10y &+& 3x &=& -8 .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
3x &-& 5y &=& 15, \\
5x &+& 3y &=& 8 .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
3y &-& 2x &=& 3, \\
4y &-& 6x &=& 2\frac{1}{3} .
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
3x &+ & 2y &=& 11,\\
7x &-& 5y &=& 190.
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
\frac{1}{2}x &+& \frac{1}{3}y &=& 11,\\
8x &+& \frac{2}{5}y &=& 102.
\end{array} \right.
$
\item
$
\left\{ \begin{array}{rcrcl}
5x &+& 2y &=& 66,\\
\frac{x}{3} &+& \frac{3y}{4} &=& 15\frac{1}{2}.
\end{array} \right.
$
\item $\left\{ \begin{matrix}\frac{3x}{5} - \frac{2y}{7} = 35, \\ x + 2y = -63.\end{matrix}\right.$
\item $ \left\{ \begin{matrix}x - \frac{3y}{5} = 6,
\\ \frac{2x}{3} + 7y = 189.\end{matrix}\right.$
\item $\left\{ \begin{matrix}\frac{x + 2y}{3x - y} = 1, \\
\frac{4y - x}{3 + x - 2y} = 2\frac{1}{2}.\end{matrix}\right.$
\item $\left\{ \begin{matrix}\frac{x + 2y}{x - 2} = -5\frac{2}{3},
\\ \frac{2y - 4x}{3 - y} = -6.\end{matrix}\right.$
\item $\left\{ \begin{matrix}y - \frac{2y + x}{3} = \frac{2x + y}{4} - 8\frac{3}{4}, \\ \frac{3x + y}{2} - \frac{y}{3} = \frac{109}{10} + \frac{4y - x}{5}.\end{matrix}\right.$
\item $\left\{ \begin{matrix}x + y = a, \\ x - y = b.\end{matrix}\right.$
\item $\left\{ \begin{matrix}\frac{3x - 19}{2} + 4 = \frac{3y + x}{3} + \frac{5x - 3}{2}, \\ \frac{4x + 5y}{16} + \frac{2x + y}{2} = \frac{9x - 7}{8} + \frac{3y + 9}{4}.\end{matrix}\right.$
\item $\left\{ \begin{matrix}\frac{1}{5}(3x - 2y) + \frac{1}{3}(5x - 3y) = x, \\ \frac{4x - 3y}{2} + \frac{2}{3}x - y = 1 + y.\end{matrix}\right.$
\item If 1 is added to the numerator of a fraction, its
value is $\frac{1}{8}$; but if 4 is added to its denominator, its value
is $\frac{1}{4}$. What is the fraction?
\textit{ Suggestion}. Letting $x$ equal the numerator, and $y$ the
denominator, form two equations.
\item If 2 is subtracted from both numerator and denominator
of a certain fraction, its value is $\frac{3}{5}$; and if 1 is
added to both numerator and denominator, its value is $\frac{2}{3}$.
What is the fraction?
\item If 2 is added to both numerator and denominator of
a certain fraction, its value is $\frac{2}{3}$; but if 3 is subtracted
from both numerator and denominator, its value is $\frac{1}{2}$.
What is the fraction?
\item If 3 be subtracted from the numerator of a certain
fraction, and 3 be added to the denominator, its value will
be $\frac{1}{2}$; but if 5 be added to the numerator, and 5 be subtracted
from its denominator, its value will be 2. What is
the fraction?
\item The sum of two numbers divided by 2 is 43, and
their difference divided by 2 is 19. What are the numbers?
\item The sum of two numbers divided by 3 gives as a
quotient 30, and their difference divided by 9 gives 4.
What are the numbers?
\item Five years ago the age of a father was four times
that of his son; five years hence the age of the father will
be $2\frac{1}{3}$ times that of the son. What are their ages?
\item Seven years ago John was one-half as old as Henry,
but five years hence he will be three-quarters as old.
How old is each?
\item $A$ and $B$ own herds of cows. If $A$ should sell 6
cows, and $B$ should buy 6, they would have the same number;
if $B$ should sell 4 cows to $A$, he would have only
half as many as A. How many cows are there in each
herd?
\item The cost of 5 pounds of tea and 7 pounds of coffee is
\$4.94; the cost of 3 pounds of tea and 6 pounds of coffee is
\$3.54. What is the cost of the tea and coffee per pound?
\item What is the price of corn and oats when 4 bushels of corn
with 6 bushels of oats cost \$4.66, and 5 bushels of corn with 9
bushels of oats cost \$6.38?
\item A merchant mixes tea which cost him 87 cents a pound with
tea which cost him 29 cents a pound. The cost of the mixture is
\$17.98. He sells the mixture at 55 cents a pound and gains
\$2.92. How many pounds of each did he put into the mixture?
\end{enumerate}
\subsection*{QUADRATIC EQUATIONS.}
\addcontentsline{toc}{section}{\numberline{}QUADRATIC.}
\begin{tabular}{llc} \textbf{ 49}. &ILLUS. 1.& $ax^2 = b$, $7x^2-10 =
5+2x^3$.\\
& ILLUS. 2. &$x^2+8x = 20$, $ax^2+bx-c = bx^2+d$.
\end{tabular}
A \textbf{ quadratic equation} is an equation in which, the
highest power of the unknown number is a square. It is called an
equation of the second degree.
If it contains only the second power of the unknown number (Illus.
1), it is called a \textbf{ pure quadratic equation}. If it
contains both the first and second powers of the unknown number
(Illus. 2), it is called an \textbf{ affected quadratic equation}.
\textbf{ 50}. ILLUS. Solve $x^2-\frac{x^2-10}{3} =
35-\frac{x^2+50}{5}$.
\begin{align}
15x^2-5x^2+50 &= 525-3x^2-150.\\
13x^2 &= 325.\\
x^2 &= 25.\\
x &= {\pm}5.
\end{align}
\textit{ To solve a pure quadratic equation, reduce to the form
$x^2 = a$ and take the square root of each member}.
\subsubsection*{Exercise 56}.
Solve:
\begin{enumerate}
\item $5x^2-12 = 33$.
\item $3x^2+4 = 16$.
\item $4x^2+ll = 136-x^2$.
\item $5(3x^2-1) = 11(x^2+1)$.
\item $\displaystyle \frac{2}{5x^2}-\frac{1}{3x^2} =
\frac{4}{15}$.
\item $\displaystyle \frac{x^2-1}{6}+\frac{1}{4} =
\frac{x^2+1}{8}$.
\item $(x+3)^2 = 6x+58$.
\item $\displaystyle 6x+2+\frac{16}{x} =
\frac{15+40x}{4}-1\frac{3}{4}$.
\item $\displaystyle
\frac{x-3}{x-1}+\frac{x+1}{x+3}+\frac{8}{x^2+2x-3} = 0$.
\item $\displaystyle \frac{x+1}{x-1}+\frac{2(x-3)}{x-2} =
\frac{16-9x}{x^2-3x+2}$.
\item $\displaystyle
\frac{1}{(2-x)(3-x)}-\frac{2}{(1-x)(x-3)}+\frac{1}{(x-1)(x-2)} =
\frac{1}{2-x}+\frac{1}{(x-1)(2-x)(x-3)}$.
\item $\displaystyle
\frac{1}{6x+6}-\frac{1}{2x+2}+\frac{10}{3-3x^2} =
\frac{x}{3(1-x)}$.
\item A father is 30 years old, and his son is two years
old. In how many years will the father be three times as
old as his son?
\item Divide the number 112 into two parts such that the
smaller divided by their difference will give as a quotient
3.
\item The numerator of a fraction is 4 less than the denominator;
if 30 be added to the denominator, or if 10 be subtracted
from the numerator, the resulting fractions will
be equal. What is the original fraction?
\end{enumerate}
\textbf{ 51.} ILLUS. Solve
$\frac{x-1}{x-2}-\frac{x-3}{x-4}=-\frac{2}{3}$.
\begin{eqnarray*}
3x^2-15x+12-3x^2+15x-18 & = & -2x^2+12x-16. \\
2x^2-12x & = & -10. \\
x^2-6x & = & -5. \\
x^2-6x-5 & = & 0. \\
(x-5)(x-1) & = & 0. \\
\end{eqnarray*}
This equation will be satisfied if either factor is equal
to zero. Placing each factor in turn equal to zero, and
solving,
\begin{tabular}{rclrcl}
x-5 & = & 0, & x-1 & = & 0, \\
x & = & 5; & x & = & 1. \\
\end{tabular}
\textit{ Ans.} $x=5$ or $1$.
\textit{ To solve an affected quadratic equation, reduce the
equation to the form $x^2 + bx + c = O$, factor the first member,
place each factor in turn equal to zero, and solve the simple
equations thus formed.}
\subsubsection*{Exercise 57.}
Solve:
\begin{enumerate}
\item $x^{2}+3x=18$.
\item $x^{2}+5x=14$.
\item $x(x-1)=72$.
\item $x^{2}=10x-21$.
\item $23x=120+x^{2}$.
\item $187=x^{2}+6x$.
\item $x^{2}-2bx=-b^{2}$.
\item $x^{2}=4ax-3a^{2}$.
\item $x^{2}+(a-1)x=a$.
\item $adx-acx^{2}=bcx-bd$.
\item $(x+3)(x-3)=8(x+3)$.
\item $(x+2)(x-5)=4(x-4)$.
\item $\displaystyle \frac{x}{5}+\frac{2}{x}=1\frac{2}{5}$.
\item $\displaystyle \frac{x}{3}-2=\frac{x^{2}}{12}-\frac{x}{2}$.
\item $\displaystyle \frac{8}{x-2}-3+\frac{x+1}{7}=0$.
\item $\displaystyle \frac{x}{x+1}-2\frac{1}{6}+\frac{x+1}{x}=0$.
\item $\displaystyle x+4=3x-\frac{24}{x-1}$.
\item $\displaystyle
\frac{x-1}{x+1}+\frac{x+3}{x-3}=\frac{2(x+2)}{x-2}$.
\item $\displaystyle
\frac{x-1}{x+2}-\frac{3x^{2}+2}{x^{2}-4}=\frac{3x}{2-x}$.
\item $\displaystyle
\frac{2x}{3-x}+\frac{2x(x-3)}{x^2-9}=\frac{x-3}{x+3}$.
\item At what time between 4 and 5 o'clock are the hands of a
clock opposite each other?
\item John, having three times as much money as Lewis, gave Lewis
\$2, and then had twice as much as Lewis. How much had each at
first?
\item A fish is 3 feet long; its head is equal in length to the
tail, and its body is five times the length of the head and tail
together. What is the length of the head?
\item In how many days can A, B, and C build a boat
if they work together, provided A alone can build it in
24 days, B in 18 days, and C in 30 days?
\end{enumerate}
The above method of solving affected quadratic equations is the
simplest of three methods commonly used, and will not solve all
possible cases; the method given for solving simultaneous
equations is only one of three known methods; the cases in
factoring are less than half of those usually taken. In fact, we
have made only a beginning in the subject of algebra; much more
lies ahead along the lines which we have been following. \textit{
Can you grasp more clearly the conditions given in any problem
presented to you, and see more definitely just what is required,
than when you began this study? Do you possess greater ability to
think out problems? Has the use of letters to represent numbers
made you think more exactly what is to be done, and what the
operations mean?} If so, your knowledge of numbers is broader, and
you already know that
\textbf{ \textit{ Algebra is the knowledge which has for its
object general truths about numbers.}}
\subsubsection*{Exercise 58. (General Review.)}
\begin{enumerate}
\item When $a=l$, $b = 3$, $c = 5$, and $d = O$, what is the
value of
$\displaystyle
\frac{4a+b^2+b^2c^2+ad}{b^2+c^2+d^2}-\frac{1+a^2c^2}{a^2+c^2+d^2}
+\frac{a^2+b^2+d^2}{1+a^2b^2+bd}-\frac{a^2+2ab+b^2}{b^2-2bc+c^2}$?
\item Prove that $\displaystyle
(x^{2}+xy+y^{2})(x^{2}-xy+y^2)=\frac{x^{6}-y^{6}}{x^{2}-y^{2}}$
\item Solve $(x+5)^{2}-(x+1)^{2}-16x=(x-1)^{2}-(x-5)^{2}$.
\item A tank is filled by two pipes, $A$ and $B$, running
together, in 12 hours, and by the pipe $B$ alone in 20 hours.
In what time will the pipe $A$ alone fill it?
\item Find the G.C.F. of $x^{3}+1-x-x^{2}$, $x^{3}+x-1-x^{2}$,
$x^{4}-1$, and $x^{2}-4x+3$.
\item Divide $a^{5}+a^{4}b-a^{3}b^{2}+a^{3}-2ab^{2}+b^{3}$ by $a^{3}-b+a$.
\item Find the square root of $5y^{4}+1+12y^{5}-2y-2y^{3}+4y^{6}+7y^{2}$.
\item Expand
\[
(x+1)(x+2)-(2x+1)(2x+3)+(x-4)(x-9)+(x-5)^{2}.
\]
\item Solve $\displaystyle
\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{5}{2}$.
\item Simplify
\[
\left(\frac{1}{x-1}-\frac{3}{(x+3)(x-1)}\right)\div\left(\frac{1}{x+3}+\frac{1}{(x-1)(x+3)}\right).
\]
\subsection*{II.}
\item Add $2(a-c)^{3}-10x^{3}y-7(a-c)$, $6(a-c)-2(a-c)^{3}-10x^{3}y$,
$3(a-c)-(a-c)^{3}+2x^{3}y$, $2(a-c)+x^{3}y-(a-c)^{3}$,
$4(a-c)+5(a-c)^3+2x^{3}y$, $3(a-c)-2x^{3}y-6(a-c)^3$.
\item Solve $bx-b^{2}=3b^{2}-4bx$.
\item Factor $x^{6}+2x^{3}-3$, $ax^{2}-ay^{2}+by^{2}-bx^{2}$, $27x^3+(y+z)^{3}$.
\item Find the fraction which becomes equal to one when
six is added to the numerator, and equal to one-third when
four is added to the denominator.
\item Simplify $\displaystyle \frac{ \frac{a^2}{b^3} + \frac{1}{a}
}
{ \frac{a}{b^3} - \frac{1}{b} + \frac{1}{ab} }$.
\item Solve $\displaystyle
\frac{7x+9}{4}=\left(x-\frac{2x-1}{9}\right)+7$.
\item Six years ago John was five times as old as Sarah.
If he is twice as old as Sarah now, what are their ages?
\item Multiply together $\frac{1-x^2}{1+y}$, $\frac{1-y^2}{x+x^2}$, and $1+\frac{x}{1-x}$.
\item Simplify
$a^2 - (b^2-c^2) - \{b^2 - (c^2-a^2)\} + \{c^2 - (b^2-a^2)\}$.
\item $x$ times $y$ is how many times $a$?
\subsection*{III.}
\item Add $2x + y - 2a + 55\frac{1}{2}b$, $24b-y + 2x + a$, $3a -
2y - 4x - 81b$, and subtract the result from $2y + 3a +
\frac{1}{2}b + 3x$.
\item Divide $\frac{11}{8}a^2-\frac{5}{4}a^3-\frac{1}{2}a+a^4$ by $a^2-\frac{1}{2}a$.
\item A can do a piece of work in 3 days which B can do
in 5 days. In what time can they do it working together?
\item Simplify $\displaystyle \frac{a-b}{a^2-ab+b^2}
+ \frac{ab}{a^3+b^3} + \frac{1}{a+b}$.
\item Factor $x^2-9x-52$, $1-a^{16}$, $(a^2 + b^2)^2 + 2(a^4-b^4) + (a^2-b^2)^2$.
\item Solve $\displaystyle \frac{3x}{4} - \frac{x-10}{2} = x -6
-\frac{x-4}{2}$.
\item The sum of the ages of a man and his son is 100
years; one-tenth of the product of their ages exceeds the
father's age by 180. How old are they?
\item Solve $x = 9 - \frac{y}{2}$, $y = 11 + \frac{x}{3}$.
\item From what must $3x^4 - 2x^3 + x - 6$ be subtracted
to produce unity?
\item Find the following roots: $\sqrt{5.5225}$, $\sqrt[3]{32.768}$.
\subsection*{IV.}
\item Find the value of $\displaystyle \frac{4x^3+2y^3}{ab} +
\frac{2y^3 + 4z^3}{z^3+y^2} - \frac{b^3-z^2b}{a^2 b}$, if $x=1$,
$y = 2$, $z = 0$, $a = 4$, and $b = 5$.
\item Solve $\displaystyle \frac{4}{x-6} - \frac{3}{x-9} =
\frac{1}{x-3}$.
\item Find three consecutive numbers whose sum is 78.
\item Find the G.C.F. of $2a^3 - 12a - 2a^2$, $a^4 - 4a^2$ and
$4a^3b + 16ab + 16a^2b$.
\item Divide $\displaystyle \frac{x^4 - y^4}{x^2 - 2xy + y^2}$ by
$\frac{x^2 + xy}{x-y}$.
\item A fraction becomes $\frac{3}{4}$ by the addition of three to the
numerator and one to the denominator. If one is subtracted
from the numerator and three from the denominator, it becomes
$\frac{1}{2}$. What is the fraction?
\item Expand
$\left(\frac{3a^2b\left(m+n\right)^2}{4xy^3}\left(a-b\right)^3\right)^3$,
$\sqrt{\frac{50x^4\left(a+b\right)^7}{32y^6z^2(a+b)}}$.
\item If a certain number is multiplied by itself, the result is
$9x^4 - 4x + 10x^2 + 1 - 12x^3$. Find the number.
\item Simplify $\displaystyle \frac{ax-x^2}{\left(a+x\right)^2}
\times \frac{a^2+ax}{\left(a-x\right)^2} \div
\frac{2ax}{a^2-x^2}$.
\item Solve $18x-20y = 3$, $\displaystyle
\frac{4y-2}{3}-\frac{5x}{2}= 0$.
\subsection*{V.}
\item Factor $x^4+5x^2+6$, $x^2-14x+49$, $x^2-\left(y+z\right)^2$.
\item Add $xy-\frac{9}{8}x-\frac{7}{12}(x^2-y^2)-5x^2y^2$, $\frac{5}{8}x-xy+9x^2y^2
+\frac{2}{3}(x^2-y^2)$, $\frac{1}{9}x^2y^2-xy+\frac{1}{4}x+\frac{3}{4}(x^2-y^2)$, $2xy+\frac{1}{4}x
-\frac{5}{6}(x^2-y^2)-4x^2y^2$.
\item At what times between 7 and 8 o'clock are the
hands of a clock six minutes apart?
\item Simplify $\displaystyle \frac{x^2-5x+6}{x^2-2x+1} \times
\frac{x^2-4x+3}{x^2-4x+4} \div \frac{x^2-6x+9}{x^2-3x+2}$.
\item Solve $\displaystyle \frac{x+2}{b+2}=2-\frac{x+1}{b+1}$.
\item Factor $\displaystyle \frac{x^6}{y^6}-\frac{a^2b^4}{c^2}$,
$\displaystyle \frac{x^2}{y^2}-\frac{5x}{y}-14$, $\displaystyle
\frac{x^2}{y^2}-2+\frac{y^2}{x^2}$.
\item A, who works only two-thirds as fast as B, can
build a stone wall in 12 days. In what time could A
and B together build the wall?
\item Solve $\displaystyle \frac{x+y}{2}-\frac{x-y}{3}=8$,
$\frac{x+y}{3}+\frac{x-y}{4}=11$.
\item Expand $\left(1+2x\right)^3$, $\left(2x^2-3a^2b^3\right)^4$.
\item Reduce $\displaystyle
\frac{(a^4+2a^2b^2+b^4)(a^4+b^4)}{a^8-b^8}$ to lowest terms.
\subsection*{VI.}
\item $y$ is how much greater than $x$?
\item Subtract $3x^3+4x^2y-7xy^2+10y^3$ from $4x^3-2x^2y
+4xy^2+4y^3$ and find the value of the remainder when
$x=2$ and $y=1$.
\item The length and width of a rectangle are respectively
5 feet longer and 4 feet.shorter than the side of an equivalent
square. What is its area?
\item Find the L.C.M. of $a^2-3-2a$, $a^2-1$, and $2a^2
-6a + 4$.
\item Simplify $\displaystyle
\frac{\frac{b}{4a}-1+\frac{a}{b}}{\frac{b}{2a}-\frac{2a}{b}}$.
\item Solve $\displaystyle \frac{x-1}{3}+\frac{3}{x-1}=2$.
\item Factor $a^4b+8ac^3bm^6$, $4c^3x^2+cy^2+4c^2xy$, $x^6-1$.
\item Multiply $\displaystyle
1-\frac{1}{2}x-\frac{1}{3}x^2+\frac{1}{4}x^3$ by
$1-\frac{1}{3}x^2-\frac{1}{4}x^3-\frac{1}{2}x$.
\item Find the cube root of $6x^4+7x^3+3x^5+6x^2+x^6+1+3x$.
\item Divide $12x^2y^2- 4y^4 - 6x^3y + x^4$ by $x^2+2y^2-3xy$.
\subsection*{VII.}
\item Add $\frac{1}{10}a^3-\frac{4}{5}a^4-\frac{1}{5}a^2+\frac{3}{10}a$, $\frac{1}{4}a^2-\frac{4}{5}a-\frac{5}{7}a^4-\frac{1}{8}a^3$,
$\frac{5}{7}a^4+\frac{1}{8}a^3+\frac{3}{4}a^2+\frac{2}{5}a$, $\frac{4}{5}a^4+\frac{1}{5}a^2+\frac{2}{5}a^3+\frac{1}{10}a$.
\item Solve $x(a-x)+x(b-x)=2(x-a)(b-x)$.
\item Factor $x^4-22x^2-75$, $16-x^8$, $\left(a+b\right)^2-\left(a-b\right)^2$.
\item A piece of work can be finished by 3 men in 8 days,
or by 5 women in 6 days, or by 6 boys in 6 days. In what
time can 2 men, 3 women, and 3 boys do the work?
\item Solve $\displaystyle
\frac{3x+19}{2}-\left(\frac{x+1}{6}+3\right)=\frac{5x+2}{3}-\left(3-\frac{3x-1}{2}\right)$.
\item Expand $\displaystyle
\left(\frac{a}{b}-\frac{c}{d}\right)^3$, $\displaystyle
\left(\frac{c}{d}+1\right)\left(\frac{c^2}{d^2}-\frac{c}{d}+1\right)$.
\item What number is that, the sum of whose third and
fourth parts is less by two than the square of its sixth part?
\item Solve $\displaystyle \frac{x}{5}-\frac{y}{7}=1$,
$\frac{2x}{3}-\frac{y}{2}=3$.
\item Divide $m$ by $1+y$ to four terms.
\item If $x$ is $\frac{3}{5}$ of a number, what is the number?
\subsection*{VIII.}
\item The head of a fish is 6 inches long, the tail is
as long as the head and half the body, and the body is
as long as the head and tail. What is the length of the
fish?
\item Add $4a - 5x - 15y$, $a + 18x + 8y$, $4a - 7x+11y$,
$a+3x+5y$, and multiply the result by the difference between $11a
+ 7y$ and $10a +6y - x$.
\item Divide $2x^2+\frac{9}{2}x^4+\frac{8}{9}$ by $2x+3x^2+\frac{4}{3}$.
\item How many numbers each equal to $1-2x+x^2$ must
be added together to equal $5x^6-6x^5+1$?
\item Factor $a^3+5a^2-4a-20$, $x^6-y^6$, $2x^5-8x^3y^2+6xy^4$.
\item A courier who travels at the rate of 5 miles an hour
is followed, 4 hours later, by another who travels at the rate
of 15 miles in 2 hours. In how many hours will the
second overtake the first?
\item Divide $\displaystyle \frac{1}{1-x}-\frac{1}{1+x}$ by
$\displaystyle \frac{1}{1-x}+\frac{1}{1+x}$.
\item Solve $3x-4y=-6$, $10x+2y=26$.
\item $3xy-3a^2+4b^2-5cd+4xy-6a^2-7b^2+7cd+3xy
-6a^2+6b^2-3cd-5xy+7a^2-6b^2+4cd+4xy+7a^2
-7b^2+4cd-6xy-6a^2+3b^2-7cd+7a^2=?$
\item Simplify
$3x-5-\{2(4-x)-3(x-2)\}+\{3-(5+2x)-2\}$.
\end{enumerate}
\chapter*{ANSWERS TO A FIRST BOOK IN ALGEBRA.}
\subsection*{Exercise 1.}
\begin{enumerate} \item 43; 86.
\item Carriage, \$375; horse, \$125.
\item C, \$31; J, \$155.
\item 8; 56.
\item 8 miles.
\item Needles, 8; thread, 64.
\item 224 girls; 448 boys.
\item 25; 275.
\item H, 6 qts.; J, 18 qts.
\item Lot, \$720; house, \$3600.
\item Mr. A, 72; son, 24.
\item 50 A.; 300 A.
\item Dict., \$7.20; rhet, \$.90.
\item 112; 4144.
\item Aleck, 56; Arthur, 8.
\item Mother, 28; daughter, 4.
\item J, 15 yrs.; M, 5 yrs.
\end{enumerate}
\subsection*{Exercise 2.}
\begin{enumerate}
\item Necktie, \$.75; hat, \$3; boots, \$3.75.
\item 30; 45; 15 miles.
\item James, 15; sister, 5; brother, 10.
\item Pig, \$10; cow, \$30; horse, \$50.
\item A, 35; B, 15; C, 5.
\item 12; 48.
\item 8 men; 40 women.
\item Henry, \$200; John, \$400; James, \$800.
\item 4500 ft.; 13,500 ft.; 27,000 ft.
\item 15; 45; 60 pigeons.
\item 165; 33; 11.
\item A, \$44; B, \$11; C, \$55.
\item Calf, \$8; cow, \$16; horse, \$48.
\item 150; 450 gal.
\item Cow, \$30; lamb, \$5.
\item Tea, 90; coffee, 30.
\item Mrs. C, \$25,000; Henry, \$5000.
\end{enumerate}
\subsection*{Exercise 3.}
\begin{enumerate}
\item 14 boys; 21 girls.
\item 14 yrs.; 29 yrs.
\item 492; 587 votes.
\item 22; 48.
\item J, 79; H, 64.
\item Flour, 27 bbls.; meal, 30 bbls.
\item 23 Hol.; 40 Jer.
\item \$18; \$26.
\item 40; 59.
\item 16; 19; 21.
\item 21; 17; 24.
\item \$10,000; \$11,500; \$12,700.
\item 21; 38; 6.
\item 51; 28; 16 sheep.
\item A, 253; B, 350; C, 470 votes.
\item 17; 12; 24 A.
\item 36; 20; 55.
\item \$50,000; \$44,000; \$24,000.
\end{enumerate}
\subsection*{Exercise 4.}
\begin{enumerate}
\item C, 34; H, 15.
\item 26 pear; 7 apple.
\item J, 16 qts.; M, 7 qts.
\item 65.
\item 18.
\item 24.
\item 11.
\item Tea, \$8.76; coffee, \$1.63.
\item 15; 33 rooms.
\item 5; 6; 12.
\item 17; 20; 100.
\item \$5000; \$3000; \$10,000.
\item \$50; \$68; \$204.
\item A, \$5000; B, \$10,500; C, \$31,500.
\item 8000; 24,250; 48,500ft.
\item Daughter, \$25,000; son, \$40,000; widow, \$160,000.
\item Father, 14 qts.; older son, 7 qts.; younger son, 4 qts.
\item H, 200 stamps; J, 185 stamps; T, 189 stamps.
\end{enumerate}
\subsection*{Exercise 5.}
\begin{enumerate}
\item Blue, 5 yds.; white, 15 yds.
\item 3.
\item Walked 2 hrs.; rode 8 hrs.
\item Book, \$2; lamp, \$4.
\item 12.
\item 12 twos; 24 fives.
\item Tea, 67; coffee, 32.
\item Crackers,18 gingersnaps, 25
\item Lamp, \$1; vase, \$1.50.
\item House, \$4500; barn, \$3300.
\item 12,000; 13,500 ft.
\item 29 gal.; 24 gal.
\item Johnson, \$6000; May, \$1500.
\item 27; 10; 42.
\item 3; 17; 51.
\item 3 bbls.; 9 boxes.
\item 18; 90; 180.
\item 84; 132.
\end{enumerate}
\subsection*{Exercise 6.}
\begin{enumerate}
\item 4.
\item 7.
\item 12 yrs.
\item \$6.25.
\item \$8.
\item 8 sheep.
\item 121; 605.
\item 142; 994.
\item \$500; \$1450; \$2900.
\item W, 6 yrs.; J, 9 yrs.
\item 25; 15 marbles.
\item 16.
\item Oranges, 35 cents; apples, 20 cents.
\item 9; 15.
\item 30 yrs.; 32 yrs.
\item Cow, \$30; horse,\$45.
\item 5.
\item Boots, \$5; clothes, \$18.
\end{enumerate}
\subsection*{Exercise 7.}
\begin{enumerate}
\item 14 yrs.; 56 yrs.
\item Corn, 60; wheat, 300.
\item \$3000; \$9000.
\item 70 miles; 35 miles.
\item 45; 720.
\item 189.
\item J, 3 yrs.; M, 15 yrs.
\item 96.
\item \$40,000.
\item 24 marbles.
\item \$30,000.
\item 300 oranges.
\item 90.
\item 60,000ft.
\item 70ft.
\item 72 sq. rds.
\item A, \$22,500; B, \$7500.
\item 30.
\end{enumerate}
\subsection*{Exercise 8.}
\begin{enumerate}
\item 4.
\item 45 marbles.
\item 12; 24; 6 cows.
\item 16.
\item 45.
\item 6048.
\item \$3000.
\item 24.
\item 14.
\item 48,000 ft.
\item 30.
\item 18; 9; 63.
\item 56; 21; 7.
\item 16; 4; 56; 36.
\item Coffee, 18 lbs.; tea, 20 lbs.; cocoa, 24 lbs.
\item \$2500; \$5000; \$7500.
\item J, 9 cents; P, 81 cents.
\item \$12,000.
\end{enumerate}
\subsection*{Exercise 9.}
\begin{enumerate}
\item 35; 21.
\item 24; 18.
\item 42; 30 miles.
\item 30; 54 yrs.
\item J, 10 boxes; H, 16 boxes.
\item 33 tons; $27\frac{1}{2}$ tons.
\item John, 28yrs.; James, 32yrs.
\item \$1000; \$625.
\item 240 girls; 180 boys.
\item 150 lemons.
\item 21,000 ft.; 6000 ft.
\item 20; 12; 10; l0 miles.
\item 126 cu. yds.
\item M, 390; H, 130.
\item 39; 41; 32; 27.
\item 3205; 2591; 1309.
\item 20 miles; 4 miles; 48 miles.
\end{enumerate}
\subsection*{Exercise 10.}
\begin{enumerate}
\item $x + 9$.
\item $a + p$.
\item $8b$.
\item $x + y$.
\item $c + 5$.
\item $dx$.
\item $m + l + v + c$ dols.
\item $x + y + z$ yrs.
\item $bm$.
\item $d + 1$.
\item $y + z + s$ cts.
\item $m + 1$.
\item $yx$.
\item $x + 40 + a$.
\item $28$; $46$.
\end{enumerate}
\subsection*{Exercise 11.}
\begin{enumerate}
\item $a - b$ or $b - a$.
\item $b - 10$.
\item $a + b - c$.
\item $a -2$, $a - 1$, $a$, $a + 1$, $a + 2$.
\item $a - b$ dols.
\item $c - 8$.
\item $x - 3$, $x - 6$, $x - 9$.
\item $c - b$ dols.
\item $x - 5$.
\item $x$, $x + 9$, or $x$, $x - 9$.
\item $x - 75$ dols.
\item $m + x$ dols.
\item $c - f$ cts.
\item $b - e$ dols.
\item $l + 4 + m - x$ dols.
\item $c - a - b$.
\item $429; 636$ votes.
\item $m + x - y + b - z$ dols.
\item $80 - c$ dols.
\item $x, 60 - x$.
\end{enumerate}
\subsection*{Exercise 12.}
\begin{enumerate}
\item $2x$.
\item $xyz$.
\item $100x$ cts.
\item $abc$.
\item $ad$ cts.
\item $mb$ miles.
\item $ax$ hills.
\item $x^3$.
\item $a^9$.
\item $d^a$.
\item $3m^3 + a^2$.
\item $x^{2m} + x^m$.
\item $\frac{6}{100}mx$ dols., or $6mx$ cts.
\item $3c - 8$ boys; $4c - 8$ boys and girls.
\item $9x$ days.
\item $3x$ thirds.
\item $5b$ fifths.
\item $m - x + 2a$ dols.
\item $12a - 39$.
\end{enumerate}
\subsection*{Exercise 13.}
\begin{enumerate}
\item $\frac{5a}{3c}$.
\item $\frac{y}{100}$ dols.
\item $\frac{x}{a}$ books.
\item $\frac{m}{y}$ days.
\item $\frac{x}{b}$ dols.
\item $\frac{a + b}{c}$.
\item $a + \frac{b}{c}$.
\item $a + \frac{a}{2}$, or $\frac{3}{2}a$.
\item $300x$.
\item $18b - 3x$ dols.
\item A, $\displaystyle \frac{1}{x}$; B, $\displaystyle
\frac{1}{y}$; C, $\displaystyle \frac{1}{z}$; all, $\displaystyle
\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$.
\item $a^2$ sq. ft.
\item $100a + 10b + 25c$ cts.
\item $\displaystyle \frac{x}{y}$.
\item $\displaystyle \frac{n}{m}$ chestnuts.
\item 12; 18 apples. \end{enumerate}
\subsection*{Exercise 14.} \begin{enumerate}
\setcounter{enumi}{9}
\item 11.
\item 7.
\item 21.
\item 78.
\item 46.
\item $-74$.
\item $-1\frac{1}{3}$.
\item $-4\frac{1}{4}$.
\item 5.
\item 6 apples; 12 pears.
\item 36 years.
\end{enumerate}
\subsection*{Exercise 15.}
\begin{enumerate}
\item $24x$.
\item $25ab$.
\item $-18ax^3$.
\item $-42x$.
\item $10a^2$.
\item $-10abc^2$.
\item $6ab-x^2$.
\item $10ax - 4bc$.
\item $-16a^2$.
\item $8a^4b + 3ab - x^5$.
\item $\frac{3}{2}a$.
\item $-\frac{7}{12}b$.
\item $m + d + c - x$ cts.
\item $a - x - 5 + y$ miles.
\item $5a + 4b + 5c$.
\item $x + y - z$.
\item $-3z - a$.
\item $2x^3 + 4x^2 - 2x + 17$.
\item $a^3 + b^3 + c^3$.
\item $2a^m + 1$.
\item $2a^2b^2c$.
\item $23x^3 - 20x^2 + 27x + 6$.
\item $x^5y + 12x^4y^2 - 16x^3y^3 - 8xy^5$.
\item $5x + 3y + z - a - 3b$.
\item $a^3 + b^3 + c^3 - 3abc$.
\item $mb + c$ men.
\item $x - 10$ cows; $z + 19$ horses.
\item 22 girls; 30 boys. \end{enumerate}
\subsection*{Exercise 16.}
\begin{enumerate}
\item $2a^3$.
\item $12a^2b$.
\item $-9xy^3$.
\item $4x^my$.
\item $8x^2 - 3ax$.
\item $5xy + 7by$.
\item $2a^m$.
\item $9 ax$.
\item $-3a - b + 14c$.
\item $4x - y + 2z$.
\item $8x^4 - 2x^3 + 4x^2 - 15x + 14$.
\item $20a^2b^2 + 16a^2b$.
\item $4x^3 - 2$.
\item $2x^m - x^{2m} - x^{3m}$
\item $2a^{2n} - 18a^nx^n - 9x^{2n}$.
\item $\frac{4}{3}a^2 - \frac{7}{2}a - \frac{1}{2}$.
\item $-2x^4y - 3x^3y^2 + 5xy^4 - y^5$.
\item $x - y + a$.
\item $-3a^2$.
\item $8x^3 - 2x$.
\item $27y^3 - 3z^3 - 6x^3 + 4yz^2 - 11z^2x$.
\item $4x^2 - 16x + 64$.
\item $-4a^2 + 6b^2 - 8bc + 6ab$.
\item $2x^4 - 3x^2 + 2x - 4$.
\item $5a^3 + 2a + 2$.
\item $-11a^2b + 4ab^2 - 12a^2b^2 - b^3$.
\item $b - a$.
\item $x - 3$.
\item $40 - y$ yrs.
\item $\frac{23}{a}$ hrs.
\end{enumerate}
\subsection*{Exercise 17.} \begin{enumerate}
\item $2x + a + b + c - d$.
\item $a + c$.
\item $2a^2b-a^3-2b^3-ab^2$.
\item $3xy - x^2 - 3y^2$.
\item $4b - 4c$.
\item $-2y$.
\item $-6b + 4c$.
\item $-b$.
\setcounter{enumi}{16}
\item $5(x - y)$.
\item $150 - 7(x + y)$.
\item $x + 8$ yrs.
\item $3(x - 35)$ dols.
\end{enumerate}
\subsection*{Exercise 18.} \begin{enumerate}
\item $35 cx$.
\item $-51 acxy$.
\item $21ax^4y^3$.
\item $10a^3b^3c^4$.
\item $18acx^3y^3$.
\item $30a^3b^2c^4$.
\item $-x^3y^3z^3$.
\item $-a^4b^5c^2$.
\item $-\frac{2}{9}a^2cx^6y^4$.
\item $-\frac{3}{20}a^3b^5c^4$.
\item $\frac{100}{ab}$.
\item $100x$.
\item $100a + 10b + c$.
\item $x + 7$ or $x - 7$.
\end{enumerate}
\subsection*{Exercise 19.} \begin{enumerate}
\item $x^4y^2 + x^3y^3 + x^2y^4$.
\item $a^4b - a^3b^2 +a^2b^3$.
\item $-2a^4b + 6a^3b^2 - 2ab^4$.
\item $24x^4y^2 + 108x^3y^3 + 81xy^5$.
\item $a^5b^2 - \frac{6}{25}a^4b^3 - \frac{2}{5}a^3b^4$.
\item $x^3 + y^3$.
\item $x^5 - 4x^4 + 5x^3 - 3x^2 + 2x - 1$.
\item $x^5 + x^4 - 4x^3 + x^2 + x$.
\item $x^2y^2 - 2xy^2n + y^2n^2 - m^2n^2 + 2xm^2n - x^2m^2$.
\item $x^7 + x^6 + 2x^5 + x^2 + x + 2$.
\item $a^6 + b^6$.
\item $x^3 - 3xyz + y^3 + z^3$.
\item $x^7 - y^7$.
\item $x^8 - 8x^4a^4 + 16a^8$.
\item $a^6 + 2a^3y^3 - 9a^4y^4 + y^6$.
\item $x^6 + x^5 + 2x^4 - 11x^3 - 17x^2 - 34x - 12$.
\item $6x^6 - 17x^5 - 12x^4 - 14x^3 + x^2 + 12x + 4$.
\item $5(x + y)$; $4(x - y)$.
\item $\frac{12}{35}$ of the field.
\item $\frac{1}{a} + \frac{1}{b}$.
\end{enumerate}
\subsection*{Exercise 20.} \begin{enumerate}
\item $x^2 + 9x + 14$.
\item $x^2 + 7x + 6$.
\item $x^2 - 7x + 12$.
\item $x^2 - 7x + 10$.
\item $x^2 + 3x - 10$.
\item $x^2 + 4x - 21$.
\item $x^2 - x - 42$.
\item $x^2 - x - 30$.
\item $x^2 - 13x + 22$.
\item $x^2 - 14x + 13$.
\item $y^2 - 2y - 63$.
\item $x^2 + 20x + 51$.
\item $y^2 - 13y - 30$.
\item $y^2 + 18y + 32$.
\item $a^4 + 2a^2 - 35$.
\item $a^2 - 81$.
\item $m^4 - 18m^2 + 32$.
\item $b^6 + 2b^3 - 120$.
\item $x^2 - \frac{3}{4}x + \frac{1}{8}$.
\item $y^2 + \frac{1}{2}y + \frac{1}{18}$.
\item $m^2 + \frac{1}{3}m - \frac{2}{9}$.
\item $a^2 + \frac{1}{5}a - \frac{6}{25}$.
\item $x^2 - \frac{7}{6}x + \frac{1}{3}$.
\item $y^2 + \frac{19}{20}y + \frac{3}{20}$.
\item $21 - 10x + x^2$.
\item $15 -8x + x^2$.
\item $42 - x - x^2$.
\item $33 + 8x - x^2$.
\item $x^2 - 9$.
\item $y^2 - 25$.
\item $21$.
\item $12$ cows.
\end{enumerate}
\subsection*{Exercise 21.}
\begin{enumerate}
\item $a^4b^2$.
\item $x^3y^6$.
\item $a^8b^2$.
\item $-x^9y^6$.
\item $27 a^6y^3$.
\item $49 a^2b^4c^6$.
\item $x^5y^5z^{10}$.
\item $m^8n^4d^4$.
\item $-125 x^9y^{12}z^3$.
\item $121 c^{10}d^{24}x^8$.
\item $\frac{1}{4} x^4a^2m^6$.
\item $\frac{1}{9} a^2b^6c^2$.
\item $225 c^{12}d^2x^4$.
\item $-729 x^3y^{15}z^6$.
\item $a^{36}b^8c^{16}d^8$.
\item $-x^{40}y^5z^{15}m^{10}n^5$.
\item $\frac{4}{9} a^4b^2c^8$.
\item $\frac{25}{36} m^2n^4x^6$.
\item $8 b$ days.
\item $10 a$ mills; $\frac{a}{100}$ dols.
\end{enumerate}
\subsection*{Exercise 22.}
\begin{enumerate}
\item $z^3 + 3z^2x + 3zx^2 + x^3$.
\item $a^4 + 4a^3y + 6a^2y^2 + 4ay^3 + y^4$.
\item $x^4 - 4x^3a + 6x^2a^2 - 4xa^3 + a^4$.
\item $a^3 - 3a^2m + 3am^2 - m^3$.
\item $m^2 + 2am + a^2$.
\item $x^2 - 2xy + y^2$.
\item $x^6 + 3x^4y^2 + 3x^2y^4 + y^6$.
\item $m^6 - 2m^3y^2 + y^4$.
\item $c^8 - 4c^6d^2 + 6c^4d^4 - 4c^2d^6 + d^8$.
\item $y^6 + 3y^4z^4 + 3y^2z^8 + z^{12}$.
\item $x^4y^2 + 2x^2yz + z^2$.
\item $a^8b^4 - 4a^6b^3c + 6a^4b^2c^2-4a^2bc^3 + c^4$.
\item $a^6 - 3a^4b^3c + 3a^2b^6c^2-b^9c^3$.
\item $x^4y^2 - 2x^2ymn^3 + m^2n^6$.
\item $x^3 + 3x^2 + 3x + 1$.
\item $m^2 - 2m + 1$.
\item $b^8 - 4b^6 + 6b^4 - 4b^2 + 1$.
\item $y^9 + 3y^6 + 3y^3 + 1$.
\item $a^2b^2 - 4ab + 4$.
\item $x^4y^2 - 6x^2y + 9$.
\item $1 - 4x + 6x^2 - 4x^3 + x^4$.
\item $1 - 3y^2 + 3y^4 - y^6$.
\item $4x^2 + 12xy^2 + 9y^4$.
\item $27a^3b^3 - 27a^2b^2x^2y + 9abx^4y^2 - x^6y^3$.
\item $256m^4n^{12} - 768m^3n^9a^2b + 864m^2n^6a^4b^2
- 432mn^3a^6b^3 + 81a^8b^4$.
\item $\frac{1}{4}x^2 - xy + y^2$.
\item $1 - x^2 + \frac{1}{3}x^4 - \frac{1}{27}x^6$.
\item $x^8 - 12x^6 + 54x^4 - 108x^2 + 81$.
\item $20a^2 - d$ horses.
\item $100x - a^2$ cts.
\item $a(25 - x)$ cts.
\item $3$.
\item $-228$.
\end{enumerate}
\subsection*{Exercise 23.} \begin{enumerate}
\item $14x - 7$.
\item $b^8 - 2b^4 + 1$.
\item $10x^2 + 7y^2$.
\item \$160; \$80; \$60.
\item 13; 21.
\item $2a^3 + 4a^2 + 10$.
\item $\frac{1}{3} a^2 - \frac{4}{3} ab + \frac{1}{2} b^2$.
\item $48a^7 b^6 c^7$.
\item $\frac{16}{81}x^4 y^8 z^{12}$.
\item $2x^2 - 8x + 26$.
\item $8a^6 b^3 - 36a^4 b^2 xy + 54a^2 bx^2 y^2 - 27x^3 y^3$.
\item $x^3 - 3x^2 + 2y - 6$.
\item $x^6 - 3x^4 y^2 + 3x^2 y^4 - y^6$.
\item $x^4 - 1$.
\item $x^4 - y^4$.
\item $176\frac{1}{2}$ lbs.; $140\frac{1}{2}$ lbs.
\item watch, \$200; chain, \$150.
\item $2x + 4$.
\item $8\,ay$.
\item $1 + \frac{2}{3} b + \frac{1}{9} b^2 - \frac{1}{4} a^2$.
\end{enumerate}
\subsection*{Exercise 24.} \begin{enumerate}
\item $5xy$.
\item $13ab$.
\item $3a^2$.
\item $5x^2 y^3$.
\item $-17x$.
\item $-11x^3 y$.
\item $4xz^2$.
\item $9a^2c^2$.
\item $2a^2 b^3$.
\item $-3x^2y$.
\item $-5x^3 y^3$.
\item $-5a^2 c^4$.
\item $\frac{4}{5} x^3y$.
\item $-3a^3 m^3$.
\item $8m^3 x^4$.
\item $-6x^2 y^2 z^3$.
\item $2(x + y)^2 z^2$.
\item $5(a - b)^2 x$.
\item $\frac{1}{2} x^3 y^3 z^2$.
\item $-\frac{1}{3} a^2 b^3$.
\item $x^9 y^6 - 9x^7 y^5 + 27x^5 y^4 - 27 x^3 y^3$.
\item $\frac{b}{2a}$ miles.
\item $\frac{8y}{x}$ days.
\item $\frac{ab}{c}$.
\end{enumerate}
\subsection*{Exercise 25.}
\begin{enumerate}
\item $3ab^2 - 7b + 15a^3 x$.
\item $5x^2 y + 3y - 9xy^3$.
\item $8x^3 y^5 - 4x^2 y^2 - 2y$.
\item $13a^2 b - 9ab^2 + 7b$.
\item $-\frac{6}{7} a^2x^2 + \frac{3}{2} ax^3$.
\item $-\frac{1}{3} x^2 + 2y^2$.
\item $-4y^3 z^3 + 3x^2 y^3 z^4 - xy$.
\item $20ac - 31a^2 b^4 c^2$.
\item $x^6 - \frac{5}{2} x^3 + \frac{1}{2} x^4 - 4x - \frac {3}{2}
x^2$.
\item $8 + \frac{32}{3} y^4 - 16y^3$.
\item $\frac{2}{3} a - \frac{1}{6} b - c$.
\item $3x - 2y - 4$.
\item $xy$ men.
\item $\frac{60x}{a}$ minutes.
\item $\frac{100b}{x}$ apples.
\end{enumerate}
\subsection*{Exercise 26.}
\begin{enumerate}
\item $x - 7$.
\item $x - 3$.
\item $x^2 + 5$.
\item $y^2 - 6$.
\item $x^2 - 5x - 3$.
\item $a^2 + 2a - 4$.
\item $x^2 + xy + y^2$.
\item $a^2 - ab + b^2$.
\item $8a^3 + 12a^2 b + 18ab^2 + 27b^3$.
\item $27x^5 + 9x^4y + 3x^2y^2 + y^3$.
\item $x^3 + x^2y + 3xy^2 + 4y^3$.
\item $a^3 + 4a^2b - 3ab^2 - 2b^3$.
\item $x^4 + 2x^2 - 3x + 1.$
\item $x^3 - 3x^2 + x - 1$.
\item $a^2 - a - 1$.
\item $x^4 - x^3 - x^2$.
\item $a^8 + a^5 + a^2$.
\item $a^10 - a^8 + a^6 - a^4$.
\item $x^2 + 2xy + 2y^2$.
\item $2a^2 - 6ab + 9b^2$.
\item $\frac{1}{2} x^2 + xy - \frac{1}{3} y^2$.
\item $\frac{1}{3} x^2 - \frac{1}{2} xy + \frac {2}{3} y^2$.
\item $\frac{1}{2}\left(x - y\right)^3 - \left(x - y\right)^2
- \frac{1}{4}(x - y)$.
\item $2x^2 - 3y$.
\item $4x^3 - 4x^2 - 6x + 6$.
\item $2a^3 + a^2b - 2ab^2 - b^3$.
\item $a^4 + a^2b^2 + b^4$.
\item $x^4 + x^2y^2 + y^4$.
\item $3a^3 + 2b^2$.
\item $1 + 2x - 2x^2 + 2x^3 - \text{etc}$.
\item $1 - a - a^2 - a^3 - \text{etc}$.
\item $2 + \frac{3}{2} a + \frac{3}{4} a^2 + \frac{3}{8} a^3 +
\text{etc}$.
\item $3 - \frac{4}{3} x + \frac{4}{9} x^2 - \frac{4}{27} x^3
+ \text{etc}$.
\item $\displaystyle \frac{x}{5}$ hrs.
\item $\displaystyle \frac{x + my + bc}{n}$ dols.
\item $\displaystyle \frac{am + bp}{m + p}$ cts.
\item $y - 11$ yrs.
\end{enumerate}
\subsection*{Exercise 27.}
\begin{enumerate}
\item $4ab^3$.
\item $3xy^2$.
\item $- 2x^2y$.
\item $- 2a^2b^3$.
\item $3ab^2$.
\item $3xy^3$.
\item $2x^2y$.
\item $3x^4y^3$.
\item $\frac{2}{3} m^3y^2$.
\item $\frac(2)(3) a^3b^2$.
\item $- \frac{3}{4} x^3y^4$.
\item $- \frac{2}{3} ab^3$.
\item $x^2(a - b)$.
\item $a^3(x^2 + y^2)$.
\item $2ab^3\left(x^2 - y\right)^2$.
\item $4x^2y\left(m^3 + y\right)^3$.
\item $\frac{3}{2}a^2b^3$.
\item $\frac{1}{2}x^2y$.
\item $10a^3b^3c^4$.
\item $4y$.
\item $15x^3y^3z^5$.
\item $5b$.
\item $\displaystyle \frac{a}{x + y}$ hrs.; $\displaystyle
\frac{ax}{x + y}$ miles.; $\displaystyle \frac{ay}{x + y}$ miles.
\item $26$.
\item $2(m - 6)$; $2m - 6$.
\end{enumerate}
\subsection*{Exercise 28.}
\begin{enumerate}
\item $2x - 3y$.
\item $x^2 + 5xy^3$.
\item $4abc^2 - 7xy^2z$.
\item $\frac{1}{2} x - y^2z$.
\item $ab^3 + \frac{1}{3}c^4$.
\item $x^2 - 2x - 1$.
\item $x^2 + 3x + 4$.
\item $2x^2 - x + 2$.
\item $3x^2 + x - 1$.
\item $x^3 + x^2 - x + 1$.
\item $x^3 + 2x^2 + x - 4$.
\item $2x^3 - x^2 - 3x + 1$.
\item $90 - x$.
\item $10x + y$.
\end{enumerate}
\subsection*{Exercise 29.}
\begin{enumerate}
\item $3x-y$.
\item $5x^2-1$.
\item $3b^2+4a$.
\item $x^2-2y^2$.
\item $1+3x$.
\item $1-7m$.
\item $4x^2-\frac{1}{2}$.
\item $3x^3+\frac{1}{3}$.
\item $2a^2-a+1$.
\item $x^3-x^2+x$.
\item $x^2-x-1$.
\item $\frac{1}{2}a^2+2a-1$.
\item $4x$ in.
\item $27x^3$.
\item $4y$ ft.
\item $a-b$ miles north; $a+b$ miles.
\end{enumerate}
\subsection*{Exercise 30.}
\begin{enumerate}
\item $45$.
\item $97$.
\item $143$.
\item $951$.
\item $8.4$.
\item $.95$.
\item $308$.
\item $.0028$.
\item $3.9$.
\item $73$.
\item $62.3$.
\item $83.9$.
\item $3.28$.
\item $50.5$.
\item $5.898-$.
\item $2.646-$.
\item $.501-$.
\item $33$ pieces.
\item $74$ men.
\item $104.9+$ in.
\item $92$ trees.
\end{enumerate}
\subsection*{Exercise 31.}
\begin{enumerate}
\item $5(a^2-5)$
\item $16(1+4xy)$.
\item $2a(1-a)$.
\item $15a^2(1-15a^2)$.
\item $x^2(x-1)$.
\item $a^2(3+a^3)$.
\item $a(a-b^2)$.
\item $a(a+b)$.
\item $2a^3(3+a+2a^2)$.
\item $7x(1-x^2+2x^3)$.
\item $x(3x^2-x+1)$.
\item $a(a^2-ay+y^2)$.
\item $(x+y)(3a+5mb-9d^2x)$.
\item $5(a-b)(1-3xy-a^2b)$.
\item $4xy(x^2-3xy-2y^2)$.
\item $2axy^5(3x^2-2xy+y^2-ay^4)$.
\item $17x^2y(3x^3-2x^2y+y^3)$.
\item $3ab(2ab-a^2b^2c-3b^2c+c^2)$.
\item $3ax(x^6-8+3x^4-x^3-3x^5)$.
\item $27a^5b^2c^3(a^3-3a^2b+3ab^2-b^3-c^3)$.
\item $m+d+c-x$ cts.
\item $12$ beads.
\end{enumerate}
\subsection*{Exercise 32.}
\begin{enumerate}
\item $(a+b)(x+y)$.
\item $(x+b)(x+a)$.
\item $(a-b)(x^2+y^2)$.
\item $(x+5)(x-a)$.
\item $(a-x)(x+b)$.
\item $(x-4y)(x+my)$.
\item $(x^3+2)(2x-1)$.
\item $(m-n)(x-a)$.
\item $(x^2+1)(x+1)$.
\item $(y^2 + 1)(y - 1)$.
\item $(x^4 - x^2 + 1)(x + 1)$.
\item $(ax + by + c)(a + b)$.
\item $(a - b - c)(x - y)$.
\item $(3a - 2b)(x + y)$.
\item $(2a + 3b - c)(x - y)$.
\item $3a(2x + y)(m - n)$.
\item $250 + yA$.; $30 - x$ horses.
\item $12$.
\item $70$.
\end{enumerate}
\subsection*{Exercise 33.}
\begin{enumerate}
\item $(x+y)(x-y)$.
\item $(m + n)(m - n)$.
\item $(ab^2 + cd)(ab^2 - cd)$.
\item $(mp^2 - x^3y^2)(mp^2 + x^3y^2)$.
\item $(a^3bx^2 + m^2c^4y^{10})(a^3bx^2 - m^2c^4y^{10})$.
\item $(xy^2z^2 + cdm^2)(x^2y^2z^2 - cdm^2)$.
\item $(x^2y +a^3y^2)(x^2y - a^3y^2)$.
\item $(g^3c^3 - x^3z^4)(g^3c^3 + x^3z^4)$.
\item $(2a - 3x)(2a + 3x)$.
\item $(4m - 3n)(4m + 3n)$.
\item $(9xy^2 - 5bd)(9xy^2 - 5bd)$.
\item $(27m^2cx^5 + 100y^2)(27m^2cx^5 - 100y^2)$.
\item $(11m + 8x)(11m - 8x)$.
\item $(x^2 + y^2)(x + y)(x - y)$.
\item $(m^4 + a^4)(m^2 + a^2)(m + a)(m - a)$.
\item $(a^4b^4 + 1)(a^2b^2 + 1)(ab + 1)(ab - 1)$.
\item $(x^8 + b^8)(x^4 + b^4)(x^2 + b^2)(x + b)(x - b)$.
\item $(4a^2 + 1)(2a + 1)(2a - 1)$.
\item $a(a + x)(a - x)$.
\item $5b^2(b + a)(b - a)$.
\item $(a - b)(x + y)(x - y)$.
\item $5a(a + y)(1 + a)(1 - a)$.
\item $(m + y - a)(m - y)$.
\item $(a - x + 1)(a + x)$.
\item $x - 3y$.
\item $3x + 11$ yrs.
\end{enumerate}
\subsection*{Exercise 34.}
\begin{enumerate}
\item $(x + y)(x^2 - xy + y^2)$.
\item $(c + d)(c^2 - cd + d^2)$.
\item $(a + bc)(a^2 - abc + b^2c^2)$.
\item $(ax + y)(a^2x^2 - axy + y^2)$.
\item $(2abc^2 + m^2)(4a^2b^2c^4 - 2 abc^2m^2 + m^4)$.
\item $(x^2y^3 + 6a)(x^4y^6 - 6ax^2y^3 + 36a^2)$.
\item $(a^2 + b^2)(a^4 - a^2b^2 + b^4)$.
\item $(4x^2+y^2)(16x^4 - 4x^2y^2 + y^4)$.
\item $(x + 2)(x^2 - 2x + 4)$.
\item $(3 + ab^2)(9 -3ab^2 + a^2b^4)$.
\item $(y + 1)(y^2 - y + 1)$.
\item $(1 + bc^3)(1 - bc^3 + b^2c^5)$.
\item $(\frac{1}{2}a^2b + c^3)(\frac{1}{4}a^4b^2
- \frac{1}{2}a^2bc^3 + c^5)$.
\item $(\frac{1}{4}x + 1)(\frac{1}{2}x^2 - \frac{1}{4}x + 1)$.
\item $(m + n + 2)\{(m + n)^2 - 2(m + n) + 4\}$.
\item $(1 - x - y)\{1 - (x - y) + (x - y)^2\}$.
\item $2a^2(xy^2 + a^2b^3) (x^2y^4 - a^2b^3xy^2 + a^4b^6)$.
\item $(m - n)(x + y)$.
\item $(x - y)(a + b)(a^2 - ab + b^2)$.
\item $(a + b)(a^2 - ab + b^2)(a - b)(a^2 + ab + b^2)$.
\item $(27x^3 + 4y^3)(27x^3 - 4y^3)$.
\item $(1 + x^4)(1 + x^2)(1 + x)(1 - x)$.
\item $3(d-26)$; $3d - 104$ dols.
\item $10y$.
\item $x - 8$.
\end{enumerate}
\subsection*{Exercise 35.}
\begin{enumerate}
\item $(x - a)(x^2 +ax + a^2)$.
\item $(c - b)(c^2 + cb + b^2)$.
\item $(a - xy)(a^2 + axy + x^2y^2)$.
\item $(mn - c)(m^2n^2 + mnc + c^2)$.
\item $(3m - 2x)(9m^2 + 6mx + 4x^2)$.
\item $8(x - 2y)(x^2 + 2xy + 4y^2)$.
\item $(4ax^2b - 5m^3cy^2)(16a^2x^4b^2 + 20abcm^3x^2y^2 + 25m^6c^2y^4)$.
\item $27(bc^2y - 2a^3m^2x^2)(b^2c^4y^2 + 2a^3bc^2m^2x^2y + 4a^2m^4x^4)$.
\item $(2x^3y - 5)(4x^6y^2 + 10x^3y + 25)$.
\item $(3 - 4mx^2y)(9+12mx^2y + 16m^2x^4y^2)$.
\item $(a-b^2)(a^2 + ab^2 + b^4)$.
\item $(m^2 - x)(m^4 + m^2x + x^2)$.
\item $(x-1)(x^2 + x + 1)$.
\item $(1-y)(1 + y + y^2)$
\item $(\frac{1}{3}xy^2 - b^3)(\frac{1}{9}x^3y^4 + \frac{1}{3}xy^2b^3 + b^6)$.
\item $(2-\frac{1}{4}m^2n)(4+\frac{1}{2}m^2n + \frac{1}{16}m^4n^2)$.
\item $\{1 - (a + b)\} \{1+ (a+b) + (a+b)^2\}$.
\item $\{xy - (x-y^2)\} \{x^2y^2 + xy(x - y^2) + (x - y^2)^2\}$.
\item $x(x^2 - y)(x^4 + x^2y + y^2)$.
\item $(a + m)(b - c)(b^2 + bc + c^2)$.
\item $(x + y)(x^2 - xy + y^2)(x - y)(x^2 + xy + y^2)$.
\item $(x^5 + x^2 - 1)(x - 1)$.
\item $(a - b)(a + b + a^2 + ab + b^2)$.
\item $(x + y)(mx^2 - mxy + my^2 - 1)$.
\item $\frac{75}{xy}$ hrs.
\item $100x + 10x + y$.
\end{enumerate}
\subsection*{Exercise 36.}
\begin{enumerate}
\item $(a + x)^2$.
\item $(c - d)^2$.
\item $(2a + y)^2$.
\item $(a + 2b)^2$.
\item $(x - 3c)^2$.
\item $(4x - y)^2$.
\item $(a + 1)^2$.
\item $(3 - x)^2$.
\item $(x - 5)^2$.
\item $(2y - 3)^2$.
\item $(3x + 4)^2$.
\item $(3a - 1)^2(3a + 1)^2$.
\item $\left(3c+11d\right)^2$.
\item $\left(2y-9\right)^2$.
\item $\left(x^2-3y\right)^2$.
\item $\left(3-2x^2\right)^2$.
\item $\left(4xy^2-3a^8\right)^2$.
\item $\left(5b+3c^2y\right)^2$.
\item $\left(7a+2x^2y\right)^2$.
\item $\left(\frac{1}{3}x^2-y^2\right)^2$.
\item $\left(\frac{1}{2}a+2b\right)^2$.
\item $\left(\frac{2}{3}x^3y-z^4\right)^2$.
\item $x^3\left(x^3-2y^4\right)^2$.
\item $2y\left(3a+2y^2\right)^2$.
\item $3ax^3\left(ax-5b\right)^2$.
\item $\left(x+y-a^2\right)^2$.
\item $\left\{(m^2-n^2)-(m^2+n^2)\right\}^2$ or $\left(-2n^2\right)^2$.
\item $(a+b)(a+b+6)$.
\item $(x-y)(x-y-3)$.
\item $\left(x-y\right)^2\left(x^2+xy+y^2\right)^2$.
\item $y^2$.
\item $9y^2$.
\item $\pm 2cd$.
\item $1$.
\item $9$.
\item $4y^4$.
\item $25y^2$.
\item $\pm 60ab^3c$.
\item $\pm 70a^2b^3cd$.
\item $16a^2$ or $28a^2$.
\item $ay$ or $353ay$.
\item $4a^2b^2$ or $16a^2b^2$.
\item $x^2$ or $-3x^2$.
\item $a$ or $-3a$.
\item $b-a$; $6(b-a)$; $b+a$; $3(b+a)$ miles.
\item $\frac{8}{15}$ of the cistern.
\item $\frac{b-9}{3}$; $\frac{b-9}{3}+9$ years.
\end{enumerate}
\subsection*{Exercise 37.}
\begin{enumerate}
\item $(a+2)(a+1)$.
\item $(x+6)(x+3)$.
\item $(x-3)(x-2)$.
\item $(a-5)(a-2)$.
\item $(y-8)(y-2)$.
\item $(c-3)(c+2)$.
\item $(x+5)(x-1)$.
\item $(x+6)(x-1)$.
\item $(y+13)(y-5)$.
\item $(a-11)(a+7)$.
\item $(x-9)(x+7)$.
\item $(a+15)(a-5)$.
\item $(a-11)(a-13)$.
\item $(a^3-13)(a^3+9)$.
\item $(x^3+11)(x^3-7)$.
\item $(6+x)(5+x)$.
\item $(7+a)(3+a)$.
\item $(7-x)(5-x)$, or $(x-7)(x-5)$.
\item $(9-x)(4-x)$.
\item $(c+3d)(c-d)$.
\item $(a+5x)(a+3x)$.
\item $(x-5y)(x+4y)$.
\item $(x^2+4y)(x^2-3y)$.
\item $(x^2-5y^2)(x+3y)(x-3y)$.
\item $x^3(x-12)(x-11)$.
\item $a^4(a-7)(a-5)$.
\item $3a(x+3)(x-3)(x+2)(x-2)$.
\item $3a\left(a-2b\right)^2$.
\item $(c-a)(c+a)(cd-1)(c^2d^2+cd+1)$.
\item $(a+b)(x-3)(x-2)$.
\item $\frac{1}{a}+\frac{1}{b}$.
\item $\frac{7x}{2}$ days.
\end{enumerate}
\subsection*{Exercise 38.}
\begin{enumerate}
\item $9a^2 - 9a - 4$.
\item $3y^3 + 2y^2 - 2y - 1$.
\item $x^4 - y^4$.
\item $a^3 - 5a^2 + 26a - 2$.
\item $x^6y^3 - 12x^4y^2z^3a^4 + 48x^2yz^8a^8 - 64z^9a^{12}$.
\item $\left(x-10\right)\left(x-1\right)$.
\item $\left(a + b + c + d\right)\left(a + b - c - d\right)$.
\item $\left(2x^2 - 3\right)\left(3x + 2\right)$.
\item $x^4\left(3x^2 - 11\right)^2$.
\item $\left(2c^2 - d^3\right)\left(4c^4 + 2c^2d^3 + d^6\right)$.
\item $\left(1 + 4x\right)\left(1 - 4x + 16x^2\right)$.
\item $\left(a+1\right)\left(a^2 - a + 1\right)
\left(a - 1\right)\left(a^2 + a + 1\right)$.
\item $\left(x+2\right)\left(x+1\right)\left(x-1\right)$.
\item $\left(x-y\right)\left(x^4 + x^3y + x^2y^2 + xy^3 + y^4\right)$.
\item $\left(9+x\right)\left(3+x\right)$.
\item $m^2 + 2m - 4$.
\item $-3m^2 + 8mn + 3n^2$.
\item $52 - 25x - 52x^2$.
\item $2x^3$.
\item 18; 19; 20.
\item 60.
\item 16.
\end{enumerate}
\subsection*{Exercise 39.}
\begin{enumerate}
\item $3ab^2$.
\item $5xy$.
\item $2xy^3\left(x+y\right)$.
\item $3a^2b\left(a-b\right)$.
\item $m-n$.
\item $9x^4-4$.
\item $x-5$.
\item $x+3$.
\item $a+2$.
\item $y\left(y-1\right)$.
\item $x-y$.
\item $3a\left(c^2-a^2\right)$.
\item $x^2\left(2x^3-y^2\right)$.
\item $\displaystyle \frac{ax+by}{a+b}$ cts.
\item $\displaystyle \frac{5}{100}x$ dols.
\item 5; 11.
\end{enumerate}
\subsection*{Exercise 40.}
\begin{enumerate}
\item $\left(a^2-4\right)\left(a+5\right)$.
\item $\left(x^3+1\right)\left(x+1\right)$.
\item $\left(x^2-9\right)\left(x-5\right)$.
\item $\left(x^6-1\right)\left(x^2-3\right)$.
\item $2\left(x^2-1\right)\left(x-3\right)\left(x+2\right)$.
\item $\left(a+1\right)^3\left(m-2\right)$.
\item $\left(a^2-4\right)\left(a^2-25\right)\left(a^2-9\right)$.
\item $\left(x-1\right)^3\left(y+3\right)$.
\item $\left(x^2-1\right)\left(x^2-9\right)\left(x^2-16\right)$.
\item $2x^3\left(x^3+1\right)\left(x-1\right)$.
\item $\left(1-a^4\right)^2$.
\item $6axz\left(a^2 - x^2\right)$.
\item $\left(m^2-n^2\right)\left(a^2-10a+21\right)$.
\item $6bx\left(1-b^3\right)\left(1+b\right)$.
\item $5ab\left(a+x\right)\left(a-x\right)^2\left(a-x-1\right)$.
\item $c + y$ degrees.
\item $b - y$, or $y - b$ degrees.
\item $\frac{2}{x}$.
\item $x^3 + 12$.
\item \$\,306; \$\,1836.
\end{enumerate}
\subsection*{Exercise 42.}
\begin{enumerate}
\item $\displaystyle \frac{3x}{8z}$.
\item $\displaystyle \frac{2x^4}{5y}$.
\item $\displaystyle \frac{x-3}{x+5}$.
\item $\displaystyle \frac{x+6}{x-5}$.
\item $\displaystyle \frac{a^4}{a^2-1}$.
\item $\displaystyle \frac{x^2}{x^3+1}$.
\item $\displaystyle \frac{m+n}{a+2b}$.
\item $\displaystyle \frac{c+d}{x+2y}$.
\item $\displaystyle \frac{d(c-ad)}{a^2}$.
\item $\displaystyle \frac{y(a+xy)}{x}$.
\item $\displaystyle \frac{a-b}{a+b}$.
\item $\displaystyle \frac{x^2+y^2}{x^2-y^2}$.
\item $\displaystyle \frac{a(x - 4)}{x + 5}$.
\item $\displaystyle \frac{a^2 - 17}{a^2 - 5}$.
\item $\displaystyle \frac{1 + x}{2 + x}$.
\item $\displaystyle \frac{1 + b}{1 - b}$.
\item $\displaystyle \frac{2}{3}b$, or $\displaystyle
\frac{2b}{3}$ cts.
\item $\displaystyle \frac{a}{x}$ years.
\end{enumerate}
\subsection*{Exercise 43.}
\begin{enumerate}
\item $\displaystyle b-c+\frac{m}{x}$.
\item $\displaystyle m+a+\frac{x}{n}$.
\item $\displaystyle x+y+\frac{3}{x-y}$.
\item $\displaystyle a^2-ab+b^2-\frac{2}{a+b}$.
\item $\displaystyle 2abc-3b+\frac{c}{a^2b}$.
\item $\displaystyle 3x^2+5xz-\frac{m}{xy^2}$.
\item $\displaystyle x+3+\frac{2x+4}{x^2-x-1}$.
\item $\displaystyle 2a-1+\frac{3a-1}{a^2+a-2}$.
\item $\displaystyle x^2+xy+y^2+\frac{2y^3}{x-y}$.
\item $\displaystyle a^2-ab+b^2-\frac{2b^3}{a+b}$.
\item $\displaystyle 4a^2+2a+1+\frac{1}{2a-1}$.
\item $\displaystyle 9x^2-3x+1-\frac{1}{3x+1}$.
\item $\displaystyle 3x+2-\frac{x-4}{x^2+2x-1}$.
\item $\displaystyle 2a-3+\frac{15a+2}{a^2+3a+2}$.
\item $ 2a^2+4a-2$.
\item $3x^2-2x+1$.
\item $\displaystyle \frac{x^2-y^2-xy}{x-y}$.
\item $\displaystyle \frac{a^2-2ab-b^2}{a+b}$.
\item $\displaystyle \frac{2d^3}{c^2+cd+d^2}$.
\item $\displaystyle \frac{x^3+y^3}{x-y}$.
\item $\displaystyle \frac{4-4x-3x^2}{3x-1}$.
\item $\displaystyle \frac{2a^2+4a-1}{a+3}$.
\item $\displaystyle \frac{2a^4-6a^3+3a^2+2a-5}{2a^2-1}$.
\item $\displaystyle \frac{6x^4+3x^3-7x^2-1}{3x^2+1}$.
\item $\displaystyle \frac{4x-x^2}{x^2-x+2}$.
\item $\displaystyle -\frac{a^2+2a}{a^2-2a+3}$.
\item $\displaystyle -\frac{a^4+2a^2+2a+3}{a^2-a+3}$.
\item $\displaystyle \frac{x^2-2x+1}{x^2+x-1}$.
\setcounter{enumi}{41}
\item $\displaystyle \frac{m}{2x}$ ct.
\item $a-3$, $a-2$, $a-1$, $a$.
\item $2m+2$.
\item $4a-1$.
\end{enumerate}
\subsection*{Exercise 44.}
\begin{enumerate}
\item $\displaystyle \frac{a}{12}$.
\item $\displaystyle \frac{x}{15}$.
\item $\displaystyle \frac{43 x}{60}$.
\item $\displaystyle \frac{4 a m + 3 b x}{2 b m}$.
\item $\displaystyle \frac{4 x}{15}$.
\item $\displaystyle \frac{m^{4} - 2 m^{2} n^{2} + n^{4}}{m^{2}
n^{2}}$.
\item $\displaystyle \frac{3 x - m x + 5 m^{2} n}{3 m n}$.
\item $\displaystyle \frac{11 b - x}{9 x}$.
\item 0.
\item $\displaystyle \frac{2 a b}{a^{2} - b^{2}}$.
\item $\displaystyle \frac{b^{2}}{(a - 2 b)(a - b)}$.
\item $\displaystyle \frac{2}{(x + 5)(x + 3)}$.
\item $\displaystyle - \frac{4 y^{2}}{x (x - 2 y)}$.
\item $\displaystyle \frac{2 x^{2} - 4 x + 29}{(x + 2)(x - 3)}$.
\item $\displaystyle \frac{2 a x}{x^{3} - 8 a^{3}}$.
\item $\displaystyle \frac{2 x^{9}}{x^{6} - y^{6}}$.
\item $\displaystyle \frac{m^{2} + 11}{(m - 1)(m + 2)(m + 3)}$.
\item 0.
\item $\displaystyle \frac{2(9 x^{4} + 1)}{9 x^{4} - 1}$.
\item $\displaystyle \frac{2}{(a - 2)(a - 3)(a - 4)}$.
\item 2.
\item $\displaystyle \frac{2}{a + 3}$.
\item $\displaystyle \frac{x + 25}{x^{2} - x - 20}$.
\item 0.
\item $\displaystyle \frac{2}{a}$.
\item $\displaystyle \frac{x^{2} + x z - y z}{(x + z)(y + z)}$.
\item 0.
\item $\displaystyle \frac{x}{y}$.
\item $\displaystyle \frac{a}{2}$.
\item $\displaystyle \frac{7 x}{3}$.
\item $4 x - 21$.
\end{enumerate}
\subsection*{Exercise 45.}
\begin{enumerate}
\item $\displaystyle \frac{2}{x + 2}$.
\item $\displaystyle \frac{a}{a^{2} - 9}$.
\item $m^{2}$.
\item $\displaystyle \frac{1}{2 a + 1}$.
\item $\displaystyle \frac{3 y}{x^{2} + x y + y^{2}}$.
\item $\displaystyle - \frac{1}{3(a^{2} - 1)}$.
\item $\displaystyle - \frac{b}{5(y^{4} - 9 b^{2})}$.
\item $\displaystyle \frac{1}{(1 - x)(3 - x)}$.
\item $\displaystyle \frac{b}{(b - c)(a - b)}$.
\item 0.
\item 1.
\item $\displaystyle \frac{2 a^{2}}{a^{2} - 1}$.
\item $\displaystyle \frac{1 + a - a^{4}}{1 + a}$.
\item $\displaystyle \frac{1}{(x - 2)(x - 3)}$.
\item $\displaystyle \frac{43 a}{b}$.
\item $\displaystyle \frac{9 x}{4}$.
\item $\displaystyle \frac{m x}{5}$.
\item $\displaystyle \frac{b y}{a}$.
\end{enumerate}
\subsection*{Exercise 46.}
\begin{enumerate}
\item $\displaystyle \frac{ax}{b^2}$. \item $\displaystyle
\frac{3a^2 bc}{7x^2 y}$. \item $\displaystyle \frac{a^2}{2c^2}$.
\item $\displaystyle \frac{4abc^2}{3x}$. \item $\displaystyle
\frac{9mn}{y}$. \item $\displaystyle \frac{3x(x-y)}{2mn}$. \item
$\displaystyle \frac{2a-b}{3x-y}$. \item $\displaystyle
\frac{x^2}{x^2+xy+y^2}$. \item $3\left(x+y\right)^2$. \item
$\displaystyle \frac{a^2-4a-21}{a+2}$. \item $x^2-2xy+y^2$. \item
$a^2+2ab+b^2$. \item $x$. \item $c$. \item $10$. \item $5x$. \item
$24a$.
\end{enumerate}
\subsection*{Exercise 47.}
\begin{enumerate}
\item $\displaystyle \frac{a}{b}$.
\item $\displaystyle \frac{3m^2 n}{4x^2 y}$.
\item $\displaystyle \frac{3d^2}{5x}$.
\item $\displaystyle \frac{2x^2 y}{3m^2 n}$.
\item $\displaystyle \frac{a}{3x(c+d)}$.
\item $\displaystyle \frac{x^2-y}{2m^2n}$.
\item $\displaystyle \frac{a-b^3}{5ax^2yz}$.
\item $\displaystyle \frac{5(a+b)}{xy}$.
\item $\displaystyle \frac{1}{2m\left(m-n\right)^2}$.
\item $\displaystyle \frac{x+7}{x^2-7x+12}$.
\item $\displaystyle x+1+\frac{1}{3x}$.
\item $\displaystyle \frac{x^2-5x+6}{x+4}$.
\item $\displaystyle \frac{c}{12a^2 x^3}$.
\item $\displaystyle 2ac+\frac{3a^2 c^2}{2x^2 y}$.
\item $\displaystyle \frac{5y(x-y)}{8x^2 z}$.
\item $\displaystyle \frac{2x}{9amn^2}$.
\item $\displaystyle \frac{29}{35}$.
\item $\displaystyle \frac{1}{2m}$.
\end{enumerate}
\subsection*{Exercise 48.}
\begin{enumerate}
\item $\displaystyle \frac{abz}{8cxy}$. \item $ \frac{2}{3}$.
\item $2$. \item $3$. \item $\displaystyle \frac{cd}{ab}$. \item
$\displaystyle \frac{2y}{an}$. \item $\displaystyle
\frac{x+4}{x+1}$. \item $a+5$. \item $\displaystyle
\frac{(x^2+4x+16)(3x+2)}{x}$. \item $m^2+3m+9$. \item $a$. \item
$\displaystyle \frac{\left(x-1\right)^2}{2x(x+3)}$. \item
$\displaystyle \frac{\left(a+1\right)^2}{3a(a+2)}$. \item
$\displaystyle \frac{m^2 n^2}{m^2-n^2}$. \item $\displaystyle
\frac{25}{y}$; $\displaystyle \frac{25}{y-4}$ dols. \item
$\displaystyle \frac{2a}{3c}$. \item $252$; $224$.
\end{enumerate}
\subsection*{Exercise 49.}
\begin{enumerate}
\item $\displaystyle \frac{6a^2bc}{7xy^2}$. \item $\displaystyle
\frac{21ab^2y^2}{16mnz^3}$. \item $\displaystyle
\frac{16a^2z^2}{9c^2x^2}$. \item $\displaystyle
\frac{4m^2y^2}{9a^2x^2}$. \item $\displaystyle
\frac{x^2-25}{x^2+2x}$. \item $\displaystyle
\frac{(x-5)(x-6)}{(x-3)(x-3)}$. \item $\displaystyle
\frac{x-2}{x-5}$. \item $\displaystyle \frac{a(a-7)}{a+6}$. \item
$1$. \item $1$. \item $1$. \item $\displaystyle \frac{x-5}{x+5}$.
\item $\displaystyle \frac{a}{b}$. \item $\displaystyle
\frac{m}{2n}$. \item $a^2$. \item $\displaystyle \frac{1}{4x}$.
\item $3$. \item $4$. \item $\displaystyle \frac{dx}{4c}$. \item
$\displaystyle \frac{21x^4y^2}{20abn^2}$.
\end{enumerate}
\subsection*{Exercise 50.}
\begin{enumerate}
\item $\displaystyle \frac{4x^4}{a^2b^6}$.
\item $\displaystyle \frac{a^3b^9}{64y^3}$
\item $\displaystyle -\frac{32x^5y^5}{243a^{10}m^{15}}$.
\item $\displaystyle \frac{x^4 \left(a-b \right)^4}{81a^8b^4}$.
\item $\displaystyle -\frac{125x^5y^3\left(a+b^2\right)^6}{8a^3b^9
\left(x^2-y \right)^9}$.
\item $\displaystyle -\frac{27a^3m^{12} \left( 2a+3b \right)
^9}{64x^6y^9 \left( m-n \right) ^6}$.
\item $\displaystyle
\frac{81a^{20}x^4y^8z^{12}}{16b^4c^{16}d^{16}}$.
\item $\displaystyle
\frac{256x^{28}y^8z^{12}}{81a^4b^{24}d^{12}}$.
\item $\displaystyle \frac{2ab^2}{3m^2n^3}$.
\item $\displaystyle \frac{6mn^4}{11a^2b^3}$.
\item $\displaystyle \frac{4xy^2}{3ab^3}$.
\item $\displaystyle -\frac{2xy^2}{3m^2n^3}$.
\item $\displaystyle -\frac{3x^2\left(a-b\right)^3}{4a^2b^4}$.
\item $\displaystyle \frac{2x+3y}{4x^2y^4}$. \item $\displaystyle
\frac{2x\left(x+y\right)^2}{5y^2}$. \item $\displaystyle
-\frac{3a \left(a-b \right)^2}{2b^3}$. \item $\displaystyle
\frac{x^2}{y^2}-\frac{a^2}{b^2}$. \item $\displaystyle
\frac{a^2}{b^2}-\frac{c^2}{d^2}$. \item
$6x+\frac{3abx^2y}{2mn}-\frac{a^2x}{m}$. \item $\displaystyle
\frac{2x^3}{3yz}-\frac{3xy}{2}+\frac{x^4}{m^2z^2}$. \item
$\displaystyle \frac{a^8}{b^8}-\frac{c^8}{d^8}$. \item
$\displaystyle \frac{x^4}{256} - \frac{81y^4}{625m^4}$. \item
$\displaystyle \frac{x^3}{y^3}+1$. \item $\displaystyle
\frac{a^3}{b^3}-1$. \item $\displaystyle
\frac{x^2}{y^2}-\frac{3a^2x}{by}+\frac{9a^4}{4b^2}$. \item
$\displaystyle \frac{4y^2}{c^4}+\frac{18y}{c^2d}+\frac{81}{4d^2}$.
\item $\displaystyle \frac{a^2}{b^2}-\frac{3a}{b}-10$.
\item $\displaystyle \frac{x^3}{y^3}-\frac{3ax^2}{by^2}+
\frac{3a^2x}{b^2y}-\frac{a^3}{b^3}$.
\item $\displaystyle
\left(\frac{x^2}{a}-\frac{b}{y^2}\right)\left(\frac{x^2}{a}+
\frac{b}{y^2}\right)$.
\item $\displaystyle
\left(\frac{a}{b^2}-\frac{x^4}{y}\right)\left(\frac{a}{b^2}+
\frac{x^4}{y}\right)$
\item $\displaystyle \left(\frac{a^2}{m^2}+\frac{b^2}{x^2}\right)
\left(\frac{a}{m}+\frac{b}{x}\right)
\left(\frac{a}{m}-\frac{b}{x}\right)$.
\item $\displaystyle \left(\frac{2a}{y}+\frac{b}{c}\right)
\left(\frac{4a^2}{y^2}-\frac{2ab}{cy}+\frac{b^2}{c^2}\right)$.
\item $\displaystyle
\left(\frac{x}{3a}-\frac{y}{c}\right)\left(\frac{x^2}{9a^2}+
\frac{xy}{3ac}+\frac{y^2}{c^2}\right)$.
\item $\displaystyle
\left(\frac{9a^2}{b^2}+\frac{x^2y^2}{25z^2}\right)
\left(\frac{3a}{b}+\frac{xy}{5z}\right)
\left(\frac{3a}{b}-\frac{xy}{5z}\right)$.
\item $\displaystyle
\left(\frac{m}{y}-5\right)\left(\frac{m}{y}+3\right)$.
\item $\displaystyle
\left(\frac{x}{a}-4\right)\left(\frac{x}{a}+2\right)$.
\item $\displaystyle \left(\frac{y}{2}+\frac{2}{y}\right)^2$.
\item $\displaystyle \left(\frac{x}{a}-\frac{a}{x}\right)^2$.
\item $18a$ ft.
\item $\displaystyle \frac{a}{6}$ weeks.
\end{enumerate}
\subsection*{Exercise 51}
\begin{enumerate}
\item $\displaystyle \frac{b+a}{x-b}$.
\item $\displaystyle \frac{xy+a}{my-b}$.
\item $\displaystyle \frac{cx}{ac+b}$.
\item $\displaystyle \frac{x^2+x+1}{x}$.
\item $\displaystyle \frac{a+b}{ab}$.
\item $m(m^2-m+1)$.
\item $\displaystyle \frac{x^2-yz}{ax-by}$.
\item $\displaystyle -\frac{d}{c}$.
\item $\displaystyle \frac{a+1}{a-1}$.
\item $a^2$.
\item $\displaystyle \frac{x-5}{x-3}$.
\item $a$.
\item $\displaystyle \frac{a^2+1}{2a}$.
\item $1$.
\item $\displaystyle \frac{2}{a}$.
\item $l$.
\item $5y$ lbs.
\item $12y$ in.; $\displaystyle \frac{y}{3}$ yds.
\item $100y-x^2$ cts.
\item $\displaystyle \frac{lx}{m}$.
\end{enumerate}
\subsection*{Exercise 52.} \begin{enumerate}
\item $3x^4-2x^3-x+5$.
\item $45$; $55$.
\item $x+1$.
\item $(x^5-7y)^2$, $(a-b)(a^2+ab+b^2)(a^6+a^3b^3+b^6)$,
$3(a-9)(a+8)$.
\item $2$.
\item $\displaystyle
\left(\frac{4x^2}{a^2b^2}+\frac{c^2}{9y^2}\right)
\left(\frac{2x}{ab}+\frac{c}{3y}\right)
\left(\frac{2x}{ab}-\frac{c}{3y}\right)$.
\item $10x+y$.
\item $(a^2-16)(a^2-9)(a^2-4)$.
\item $\displaystyle \frac{100x}{a}$.
\item $\displaystyle -\frac{6}{x-4}$.
\item $0$.
\item $\displaystyle \frac{3x}{2y}$.
\item $\displaystyle \frac{2b}{n}$.
\item $1$.
\item $1$.
\setcounter{enumi}{16}
\item $42xy$.
\item $\displaystyle \frac{2x^3}{3} - \frac{x^2}{4} + x - 1$.
\end{enumerate}
\subsection*{Exercise 53.}
\begin{enumerate}
\item $x = 2$.
\item $x = -3$.
\item $x = 19$.
\item $x = -13$.
\item $x = 2\frac{1}{2}$.
\item $x = 5\frac{1}{4}$.
\item $x = 4$.
\item $x = 6\frac{1}{5}$.
\item $x = 1$.
\item $x = 3$.
\item $x = 2$.
\item $x = 1$.
\item $x = 10\frac{3}{7}$.
\item $x = 2$.
\item $x = 1$.
\item $x = 3$.
\item $x = 4$.
\item $x = 3$.
\item $x = -3$.
\item $x = 1$.
\item $x =\frac{6}{7}$.
\item $x = \frac{3}{4}$.
\item $17$; $22$; $66$.
\item $\$\,15$.
\item $28x$ fourths.
\item $\displaystyle \frac{3x}{z}$ days.
\item $x = 5\frac{1}{2}$.
\item $x = -15$.
\item $x = 48$.
\item $x = 4$.
\item $x = -5$.
\item $x = -\frac{1}{9}$.
\item $x = \frac{1}{7}$.
\item $x = 9$.
\item $x = 4$.
\item $x = 3$.
\item $x = 1$.
\item $x = 2$.
\item $x = 2$.
\item $x =11$.
\item $x = 6$.
\item $x = 8$.
\item $\displaystyle \frac{bx}{15}$ hrs.
\item $\displaystyle \frac{5m}{100}$ dols.
\item $16$; $41$.
\item $\displaystyle \frac{4by}{100}$ dols.
\item $\displaystyle x = \frac{c^2}{ a - b + 2c }$.
\item $x = \frac{1}{2}$.
\item $x = 3$.
\item $\displaystyle x = \frac{2b - a}{2}$.
\item $\displaystyle x = \frac{ac(a^2 + c^2)}{a + c}$.
\item $x = 0$.
\item $x = 2$.
\item $x = a + b$.
\item $x = \frac{2}{3}$.
\item $x = \frac{1}{4}$.
\item $x = 1$.
\item $x = \frac{5}{11}$.
\item $x = 2$.
\item $x = 2$.
\item $x = 4$.
\item $x = 6$.
\item $x = 1$.
\item $x = \frac{7}{17}$.
\item $x = 4$.
\item $x = -7$.
\item $26$; $27$; $28$.
\item $6y$ years.
\item $\displaystyle \frac{6x}{a}$ men.
\item $12x + 3$.
\end{enumerate}
\subsection*{Exercise 54.}
\begin{enumerate}
\item $209$ boys; $627$ girls.
\item $184$; $46$; $23$.
\item $16$; $28$ yrs
\item $36$; $122$.
\item S., $5$; H., $11$ qts.
\item $17$; $22$; $88$.
\item $9$.
\item $9$ fives; $18$ twos.
\item $18$; $15$; $25$ tons.
\item $15$.
\item $12$ M.; $36$ J.
\item $80$.
\item $24$.
\item $48$.
\item t., 5 lbs.; m., 8 lbs.; s., 14 lbs.
\item 35; 10 yrs.
\item \$2070, \$920.
\item 17,042; 14,981; 15,496.
\item R., 213; J., 426.
\item 63; 64; 65.
\item 16; 28.
\item 45; 75.
\item 24; 48 yrs.
\item 2; 12 yrs.
\item J., 12 yrs.; S., 28 yrs.
\item 20 yrs.
\item A., 6 yrs.; G., 18 yrs.
\item Ed., 40 yrs.; Es., 30 yrs.
\item 6 yrs.
\item 3; 12 yrs.
\item $2 x^3 - 6 x^2y + 18xy^2 - 27 y^3$.
\setcounter{enumi}{32}
\item $\displaystyle \frac{y}{x - y}$.
\item $x = 7$.
\item \$32.
\item \$13.
\item A, \$47; B, \$28; C, \$61.
\item 80 cts.
\item u., \$18; cl., \$25; h., \$9.
\item J., \$ 1.80; H., \$2.42; A., \$1.25
\item $2\frac{2}{5}$ days.
\item $5\frac{5}{11}$ days.
\item $22\frac{1}{2}$ hrs.
\item $1\frac{1}{3}$ hrs.
\item $4\frac{4}{5}$ hrs.
\item $2\frac{11}{12}$ hrs.
\item $2\frac{6}{7}$ hrs.
\item $17\frac{1}{7}$; $7\frac{1}{17}$ days.
\item $1\frac{5}{7}$ hrs.
\item $\displaystyle \frac{ab}{a + b}$ days.
\item $\displaystyle \frac{cd}{c - d}$ days.
\item $x = 1\frac{1}{2}$.
\item 1.
\item $x^8 - 13x^4 + 36$.
\item $(3a + 2b)^2$; $(3 + x)(4 + x)$; $(a - 2b)(c - 3d)$.
\item \begin{tabular}{ll}(1)& $10\frac{10}{11}$ m. \\
(2)& $27\frac{3}{11}$ m. \\
(3) &$49\frac{1}{11}$ m.
\end{tabular}
\item \begin{tabular}{lll} (1) &$27\frac{3}{11}$ m. \\
(2)& $5\frac{5}{11}$ m.; &$38\frac{2}{11}$ m. \\
(3)& $21\frac{9}{11}$ m.; &$54\frac{6}{11}$ m.
\end{tabular}
\item \begin{tabular}{ll}(1)& $49\frac{1}{11}$ m. \\
(2) & $10\frac{10}{11}$ m. \\
(3) & $32\frac{8}{11}$ m.
\end{tabular}
\item $10\frac{10}{11}$ m., $32\frac{8}{11}$ m.
\item $16\frac{4}{11}$ m.
\item $30\frac{6}{11}$ m.
\item $5\frac{5}{11}$ m. past 12M.
\item $57\frac{9}{11}$ m.
\item 20 hrs.
\item 24 hrs.; 152 hrs
\item 35 miles.
\item $14\frac{1}{2}$ miles; $70\frac{11}{16}$ miles.
\item 24 miles.
\item 6 P.M.; 30 miles from B; $25\frac{1}{2}$ miles from A.
\item 16 sec.
\item 11 ft. by 15 ft.
\item 12 ft. by 24 ft.
\item 14 ft. by 21 ft.
\item 16 sq. ft.
\item 48 ft. by 72 ft.
\item
\begin{tabular}{l}
$\displaystyle \left( \frac{x}{2} + \frac{yz^2}{3m^3} \right)
\left( \frac{x}{2} - \frac{yz^2}{3m^3} \right) $; \\
$(x^2 - 3y)(x^4 + 3x^2y + 9 y^2) $; \\
$(a^8 + b^8)(a^4 + b^4)$ etc.; \\
$2c(c^2 - 1)^2$.
\end{tabular}
\item $x^3 -2x^2 + 4x -3$.
\item $7y^3 + 15x^2y - x^3$.
\item $x(x + 1)$.
\item 60 ft.
\item A, 7 days; B, 14 days; C, 28 days.
\item 9; 48.
\item 18; 74.
\item \$140.
\item 24; 25.
\item A, 57 yrs.; B 33 yrs.
\item 38.
\item 300 leaps.
\item With 144 leaps.
\item After 560 leaps.
\end{enumerate}
\subsection*{Exercise 55.}
\begin{enumerate}
\item $x=3$, $y=1$.
\item $x=4$, $y=2$.
\item $x=7$, $y=6$.
\item $x=5\frac{1}{2}$, $y=4$.
\item $x=1\frac{1}{2}$, $y=3$.
\item $x=2$, $y=3$.
\item $x=5$, $y=-2$.
\item $x=2$, $y=-1$.
\item $x=-2\frac{1}{4}$, $y=-\frac{1}{8}$.
\item $x=2\frac{1}{2}$, $y=-1\frac{1}{2}$.
\item $x=\frac{1}{2}$, $y=1\frac{1}{3}$.
\item $x=15$, $y=-17$.
\item $x=12$, $y=15$.
\item $x=6$, $y=18$.
\item $x=35$, $y=-49$.
\item $x=21$, $y=25$.
\item $x=3$, $y=2$.
\item $x=\frac{1}{2}$, $y=4$.
\item $x=12$, $y=15$.
\item $x=\frac{a+b}{2}$, $y=\frac{a-b}{2}$.
\item $x=39$, $y=-56$.
\item $x=-2$, $y=-1\frac{17}{21}$.
\item $ \frac{7}{24}$.
\item $ \frac{11}{17}$.
\item $\frac{8}{13}$.
\item $\frac{11}{13}$.
\item $24$; $62$.
\item $27$; $63$.
\item $13$; $37$.
\item J., $13$ yrs.; H., $19$ yrs.
\item A, $36$ cows; B, $24$ cows.
\item tea, $54$; coffee, $32$.
\item corn, $61$; oats, $37$.
\item $12$ lbs of $87$ kind; $26$ lbs of $29$ kind.
\end{enumerate}
\subsection*{Exercise 56.}
\begin{enumerate}
\item $x=\pm 3$.
\item $x=\pm 2$.
\item $x=\pm 5$.
\item $x=\pm 2$.
\item $x=\pm \frac{1}{2}$.
\item $x=\pm 1$.
\item $x=\pm 7$.
\item $x=\pm 2$.
\item $x=\pm 1$.
\item $x=\pm 2$.
\item $x=\pm 2$.
\item $x=\pm 3$.
\item $12$ yrs.
\item $48$; $64$.
\item $\frac{17}{21}$
\end{enumerate}
\subsection*{Exercise 57.}
\begin{enumerate}
\item $x = 3 \text{ or } -6$.
\item $x = 2 \text{ or } -7$.
\item $x = 9 \text{ or } -8$.
\item $x = 7 \text{ or } 3$.
\item $x = 8 \text{ or } 15$.
\item $x = 11 \text{ or } -17$.
\item $x = b \text{ or } b$.
\item $x = a \text{ or } 3a$.
\item $x = 1 \text{ or } -a$.
\item $x = \frac{d}{c} \text{ or } -\frac{b}{a}$.
\item $x = 11 \text{ or } -3$.
\item $x = 6 \text{ or } 1$.
\item $x = 5 \text{ or } 2$.
\item $x = 6 \text{ or } 4$.
\item $x = 6 \text{ or } 16$.
\item $x = 2 \text{ or } -3$.
\item $x = 5 \text{ or } -2$.
\item $x = 0 \text{ or } 5$.
\item $x = 0 \text{ or } -3$.
\item $x = 3 \text{ or } 3$.
\item $54\frac{6}{11}$ m.
\item J., \$18; L., \$6.
\item $3$ in.
\item $7\frac{31}{47}$ days.
\end{enumerate}
\subsection*{Exercise 58.}
\begin{enumerate}
\item $3$. \setcounter{enumi}{2} \item $x=3$. \item $30$ hrs.
\item $x-1$. \item $a^2+ab-b^2$. \item $1-y+3y^2+2y^3$. \item
$60-x^2-28x$. \item $x=\pm 6$. \item $1$. \item
$11(a-c)-17x^3y-3\left(a-c\right)^3$. \item $x=\frac{4b}{5}$.
\item $(x^3+3)(x-1)(x^2+x+1)$; $(a+b)(x-y)(x+y)$;
$(3x+y+z)\{9x^2-3x(y+z)+\left(y+z\right)^2\}$. \item
$\frac{5}{11}$. \item $a+b$. \item $x=5$. \item J., $16$; S., $8$.
\item $\displaystyle \frac{1-y}{x}$. \item $a^2-3b^2+3c^2$. \item
$\displaystyle \frac{xy}{a}$. \item $a+3x+4y+2b$. \item
$a^2-\frac{3}{4}a+1$. \item $1\frac{7}{8}$ days. \item
$\displaystyle \frac{2a^2}{a^3+b^3}$. \item $(x-13)(x+4)$;
$(1+a^8)(1+a^4)(1+a^2)$ etc.; $\left(a^2+b^2+a^2-b^2\right)^2$; or
$\left(2a^2\right)^2$. \item $x=36$. \item $60$; $40$ yrs. \item
$x=3$, $y=12$. \item $3x^4-2x^3+x-5$. \item $2.35$, $3.2$. \item
$3\frac{7}{16}$. \item $x=0$. \item $25$; $26$; $27$. \item
$a(a+2)$. \item $\displaystyle \frac{x^2+y^2}{x}$.
\item $ \frac{3}{7}$.
\item $\displaystyle
-\frac{27a^6b^3\left(m+n\right)^6}{64x^3y^9\left(a-b\right)^9}$;
$\displaystyle \pm \frac{5x^2\left(a+b\right)^3}{4y^3z}$.
\item $3x^2-2x+1$. \item $\frac{1}{2}$. \item $x=-\frac{2}{3}$,
$y=-\frac{3}{4}$. \item $(x^2+3)(x^2+2)$; $\left(x-7\right)^2$;
$(x+y+z)(x-y-z)$. \item $\frac{1}{9}x^2y^2+xy$. \item
$31\frac{7}{11}$ m.; $44\frac{8}{11}$ m. \item $1$.
\item $x=b$.
\item $\displaystyle\left( \frac{x^3}{y^3} + \frac{ab^2}{c}
\right) \left( \frac{x^3}{y^3} - \frac{ab^2}{c} \right)$;
$\displaystyle \left( \frac{x}{y} - 7 \right) \left( \frac{x}{y} +
2 \right)$; $\displaystyle \left( \frac{x}{y} - \frac{y}{x}
\right)^2$.
\item $4\frac{4}{5}$ days. \item $x=18$, $y=6$. \item
$1+6x+12x^2+8x^3$;
$16x^8-96x^6a^2b^3+216x^4a^4b^6-216x^2a^5b^9+81a^8b^{12}$. \item
$\displaystyle \frac{a^2+b^2}{a^2-b^2}$. \item $y-x$. \item $0$.
\item $400$ sq. ft. \item $2(a^2-1)(a-3)(a-2)$.
\item $\displaystyle -\frac{2a-b}{2(2a+b)}$.
\item $x=4$ or $4$. \item $ab(a+2cm^2)(a^2-2acm^2+c^2m^4)$;
$c\left(2cx+y\right)^2$; $(x+1)(x^2-x+1)(x-1)(x^2+x+1)$. \item
$1-x-\frac{5}{12}x^2+\frac{1}{3}x^3+\frac{1}{9}x^4-\frac{1}{16}x^5$.
\item $x^2+x+1$. \item
$x^2-3xy+y^2+\frac{9xy^3-6y^4}{x^2+2y^2-3xy}$. \item
$a^2+\frac{1}{2}a^3$.
\item $\displaystyle x=\frac{2ab}{a+b}$.
\item $(x+5)(x+5)(x^2+3)$; $(4+x^4)(2+x^2)(2-x^2)$; $(2a)(2b)$.
\item $3\frac{3}{4}$ days.
\item $x=5$.
\item $\displaystyle
\frac{a^3}{b^3}-\frac{3a^2c}{b^2d}+\frac{3ac^2}{bd^2}-\frac{c^3}{d^3}
$; $\displaystyle \frac{c^3}{d^3}+1$. \item $24$ or $-3$. \item
$x=15$, $y=14$. \item $m-my+my^2-my^3+$ etc. \item $\displaystyle
\frac{5x}{3}$. \item $4$ ft. \item
$10a^2+19ax-19ay+9x^2+18xy+9y^2$. \item
$\frac{3}{2}x^2-x+\frac{2}{3}$. \item $5x^4+4x^3+3x^2+2x+1$. \item
$(a+2)(a-2)(a+5) $; $(x+y)(x^2-xy+y^2)(x-y)(x^2+xy+y^2) $;
$2x(x^2-3y^2)(x+y)(x-y)$. \item $8$ hrs. \item $x$. \item $x=2$,
$y=3$. \item $3xy-7b^2$. \item $6x-23$.
\end{enumerate}
\newpage
\small
\pagenumbering{gobble}
\begin{verbatim}
End of Project Gutenberg's A First Book in Algebra, by Wallace C. Boyden
*** END OF THIS PROJECT GUTENBERG EBOOK A FIRST BOOK IN ALGEBRA ***
***** This file should be named 13309-t.tex or 13309-t.zip *****
This and all associated files of various formats will be found in:
https://www.gutenberg.org/1/3/3/0/13309/
Produced by Dave Maddock, Susan Skinner
and the PG Distributed Proofreading Team.
Updated editions will replace the previous one--the old editions
will be renamed.
Creating the works from public domain print editions means that no
one owns a United States copyright in these works, so the Foundation
(and you!) can copy and distribute it in the United States without
permission and without paying copyright royalties. Special rules,
set forth in the General Terms of Use part of this license, apply to
copying and distributing Project Gutenberg-tm electronic works to
protect the PROJECT GUTENBERG-tm concept and trademark. Project
Gutenberg is a registered trademark, and may not be used if you
charge for the eBooks, unless you receive specific permission. If you
do not charge anything for copies of this eBook, complying with the
rules is very easy. You may use this eBook for nearly any purpose
such as creation of derivative works, reports, performances and
research. They may be modified and printed and given away--you may do
practically ANYTHING with public domain eBooks. Redistribution is
subject to the trademark license, especially commercial
redistribution.
*** START: FULL LICENSE ***
THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
To protect the Project Gutenberg-tm mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase "Project
Gutenberg"), you agree to comply with all the terms of the Full Project
Gutenberg-tm License (available with this file or online at
https://gutenberg.org/license).
Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
electronic works
1.A. By reading or using any part of this Project Gutenberg-tm
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or destroy
all copies of Project Gutenberg-tm electronic works in your possession.
If you paid a fee for obtaining a copy of or access to a Project
Gutenberg-tm electronic work and you do not agree to be bound by the
terms of this agreement, you may obtain a refund from the person or
entity to whom you paid the fee as set forth in paragraph 1.E.8.
1.B. "Project Gutenberg" is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg-tm electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg-tm electronic works if you follow the terms of this agreement
and help preserve free future access to Project Gutenberg-tm electronic
works. See paragraph 1.E below.
1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
or PGLAF), owns a compilation copyright in the collection of Project
Gutenberg-tm electronic works. Nearly all the individual works in the
collection are in the public domain in the United States. If an
individual work is in the public domain in the United States and you are
located in the United States, we do not claim a right to prevent you from
copying, distributing, performing, displaying or creating derivative
works based on the work as long as all references to Project Gutenberg
are removed. Of course, we hope that you will support the Project
Gutenberg-tm mission of promoting free access to electronic works by
freely sharing Project Gutenberg-tm works in compliance with the terms of
this agreement for keeping the Project Gutenberg-tm name associated with
the work. You can easily comply with the terms of this agreement by
keeping this work in the same format with its attached full Project
Gutenberg-tm License when you share it without charge with others.
1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are in
a constant state of change. If you are outside the United States, check
the laws of your country in addition to the terms of this agreement
before downloading, copying, displaying, performing, distributing or
creating derivative works based on this work or any other Project
Gutenberg-tm work. The Foundation makes no representations concerning
the copyright status of any work in any country outside the United
States.
1.E. Unless you have removed all references to Project Gutenberg:
1.E.1. The following sentence, with active links to, or other immediate
access to, the full Project Gutenberg-tm License must appear prominently
whenever any copy of a Project Gutenberg-tm work (any work on which the
phrase "Project Gutenberg" appears, or with which the phrase "Project
Gutenberg" is associated) is accessed, displayed, performed, viewed,
copied or distributed:
This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org
1.E.2. If an individual Project Gutenberg-tm electronic work is derived
from the public domain (does not contain a notice indicating that it is
posted with permission of the copyright holder), the work can be copied
and distributed to anyone in the United States without paying any fees
or charges. If you are redistributing or providing access to a work
with the phrase "Project Gutenberg" associated with or appearing on the
work, you must comply either with the requirements of paragraphs 1.E.1
through 1.E.7 or obtain permission for the use of the work and the
Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
1.E.9.
1.E.3. If an individual Project Gutenberg-tm electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
terms imposed by the copyright holder. Additional terms will be linked
to the Project Gutenberg-tm License for all works posted with the
permission of the copyright holder found at the beginning of this work.
1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg-tm.
1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg-tm License.
1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including any
word processing or hypertext form. However, if you provide access to or
distribute copies of a Project Gutenberg-tm work in a format other than
"Plain Vanilla ASCII" or other format used in the official version
posted on the official Project Gutenberg-tm web site (www.gutenberg.org),
you must, at no additional cost, fee or expense to the user, provide a
copy, a means of exporting a copy, or a means of obtaining a copy upon
request, of the work in its original "Plain Vanilla ASCII" or other
form. Any alternate format must include the full Project Gutenberg-tm
License as specified in paragraph 1.E.1.
1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg-tm works
unless you comply with paragraph 1.E.8 or 1.E.9.
1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg-tm electronic works provided
that
- You pay a royalty fee of 20% of the gross profits you derive from
the use of Project Gutenberg-tm works calculated using the method
you already use to calculate your applicable taxes. The fee is
owed to the owner of the Project Gutenberg-tm trademark, but he
has agreed to donate royalties under this paragraph to the
Project Gutenberg Literary Archive Foundation. Royalty payments
must be paid within 60 days following each date on which you
prepare (or are legally required to prepare) your periodic tax
returns. Royalty payments should be clearly marked as such and
sent to the Project Gutenberg Literary Archive Foundation at the
address specified in Section 4, "Information about donations to
the Project Gutenberg Literary Archive Foundation."
- You provide a full refund of any money paid by a user who notifies
you in writing (or by e-mail) within 30 days of receipt that s/he
does not agree to the terms of the full Project Gutenberg-tm
License. You must require such a user to return or
destroy all copies of the works possessed in a physical medium
and discontinue all use of and all access to other copies of
Project Gutenberg-tm works.
- You provide, in accordance with paragraph 1.F.3, a full refund of any
money paid for a work or a replacement copy, if a defect in the
electronic work is discovered and reported to you within 90 days
of receipt of the work.
- You comply with all other terms of this agreement for free
distribution of Project Gutenberg-tm works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
electronic work or group of works on different terms than are set
forth in this agreement, you must obtain permission in writing from
both the Project Gutenberg Literary Archive Foundation and Michael
Hart, the owner of the Project Gutenberg-tm trademark. Contact the
Foundation as set forth in Section 3 below.
1.F.
1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
public domain works in creating the Project Gutenberg-tm
collection. Despite these efforts, Project Gutenberg-tm electronic
works, and the medium on which they may be stored, may contain
"Defects," such as, but not limited to, incomplete, inaccurate or
corrupt data, transcription errors, a copyright or other intellectual
property infringement, a defective or damaged disk or other medium, a
computer virus, or computer codes that damage or cannot be read by
your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
of Replacement or Refund" described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg-tm trademark, and any other party distributing a Project
Gutenberg-tm electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium with
your written explanation. The person or entity that provided you with
the defective work may elect to provide a replacement copy in lieu of a
refund. If you received the work electronically, the person or entity
providing it to you may choose to give you a second opportunity to
receive the work electronically in lieu of a refund. If the second copy
is also defective, you may demand a refund in writing without further
opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you 'AS-IS', WITH NO OTHER
WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of damages.
If any disclaimer or limitation set forth in this agreement violates the
law of the state applicable to this agreement, the agreement shall be
interpreted to make the maximum disclaimer or limitation permitted by
the applicable state law. The invalidity or unenforceability of any
provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg-tm electronic works in accordance
with this agreement, and any volunteers associated with the production,
promotion and distribution of Project Gutenberg-tm electronic works,
harmless from all liability, costs and expenses, including legal fees,
that arise directly or indirectly from any of the following which you do
or cause to occur: (a) distribution of this or any Project Gutenberg-tm
work, (b) alteration, modification, or additions or deletions to any
Project Gutenberg-tm work, and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg-tm
Project Gutenberg-tm is synonymous with the free distribution of
electronic works in formats readable by the widest variety of computers
including obsolete, old, middle-aged and new computers. It exists
because of the efforts of hundreds of volunteers and donations from
people in all walks of life.
Volunteers and financial support to provide volunteers with the
assistance they need, is critical to reaching Project Gutenberg-tm's
goals and ensuring that the Project Gutenberg-tm collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg-tm and future generations.
To learn more about the Project Gutenberg Literary Archive Foundation
and how your efforts and donations can help, see Sections 3 and 4
and the Foundation web page at https://www.pglaf.org.
Section 3. Information about the Project Gutenberg Literary Archive
Foundation
The Project Gutenberg Literary Archive Foundation is a non profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation's EIN or federal tax identification
number is 64-6221541. Its 501(c)(3) letter is posted at
https://pglaf.org/fundraising. Contributions to the Project Gutenberg
Literary Archive Foundation are tax deductible to the full extent
permitted by U.S. federal laws and your state's laws.
The Foundation's principal office is located at 4557 Melan Dr. S.
Fairbanks, AK, 99712., but its volunteers and employees are scattered
throughout numerous locations. Its business office is located at
809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
business@pglaf.org. Email contact links and up to date contact
information can be found at the Foundation's web site and official
page at https://pglaf.org
For additional contact information:
Dr. Gregory B. Newby
Chief Executive and Director
gbnewby@pglaf.org
Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation
Project Gutenberg-tm depends upon and cannot survive without wide
spread public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.
The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To
SEND DONATIONS or determine the status of compliance for any
particular state visit https://pglaf.org
While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.
International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg Web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including including checks, online payments and credit card
donations. To donate, please visit: https://pglaf.org/donate
Section 5. General Information About Project Gutenberg-tm electronic
works.
Professor Michael S. Hart was the originator of the Project Gutenberg-tm
concept of a library of electronic works that could be freely shared
with anyone. For thirty years, he produced and distributed Project
Gutenberg-tm eBooks with only a loose network of volunteer support.
Project Gutenberg-tm eBooks are often created from several printed
editions, all of which are confirmed as Public Domain in the U.S.
unless a copyright notice is included. Thus, we do not necessarily
keep eBooks in compliance with any particular paper edition.
Most people start at our Web site which has the main PG search facility:
https://www.gutenberg.org
This Web site includes information about Project Gutenberg-tm,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.
\end{verbatim}
\normalsize
\end{document}
|